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Preface

We have been investigating problems in operations for several years and have,
naturally, been tracking the DevOps movement. It is moving up the Gartner
Hype Curve and has a solid business reason for existing. We were able to find
treatments from the I'T manager’s perspective (e.g., the novel The Phoenix
Project: A Novel about IT, DevOps, and Helping Your Business Win) and from
the project manager’s perspective (e.g., Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation). In addition, there is
a raft of material about cultural change and what it means to tear down barriers
between organizational units.

What frustrated us is that there is very little material from the software
architect’s perspective. Treating operations personnel as first-class stakeholders
and listening to their requirements is certainly important. Using tools to support
operations and project management is also important. Yet, we had the strong
feeling that there was more to it than stakeholder management and the use of
tools.

Indeed there is, and that is the gap that this book intends to fill. DevOps
presents a fascinating interplay between design, process, tooling, and
organizational structure. We try to answer two primary questions: What
technical decisions do I, as a software architect, have to make to achieve the
DevOps goals? What impact do the other actors in the DevOps space have on
me?

The answers are that achieving DevOps goals can involve fundamental
changes in the architecture of your systems and in the roles and responsibilities
required to get your systems into production and support them once they are
there.

Just as software architects must understand the business context and goals for
the systems they design and construct, understanding DevOps requires
understanding organizational and business contexts, as well as technical and
operational contexts. We explore all of these.

The primary audience for this book is practicing software architects who have
been or expect to be asked, “Should this project or organization adopt DevOps
practices?” Instead of being asked, the architect may be told. As with all books,
we expect additional categories of readers. Students who are interested in
learning more about the practice of software architecture should find interesting



material here. Researchers who wish to investigate DevOps topics can find
important background material. Our primary focus, however, is on practicing
architects.



Previewing the Book

We begin the book by discussing the background for DevOps. Part One begins
by delving into the goals of DevOps and the problems it is intended to solve. We
touch on organizational and cultural issues, as well as the relationship of
DevOps practices to agile methodologies.

In Chapter 2, we explore the cloud. DevOps practices have grown in tandem
with the growth of the cloud as a platform. The two, in theory, are separable, but
in practice virtualization and the cloud are important enablers for DevOps
practices.

In our final background chapter, Chapter 3, we explore operations through the
prism of the Information Technology Infrastructure Library (ITIL). ITIL is a
system of organization of the most important functions of an operations group.
Not all of operations are included in DevOps practices but understanding
something of the responsibilities of an operations group provides important
context, especially when it comes to understanding roles and responsibilities.

Part Two describes the deployment pipeline. We begin this part by exploring
the microservice architectural style in Chapter 4. It is not mandatory that systems
be architected in this style in order to apply DevOps practices but the
microservice architectural style is designed to solve many of the problems that
motivated DevOps.

In Chapter 5, we hurry through the building and testing processes and tool
chains. It is important to understand these but they are not our focus. We touch
on the different environments used to get a system into production and the
different sorts of tests run on these environments. Since many of the tools used
in DevOps are used in the building and testing processes, we provide context for
understanding these tools and how to control them.

We conclude Part Two by discussing deployment. One of the goals of
DevOps is to speed up deployments. A technique used to achieve this goal is to
allow each development team to independently deploy their code when it is
ready. Independent deployment introduces many issues of consistency. We
discuss different deployment models, managing distinct versions of a system that
are simultaneously in production, rolling back in the case of errors, and other
topics having to do with actually placing your system in production.

Part Two presents a functional perspective on deployment practices. Yet, just
as with any other system, it is frequently the quality perspectives that control the



design and the acceptance of the system. In Part Three, we focus on crosscutting
concerns. This begins with our discussion of monitoring and live testing in
Chapter 7. Modern software testing practices do not end when a system is placed
into production. First, systems are monitored extensively to detect problems, and
secondly, testing continues in a variety of forms after a system has been placed
into production.

Another crosscutting concern is security, which we cover in Chapter 8. We
present the different types of security controls that exist in an environment,
spanning those that are organization wide and those that are specific system
wide. We discuss the different roles associated with achieving security and how
these roles are evaluated in the case of a security audit.

