
An Example Checklist for ScrumMasters
Michael James, CST

Danube Technologies, Inc.
http://www.danube.com
michael@danube.com

14 September 2007

A Full Time Facilitator?
An adequate ScrumMaster can handle two or three teams at a time. If you're content to limit your role to
organizing meetings, enforcing timeboxes, and responding to the impediments people explicitly report, you can
get by with part time attention to this role. The team will probably still exceed the baseline, pre-Scrum
expectation at your organization, and probably nothing catastrophic will happen.

But if you can envision a hyperproductive team -- a team that has a great time accomplishing things no one
else can -- consider being a great ScrumMaster.

A great ScrumMaster can handle one team at a time.

We recommend one dedicated ScrumMaster per team of about seven, especially when starting out.

If you haven't discovered all the work there is to do, tune in to your Product Owner, your team, your team's
engineering practices, and the organization outside your team. While there's no single prescription for
everyone, I've outlined some things I've seen ScrumMasters overlook.

Part I -- How Is My Product Owner Doing?
You improve the Product Ownerʼs effectiveness by helping maintain the Product Backlog and release plan.
(Note that only the Product Owner may prioritize the backlog.)

⫽ Is the Product Backlog prioritized according to his/her latest thinking?

⫽ Are all the requirements and desirements from all stakeholders for the product captured in the backlog?
Remember the backlog is emergent.

⫽ Is the Product Backlog a manageable size? To maintain a manageable number of items, keep things more
granular towards the top, with general epics at the bottom. It's counterproductive to overanalyze too far
past the top of the Product Backlog. Your requirements will change in an ongoing conversation between
the developing product and the stakeholders/customers.

⫽ Could any requirements (especially those near the top of the Product Backlog) be better expressed as
independent, negotiable, valuable, estimable, small, and testable user stories1?

⫽ Have you educated your Product Owner about technical debt and how to avoid it? One piece of the puzzle
may be adding automated test and refactoring to the definition of "done" for each backlog item.

⫽ Is the backlog an information radiator, highly visible to all stakeholders?

⫽ If you're using an automated tool for backlog management, does everyone know how to use it easily?
Automated management tools introduce the danger of becoming information refrigerators without active
radiation from the ScrumMaster.

Copyright © 2007 Danube Technologies, Inc. All Rights Reserved.

1 http://xp123.com/xplor/xp0308/index.shtml

http://www.danube.com
http://www.danube.com
mailto:michael@danube.com
mailto:michael@danube.com
http://xp123.com/xplor/xp0308/index.shtml%06
http://xp123.com/xplor/xp0308/index.shtml%06

⫽ Are you working with the tool supplier to use it to its fullest capacity, or to change it to serve you better?

⫽ Can you help radiate information by showing everyone printouts?

⫽ Can you help radiate information by creating big visible charts?

⫽ Have you helped your Product Owner organize backlog items into appropriate releases or priority groups?

⫽ Do all stakeholders (including the team) know whether the release plan still matches reality, based on the
current velocity (story points per Sprint)? You might try showing everyone Product/Release Burndown
Charts2 after the items have been acknowledged as “done” during every Sprint Review Meeting. Charts
showing both the rate of PBIs completed and new ones added allow early discovery of scope/schedule
drift.

⫽ Did your Product Owner adjust the release plan after the last Sprint Review Meeting? The minority of
Product Owners who ship adequately tested products on time re-plan the release every Sprint. This
probably requires deferring some work for future releases as more important work is discovered.

Part II -- How Is My Team Doing?

You are a member of the team, and youʼre encouraged to set an example by collaborating with them with them
on their technical tasks. Before getting too lost in those technical tasks, consider your primary responsibilities:

⫽ Is your team in the state of flow? Some characteristics of this state3:
• Clear goals (expectations and rules are discernible and goals are attainable and align appropriately with

one's skill set and abilities).
• Concentrating and focusing, a high degree of concentration on a limited field of attention.
• A loss of the feeling of self-consciousness, the merging of action and awareness.
• Direct and immediate feedback (successes and failures in the course of the activity are apparent, so that

behavior can be adjusted as needed).
• Balance between ability level and challenge (the activity is neither too easy nor too difficult).
• A sense of personal control over the situation or activity.
• The activity is intrinsically rewarding, so there is an effortlessness of action.

⫽ Do team members seem to like each other, goof off together, and celebrate each other's success?

⫽ Do team members hold each other accountable to high standards, and challenge each other to grow?

⫽ Are there issues/opportunities the team isn't discussing because they're too uncomfortable?4

⫽ Have you tried a variety of formats and locations for Sprint Retrospective Meetings?5

Copyright © 2007 Danube Technologies, Inc. All Rights Reserved.

2 Mike Cohn, Agile Estimation and Planning. (2005). Prentice Hall

3 Mihaly Csikszentmihalyi, Flow: The Psychology of Optimal Experience (1990). Harper and Row

4 Kerry Patterson, Crucial Conversations: Tools for Talking When Stakes are High (2002). McGraw-Hill -- or consider
enlisting a professional facilitator who can make uncomfortable conversations more comfortable.

5 Derby/Larson Agile Retrospectives: Making Good Teams Great (2006). Pragmatic

⫽ Has the team kept focus on acceptance criteria? Perhaps you should conduct a mid-Sprint checkup to re-
review the acceptance criteria of the product backlog items committed for this Sprint.