Security is not the only quality of interest, and in Chapter 9 we discuss other
qualities that are relevant to the practices associated with DevOps. We cover
topics such as performance, reliability, and modifiability of the deployment
pipeline.

Finally, in Part Three we discuss business considerations in Chapter 10.
Practices as broad as DevOps cannot be adopted without buy-in from
management. A business plan is a typical means of acquiring this buy-in; thus,
we present the elements of a business plan for DevOps adoption and discuss how
the argument, rollout, and measurement should proceed.

In Part Four we present three case studies. Organizations that have
implemented DevOps practices tell us some of their tricks. Chapter 11 discusses
how to maintain two datacenters for the purpose of business continuity; Chapter
12 presents the specifics of a continuous deployment pipeline; and Chapter 13
describes how one organization is migrating to a microservice architecture.

We close by speculating about the future in Part Five. Chapter 14 describes
our research and how it is based on viewing operations as a series of processes,
and Chapter 15 gives our prediction for how the next three to five years are
going to evolve in terms of DevOps.
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Legend

We use four distinct legends for the figures. We have an architectural notation
that identifies the key architectural concepts that we use; we use Business
Process Model and Notation (BPMN) to describe some processes, Porter’s Value
Notation to describe a few others, and UML sequence diagrams for interleaving
sequences of activities. We do not show the UML sequence diagram notation
here but the notation that we use from these other sources is:

Architecture

Person Group
FIGURE P.1 People, both individual and groups

-

Component Module —_—
Data Flow

5,

FIGURE P.2 Components (runtime entities), modules (code-time collections
of entities), and data flow

T T,
__ " VM
g Data Object

FIGURE P.3 Specialized entities

{ DNS Entry or |
i |P Address

v

FIGURE P.4 Collections of entities

BPMN

We use Business Process Model and Notation (BPMN) for describing events and
activities [OMG 11].
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Event (start) Event (end) Exclusive Gateway Repetition
FIGURE P.5 Event indications

| - e Sy Ea
Activity Sequential Conditional  Default
Flow Flow Flow

FIGURE P.6 Activities and sequences of activities

Porter’s Value Chain

This notation is used to describe processes (which, in turn, have activities

modelled in BPMN)).
Phase in a
sequence of
processes

FIGURE P.7 Entry in a value chain




Part One: Background

This part provides the necessary background for the remainder of the book.
DevOps is a movement that envisions no friction between the development
groups and the operations groups. In addition, the emergence of DevOps
coincides with the growth of the cloud as a basic platform for organizations,
large and small. Part One has three chapters.

In Chapter 1, we define DevOps and discuss its various motivations. DevOps
is a catchall term that can cover several meanings, including: having
development and operations speak to each other; allowing development teams to
deploy to production automatically; and having development teams be the first
responders when an error is discovered in production. In this chapter, we sort out
these various considerations and develop a coherent description of what DevOps
is, what its motivations and goals are, and how it is going about achieving those
goals.

In order to understand how certain DevOps practices work, it is necessary to
know how the cloud works, which we discuss in Chapter 2. In particular, you
should know how virtual machines work, how IP addresses are used, the role of
and how to manipulate Domain Name System (DNS) servers, and how load
balancers and monitors interact to provide on-demand scaling.

DevOps involves the modifications of both Dev and Ops practices. In Chapter
3, we discuss Ops in its totality. It describes the services that Ops provides to the
organization and introduces Ops responsibilities, from supporting deployed
applications to enforcing organization-wide security rules.



1. What Is DevOps?

Someone told me that each equation I included in the book would halve the
sales. I therefore resolved not to have any equations at all.
—Stephen Hawking

1.1 Introduction

The question this book attempts to answer is “Why should I care about DevOps,
and what impact does it have on me?” The long answer will be found by reading
the book, but the short answer is that if you are involved in building software
systems and your organization is interested in reducing the time to market for
new features, then you should care. This is the motivation for DevOps, and
DevOps practices will influence the way that you organize teams, build systems,
and even the structure of the systems that you build. If you are a software
engineering student or researcher then you should care how the adoption of
DevOps practices could influence the problems that you choose to work on. If
you are an educator you should care because incorporating DevOps material into
your curriculum will help educate your students about modern development
practices.

We begin by defining DevOps and providing a short example. Then we
present the motivation for the movement, the DevOps perspective, and barriers
to the success of DevOps. Much of the writing on DevOps discusses various
organizational and cultural issues. In this first chapter, we summarize these
topics, which frame the remainder of the book.

Defining DevOps

DevOps has been classified as “on the rise” with respect to the Gartner Hype
Cycle for Application Development in 2013. This classification means that the
term is becoming a buzz word and, as such, is ill defined and subject to
overblown claims. Our definition of DevOps focuses on the goals, rather than
the means.

DevOps is a set of practices intended to reduce the time between
committing a change to a system and the change being placed into
normal production, while ensuring high quality.



Before we delve more deeply into what set of practices is included, let’s look
at some of the implications of our definition.

= The quality of the deployed change to a system (usually in the form of
code) is important. Quality means suitability for use by various
stakeholders including end users, developers, or system administrators. It
also includes availability, security, reliability, and other “ilities.” One
method for ensuring quality is to have a variety of automated test cases
that must be passed prior to placing changed code into production. Another
method is to test the change in production with a limited set of users prior
to opening it up to the world. Still another method is to closely monitor
newly deployed code for a period of time. We do not specify in the
definition how quality is ensured but we do require that production code be
of high quality.

The definition also requires the delivery mechanism to be of high quality.
This implies that reliability and the repeatability of the delivery mechanism
should be high. If the delivery mechanism fails regularly, the time required
increases. If there are errors in how the change is delivered, the quality of
the deployed system suffers, for example, through reduced availability or
reliability.

We identify two time periods as being important. One is the time when a
developer commits newly developed code. This marks the end of basic
development and the beginning of the deployment path. The second time is
the deploying of that code into production. As we will see in Chapter 6,
there is a period after code has been deployed into production when the
code is being tested through live testing and is closely monitored for
potential problems. Once the code has passed live testing and close
monitoring, then it is considered as a portion of the normal production
system. We make a distinction between deploying code into production for
live testing and close monitoring and then, after passing the tests,
promoting the newly developed code to be equivalent to previously
developed code.

Our definition is goal oriented. We do not specify the form of the practices
or whether tools are used to implement them. If a practice is intended to
reduce the time between a commit from a developer and deploying into
production, it is a DevOps practice whether it involves agile methods,
tools, or forms of coordination. This is in contrast to several other
definitions. Wikipedia, for example, stresses communication,
collaboration, and integration between various stakeholders without stating



the goal of such communication, collaboration, or integration. Timing
goals are implicit. Other definitions stress the connection between DevOps
and agile methods. Again, there is no mention of the benefits of utilizing
agile methods on either the time to develop or the quality of the production
system. Still other definitions stress the tools being used, without
mentioning the goal of DevOps practices, the time involved, or the quality.

= Finally, the goals specified in the definition do not restrict the scope of
DevOps practices to testing and deployment. In order to achieve these
goals, it is important to include an Ops perspective in the collection of
requirements—that is, significantly earlier than committing changes.
Analogously, the definition does not mean DevOps practices end with
deployment into production; the goal is to ensure high quality of the
deployed system throughout its life cycle. Thus, monitoring practices that
help achieve the goals are to be included as well.

DevOps Practices

We have identified five different categories of DevOps practices below. These
are mentioned in writings about DevOps and satisfy our definition.

= Treat Ops as first-class citizens from the point of view of requirements.
These practices fit in the high-quality aspect of the definition. Operations
have a set of requirements that pertain to logging and monitoring. For
example, logging messages should be understandable and usable by an
operator. Involving operations in the development of requirements will
ensure that these types of requirements are considered.

= Make Dev more responsible for relevant incident handling. These practices
are intended to shorten the time between the observation of an error and
the repair of that error. Organizations that utilize these practices typically
have a period of time in which Dev has primary responsibility for a new
deployment; later on, Ops has primary responsibility.