⫽ Does the Sprint Task list reflect what the team is actually doing?

⫽ Does your team have 5-9 people with a mix of skills?

⫽ Are your team's task estimates and/or your taskboard up to date?

⫽ Are the team self-management artifacts (taskboard, Sprint Burndown Chart, impediments list, etc.) visible
to the team, convenient for the team to use?

⫽ Are these artifacts adequately protected from micromanagers and other meddlers? Excess scrutiny of
daily activity by people outside the team may impede team internal transparency and self management.

⫽ Do team members volunteer for tasks?

⫽ Are technical debt repayment items (sapping your team's velocity) captured in the backlog, or otherwise
communicated with the Product Owner?

⫽ Are team members checking their job titles at the door of the team room?

⫽ Does the entire team consider itself collectively responsible for all aspects of agreed work (testing, user
documentation, etc.)?

⫽ Is management measuring the team by collective success?

Part III -- How are our engineering practices doing?

⫽ Does your system in development have a "push to test" button so that anyone (same team or different
team) can conveniently detect when they've caused a regression failure (broken previously-working
functionality)? Typically this is achieved through the xUnit framework (JUnit, NUnit, etc.).

⫽ Do you have an appropriate balance between automated end-to-end system tests (a.k.a. "functional
tests") and automated unit tests?

⫽ Is the team writing both system "functional" tests and unit tests in the same language as the system
they're developing (rather than using proprietary scripting languages or capture playback tools only a
subset of the team knows how to maintain)?

⫽ Has your team discovered the useful gray area between system tests and unit tests6?

⫽ Does a continuous integration7 server automatically sound an alarm when someone causes a regression
failure? Can this feedback loop be reduced to hours or minutes? ("Daily builds are for wimps." -- Kent
Beck)

⫽ Do all tests roll up into the continuous integration server result?

Copyright © 2007 Danube Technologies, Inc. All Rights Reserved.

6 http://danube.com/blog/michaeljames/junit_is_not_just_for_unit_testing_anymore

7 http://www.martinfowler.com/articles/continuousIntegration.html

http://danube.com/blog/michaeljames/junit_is_not_just_for_unit_testing_anymore%06
http://danube.com/blog/michaeljames/junit_is_not_just_for_unit_testing_anymore%06
http://www.martinfowler.com/articles/continuousIntegration.html%06
http://www.martinfowler.com/articles/continuousIntegration.html%06

⫽ Have team members discovered the joy of continuous design and constant refactoring8, as an alternative
to Big Up Front Design? Refactoring has a strict definition: changing the internal structure of a system
without changing its external behavior. Refactoring should occur several times per hour, whenever there is
duplicate code, complex conditional logic (visible by excess indenting or long methods), poorly named
identifiers, excessive coupling between objects, etc. Refactoring with confidence is only possible with
automated test coverage. Holes in test coverage and deferred refactoring are technical debt9.

⫽ Does your definition of "done" (acceptance criteria) for each functional Product Backlog Item include full
automated test coverage and refactoring? I've never seen or heard of a hyperproductive team that wasn't
doing the eXtreme Programming10 practices. Books and articles by Kent Beck and Ron Jeffries are a
good place to start with this.

⫽ Are team members pair programming most of the time? Pair programming dramatically increases code
maintainability and reduces bug rates11. But it challenges people's boundaries and sometimes seems to
take longer (if we put quantity over quality). Rather than force people to do this, lead by example by
initiating paired workdays with team members. Some of them will start to prefer working this way.

Part IV -- How is the organization doing?

⫽ Is the appropriate amount of inter-team communication happening? Scrum of Scrums is only one way to
achieve this.

⫽ Are your ScrumMasters meeting with each other, working the organizational impediments list?

⫽ When appropriate, are the organizational impediments pasted to the wall of the development director's
office? Can the cost be quantified in dollars, lost time to market, lost quality, or lost customer
opportunities? (But learn from Ken Schwaber's mistakes: "A dead ScrumMaster is a useless
ScrumMaster."12)

⫽ Is your organization one of the few with career paths compatible with the collective goals of your teams?
Answer "no" if there's a career incentive to do programming or architecture work at the expense of testing,
test automation, or user documentation.

⫽ Has your organization been recognized by the trade press or other independent sources as one of the
best places to work, or a leader in your industry?

Conclusion

If you can check off most of these items and still have time left during the day, Iʼd like to hear from you.

Thereʼs no canned formula for creating human ingenuity. This paper lists points which may, or may not, help in
your situation.

Copyright © 2007 Danube Technologies, Inc. All Rights Reserved.

8 Martin Fowler, Refactoring: Improving the Design of Existing Code (1999). Addison-Wesley

9 Michael Feathers, Working Effectively with Legacy Code (2004) Prentice Hall

10 http://www.extremeprogramming.org/

11 http://www.agilealliance.org/article/articles_by_category/35

12 Ken Schwaber, Agile Project Management with Scrum (2004). Microsoft Press

http://www.extremeprogramming.org/%06
http://www.extremeprogramming.org/%06
http://www.agilealliance.org/article/articles_by_category/35%06
http://www.agilealliance.org/article/articles_by_category/35%06

Once you start to realize what you could do to make a difference, you may find yourself afraid to do it. This is a
sign you're on the right track.

Copyright © 2007 Danube Technologies, Inc. All Rights Reserved.