= Enforce the deployment process used by all, including Dev and Ops
personnel. These practices are intended to ensure a higher quality of
deployments. This avoids errors caused by ad hoc deployments and the
resulting misconfiguration. The practices also refer to the time that it takes
to diagnose and repair an error. The normal deployment process should
make it easy to trace the history of a particular deployment artifact and
understand the components that were included in that artifact.

= Use continuous deployment. Practices associated with continuous



deployment are intended to shorten the time between a developer
committing code to a repository and the code being deployed. Continuous
deployment also emphasizes automated tests to increase the quality of code
making its way into production.

= Develop infrastructure code, such as deployment scripts, with the same set
of practices as application code. Practices that apply to the development of
infrastructure code are intended to ensure both high quality in the deployed
applications and that deployments proceed as planned. Errors in
deployment scripts such as misconfigurations can cause errors in the
application, the environment, or the deployment process. Applying quality
control practices used in normal software development when developing
operations scripts and processes will help control the quality of these
specifications.

Figure 1.1 gives an overview of DevOps processes. At its most basic, DevOps
advocates treating Operations personnel as first-class stakeholders. Preparing a
release can be a very serious and onerous process. (We describe that in the
section “Release Process.”) As such, operations personnel may need to be
trained in the types of runtime errors that can occur in a system under
development; they may have suggestions as to the type and structure of log files,
and they may provide other types of input into the requirements process. At its
most extreme, DevOps practices make developers responsible for monitoring the
progress and errors that occur during deployment and execution, so theirs would
be the voices suggesting requirements. In between are practices that cover team
practices, build processes, testing processes, and deployment processes. We
discuss the continuous deployment pipeline in Chapters 5 and 6. We also cover
monitoring, security, and audits in subsequent chapters.

Build Testing Deployment
* Treat Operations  + Small teams  » Build tools + Automated * Deployment * Monitoring
personnel as first-  « Limited « Suppors testing toals * Responding to
class stakeholders  coordination continuous s User * Supports error conditions
* Get their input » Unit tests integration acceptance continuous
when developing testing deployment

requiremeants

FIGURE 1.1 DevOps life cycle processes [Notation: Porter’s Value Chain]

You may have some questions about terminology with the terms IT
professional, operator, and operations personnel. Another related term is system
administrator. The IT professional subsumes the mentioned roles and others,
such as help desk support. The distinction in terminology between operators and
system administrators has historical roots but is much less true today.



Historically, operators had hands-on access to the hardware—installing and
configuring hardware, managing backups, and maintaining printers—while
system administrators were responsible for uptime, performance, resources, and
security of computer systems. Today it is the rare operator who does not take on
some duties formerly assigned to a system administrator. We will use the term
operator to refer to anyone who performs computer operator or system
administration tasks (or both).

Example of Continuous Deployment: IMVU

IMVU, Inc. is a social entertainment company whose product allows users to
connect through 3D avatar-based experiences. This section is adapted from a
blog written by an IMVU engineer.

IMVU does continuous integration. The developers commit early
and often. A commit triggers an execution of a test suite. IMVU has
a thousand test files, distributed across 30—40 machines, and the test
suite takes about nine minutes to run. Once a commit has passed all
of its tests, it is automatically sent to deployment. This takes about
six minutes. The code is moved to the hundreds of machines in the
cluster, but at first the code is only made live on a small number of
machines (canaries). A sampling program examines the results of the
canaries and if there has been a statistically significant regression,
then the revision is automatically rolled back. Otherwise the
remainder of the cluster is made active. IMVU deploys new code 50
times a day, on average.

The essence of the process is in the test suite. Every time a commit gets
through the test suite and is rolled back, a new test is generated that would have
caught the erroneous deployment, and it is added to the test suite.

Note that a full test suite (with the confidence of production deployment) that
only takes nine minutes to run is uncommon for large-scale systems. In many
organizations, the full test suite that provides production deployment confidence
can take hours to run, which is often done overnight. A common challenge is to
reduce the size of the test suite judiciously and remove “flaky” tests.

1.2 Why DevOps?

DevOps, in many ways, is a response to the problem of slow releases. The
longer it takes a release to get to market, the less advantage will accrue from
whatever features or quality improvements led to the release. Ideally, we want to



release in a continuous manner. This is often termed continuous delivery or
continuous deployment. We discuss the subtle difference between the two terms
in Chapters 5 and 6. In this book, we use the term continuous deployment or just
deployment. We begin by describing a formal release process, and then we delve
more deeply into some of the reasons for slow releases.

Release Process

Releasing a new system or version of an existing system to customers is one of
the most sensitive steps in the software development cycle. This is true whether
the system or version is for external distribution, is used directly by consumers,
or is strictly for internal use. As long as the system is used by more than one
person, releasing a new version opens the possibility of incompatibilities or
failures, with subsequent unhappiness on the part of the customers.

Consequently, organizations pay a great deal of attention to the process of
defining a release plan. The following release planning steps are adapted from
Wikipedia. Traditionally, most of the steps are done manually.

1. Define and agree on release and deployment plans with
customers/stakeholders. This could be done at the team or organizational
level. The release and deployment plans will include those features to be
included in the new release as well as ensure that operations personnel
(including help desk and support personnel) are aware of schedules,
resource requirements are met, and any additional training that might be
required is scheduled.

2. Ensure that each release package consists of a set of related assets and
service components that are compatible with each other. Everything
changes over time, including libraries, platforms, and dependent services.
Changes may introduce incompatibilities. This step is intended to prevent
incompatibilities from becoming apparent only after deployment. In
Chapter 5, we discuss the ways of ensuring all of these compatibilities.
Managing dependencies is a theme that will surface repeatedly throughout
this book.

3. Ensure that the integrity of a release package and its constituent
components is maintained throughout the transition activities and recorded
accurately in the configuration management system. There are two parts to
this step: The first is to make sure that old versions of a component are not
inadvertently included in the release, and the second is to make sure that a
record is kept of the components of this deployment. Knowing the



elements of the deployment is important when tracking down errors found
after deployment. We discuss the details of deployment in Chapter 6.

4. Ensure that all release and deployment packages can be tracked, installed,
tested, verified, and/or uninstalled or rolled back, if appropriate.
Deployments may need to be rolled back (new version uninstalled, old
version redeployed) under a variety of circumstances, such as errors in the
code, inadequate resources, or expired licenses or certificates.

The activities enumerated in this list can be accomplished with differing levels
of automation. If all of these activities are accomplished primarily through
human coordination then these steps are labor-intensive, time-consuming, and
error-prone. Any automation reflects an agreement on the release process
whether at the team or organization level. Since tools are typically used more
than once, an agreement on the release process encoded into a tool has
persistence beyond a single release.

In case you are tempted to downplay the seriousness of getting the
deployment correct, you may want to consider recent media reports with
substantial financial costs.

= On August 1, 2012, Knight Capital had an upgrade failure that ended up
costing (US) $440 million.

= On August 20, 2013, Goldman Sachs had an upgrade failure that,
potentially, could cost millions of dollars.

These are just two of the many examples that have resulted in downtime or
errors because of upgrade failure. Deploying an upgrade correctly is a significant
and important activity for an organization and, yet, one that should be done in a
timely fashion with minimal opportunity for error. Several organizations have
done surveys to document the extent of deployment problems. We report on two
of them.

= XebiaLabs is an organization that markets a deployment tool and a
continuous integration tool. They did a survey in 2013 with over 130
responses. 34% of the respondents were from IT services companies with
approximately 10% each from health care, financial services, and
telecommunications companies. 7.5% of the respondents reported their
deployment process was “not reliable,” and 57.5% reported their
deployment process “needs improvement.” 49% reported their biggest
challenge in the deployment process was “too much inconsistency across
environments and applications.” 32.5% reported “too many errors.” 29.2%
reported their deployments relied on custom scripting, and 35.8% reported



their deployments were partially scripted and partially manual.

= CA Technologies provides IT management solutions to their customers.
They commissioned a survey in 2013 that had 1,300 respondents from
companies with more than (US) $100 million revenue. Of those who
reported seeing benefits from the adoption of DevOps, 53% said they were
already seeing an increased frequency of deployment of their software or
services and 41% said they were anticipating seeing an increased
frequency of deployment. 42% responded that they had seen improved
quality of deployed applications, and 49% responded they anticipated
seeing improved quality.

Although both surveys are sponsored by organizations with a vested interest
in promoting deployment automation, they also clearly indicate that the speed
and quality of deployments are a concern to many companies in a variety of
different markets.

Reasons for Poor Coordination

Consider what happens after a developer group has completed all of the coding
and testing for a system. The system needs to be placed into an environment
where:

= Only the appropriate people have access to it.

= It is compatible with all of the other systems with which it interacts in the
environment.

= It has sufficient resources on which to operate.
= The data that it uses to operate is up to date.
= The data that it generates is usable by other systems in the environment.

Furthermore, help desk personnel need to be trained in features of the new
system and operations personnel need to be trained in troubleshooting any
problems that might occur while the system is operating. The timing of the
release may also be of significance because it should not coincide with the
absence of any key member of the operations staff or with a new sales promotion
that will stress the existing resources.

None of this happens by accident but each of these items requires coordination
between the developers and the operations personnel. It is easy to imagine a
scenario where one or more of these items are not communicated by the
development personnel to the operations personnel. A common attitude among
developers is “I finished the development, now go and run it.” We explore the
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DevOps.

One reason that organizations have processes to ensure smooth releases is that
coordination does not always happen in an appropriate manner. This is one of
the complaints that motivated the DevOps movement.

Limited Capacity of Operations Staff

Operations staff perform a variety of functions but there are limits as to what
they can accomplish or who on the staff is knowledgeable in what system.
Consider the responsibilities of a modern operations person as detailed in
Wikipedia.
= Analyzing system logs and identifying potential issues with computer
systems

= Introducing and integrating new technologies into existing datacenter
environments

= Performing routine audits of systems and software

= Performing backups

= Applying operating system updates, patches, and configuration changes
= Installing and configuring new hardware and software

= Adding, removing, or updating user account information; resetting
passwords, etc.

= Answering technical queries and assisting users

» Ensuring security

» Documenting the configuration of the system

= Troubleshooting any reported problems

= Optimizing system performance

= Ensuring that the network infrastructure is up and running
= Configuring, adding, and deleting file systems

= Maintaining knowledge of volume management tools like Veritas (now
Symantec), Solaris ZFS, LVM

Each of these items requires a deep level of understanding. Is it any wonder
that when we asked the IT director of an Internet-based company what his
largest problem was, he replied “finding and keeping qualified personnel.”

The DevOps movement is taking a different approach. Their approach is to
reduce the need for dedicated operations personnel through automating many of



the tasks formerly done by operations and having developers assume a portion of
the remainder.

1.3 DevOps Perspective

Given the problems we have discussed and their long-standing nature, it is no
surprise that there is a significant appeal for a movement that promises to reduce
the time to market for new features and reduce errors occurring in deployment.
DevOps comes in multiple flavors and with different degrees of variation from
current practice, but two themes run consistently through the different flavors:
automation and the responsibilities of the development team.

Automation

Figure 1.1 shows the various life cycle processes. The steps from build and
testing through execution can all be automated to some degree. We will discuss
the tools used in each one of these steps in the appropriate chapters, but here we
highlight the virtues of automation. Some of the problems with relying on
automation are discussed in Section 1.7.

Tools can perform the actions required in each step of the process, check the
validity of actions against the production environment or against some external
specification, inform appropriate personnel of errors occurring in the process,
and maintain a history of actions for quality control, reporting, and auditing
purposes.

Tools and scripts also can enforce organization-wide policies. Suppose the
organization has a policy that every change has to have a rationale associated
with the change. Then prior to committing a change, a tool or script can require a
rationale to be provided by the individual making the change. Certainly, this
requirement can be circumvented, but having the tool ask for a rationale will
increase the compliance level for this policy.

Once tools become central to a set of processes, then the use of these tools
must also be managed. Tools are invoked, for example, from scripts,
configuration changes, or the operator’s console. Where console commands are
complicated, it is advisable to script their usage, even if there is only a handful
of commands being used. Tools may be controlled through specification files,
such as Chef cookbooks or Amazon CloudFormation—more on these later. The
scripts, configuration files, and specification files must be subject to the same
quality control as the application code itself. The scripts and files should also be
under version control and subject to examination for corrections. This is often



termed “infrastructure-as-code.”

Development Team Responsibilities

Automation will reduce the incidence of errors and will shorten the time to
deployment. To further shorten the time to deployment, consider the
responsibilities of operations personnel as detailed earlier. If the development
team accepts DevOps responsibilities, that is, it delivers, supports, and maintains
the service, then there is less need to transfer knowledge to the operations and
support staff since all of the necessary knowledge is resident in the development
team. Not having to transfer knowledge removes a significant coordination step
from the deployment process.

1.4 DevOps and Agile

One of the characterizations of DevOps emphasizes the relationship of DevOps
practices to agile practices. In this section, we overlay the DevOps practices on
IBM’s Disciplined Agile Delivery. Our focus is on what is added by DevOps,
not an explanation of Disciplined Agile Delivery. For that, see Disciplined Agile
Delivery: A Practitioner’s Approach. As shown in Figure 1.2, Disciplined Agile
Delivery has three phases—inception, construction, and transition. In the
DevOps context, we interpret transition as deployment.

Construction Transition
Phase Phase
* Vision * Scrum, XP, Lean = Deploy Solution
* [nitial modeling * Develop Solution
* High-level
ranking

* Release planning
FIGURE 1.2 Disciplined Agile Delivery phases for each release. (Adapted
from Disciplined Agile Delivery: A Practitioner’s Guide by Ambler and
Lines) [Notation: Porter’s Value Chain]

DevOps practices impact all three phases.

1. Inception phase. During the inception phase, release planning and initial
requirements specification are done.

a. Considerations of Ops will add some requirements for the developers.
We will see these in more detail later in this book, but maintaining
backward compatibility between releases and having features be



software switchable are two of these requirements. The form and
content of operational log messages impacts the ability of Ops to
troubleshoot a problem.

b. Release planning includes feature prioritization but it also includes
coordination with operations personnel about the scheduling of the
release and determining what training the operations personnel require
to support the new release. Release planning also includes ensuring
compatibility with other packages in the environment and a recovery
plan if the release fails. DevOps practices make incorporation of many
of the coordination-related topics in release planning unnecessary,
whereas other aspects become highly automated.

2. Construction phase. During the construction phase, key elements of the
DevOps practices are the management of the code branches, the use of
continuous integration and continuous deployment, and incorporation of
test cases for automated testing. These are also agile practices but form an
important portion of the ability to automate the deployment pipeline. A
new element is the integrated and automated connection between
construction and transition activities.

3. Transition phase. In the transition phase, the solution is deployed and the
development team is responsible for the deployment, monitoring the
process of the deployment, deciding whether to roll back and when, and
monitoring the execution after deployment. The development team has a
role of “reliability engineer,” who is responsible for monitoring and
troubleshooting problems during deployment and subsequent execution.

1.5 Team Structure

In this section, the usual size of and roles within a development team with
DevOps responsibilities are discussed.

Team Size

Although the exact team size recommendation differs from one methodology to
another, all agree that the size of the team should be relatively small. Amazon
has a “two pizza rule.” That is, no team should be larger than can be fed from
two pizzas. Although there is a fair bit of ambiguity in this rule—how big the
pizzas are, how hungry the members of the team are—the intent is clear.

The advantages of small teams are:
= They can make decisions quickly. In every meeting, attendees wish to



express their opinions. The smaller the number of attendees at the meeting,
the fewer the number of opinions expressed and the less time spent hearing
differing opinions. Consequently, the opinions can be expressed and a
consensus arrived at faster than with a large team.

= It is easier to fashion a small number of people into a coherent unit than a
large number. A coherent unit is one in which everyone understands and
subscribes to a common set of goals for the team.

= It is easier for individuals to express an opinion or idea in front of a small
group than in front of a large one.

The disadvantage of a small team is that some tasks are larger than can be
accomplished by a small number of individuals. In this case the task has to be
broken up into smaller pieces, each given to a different team, and the different
pieces need to work together sufficiently well to accomplish the larger task. To
achieve this, the teams need to coordinate.

The team size becomes a major driver of the overall architecture. A small
team, by necessity, works on a small amount of code. We will see that an
architecture constructed around a collection of microservices is a good means to
package these small tasks and reduce the need for explicit coordination—so we
will call the output of a development team a “service.” We discuss the ways and
challenges of migrating to a microservice architecture driven by small teams in
Chapter 4 and the case study in Chapter 13 from Atlassian.

Team Roles

We lift two of the roles in the team from Scott Ambler’s description of roles in
an agile team.

Team lead. This role, called “Scrum Master” in Scrum or team coach
or project lead in other methods, is responsible for facilitating the
team, obtaining resources for it, and protecting it from problems.
This role encompasses the soft skills of project management but not
the technical ones such as planning and scheduling, activities which
are better left to the team as a whole.

Team member. This role, sometimes referred to as developer or
programmer, is responsible for the creation and delivery of a system.
This includes modeling, programming, testing, and release activities,
as well as others.

Additional roles in a team executing a DevOps process consist of service
owner, reliability engineer, gatekeeper, and DevOps engineer. An individual can



perform multiple roles, and roles can be split among individuals. The assignment
of roles to individuals depends on that individual’s skills and workload as well
as the skills and amount of work required to satisfy the role. We discuss some
examples of team roles for adopting DevOps and continuous deployment in the
case study in Chapter 12.

Service Owner

The service owner is the role on the team responsible for outside coordination.
The service owner participates in system-wide requirements activities, prioritizes
work items for the team, and provides the team with information both from the
clients of the team’s service and about services provided to the team. The
requirements gathering and release planning activities for the next iteration can
occur in parallel with the conception phase of the current iteration. Thus,
although these activities require coordination and time, they will not slow down
the time to delivery.

The service owner maintains and communicates the vision for the service.
Since each service is relatively small, the vision involves knowledge of the
clients of the team’s service and the services on which the team’s service
depends. That is, the vision involves the architecture of the overall system and
the team’s role in that architecture.

The ability to communicate both with other stakeholders and with other
members of the team is a key requirement for the service owner.

Reliability Engineer

The reliability engineer has several responsibilities. First, the reliability engineer
monitors the service in the time period immediately subsequent to the
deployment. This may involve the use of canaries (live testing of a small number
of nodes) and a wide variety of metrics taken from the service. We will discuss
both of those concepts in more detail later in this book. Second, the reliability
engineer is the point of contact for problems with the service during its
execution. This means being on call for services that require high availability.
Google calls this role “Site Reliability Engineer.”

Once a problem occurs, the reliability engineer performs short-term analysis
to diagnose, mitigate, and repair the problem, usually with the assistance of
automated tools. This can occur under very stressful conditions (e.g., in the
middle of the night or a romantic dinner). The problem may involve reliability
engineers from other teams. In any case, the reliability engineer has to be
excellent at troubleshooting and diagnosis. The reliability engineer also has to



have a comprehensive grasp ot the internals ot the service so that a fix or
workaround can be applied.

In addition to the short-term analysis, the reliability engineer should discover
or work with the team to discover the root cause of a problem. The “5 Whys” is
a technique to determine a root cause. Keep asking “Why?” until a process
reason is discovered. For example, the deployed service is too slow and the
immediate cause may be an unexpected spike in workload. The second “why” is
what caused the unexpected spike, and so on. Ultimately, the response is that
stress testing for the service did not include appropriate workload
characterization. This process reason can be fixed by improving the workload
characterization for the stress testing. Increasingly, reliability engineers need to
be competent developers, as they need to write high-quality programs to
automate the repetitive part of the diagnosis, mitigation, and repair.

Gatekeeper
Netflix uses the steps given in Figure 1.3 from local development to deployment.

1. Local Dev / 2. Commit to 3. Build / Unit Tests 4. Integration
Test SCM / Repo Contract Validations Tesis
L -

s ™)

( ) 5. Deploy to Intermnal
e
Partner Envs
b - f

p
Push to Prod Canary Analysis 6. Deploy to Canary

e Ll Cluster Dmly Push or

- Manual Trigger

FIGURE 1.3 Netflix path to production. (Adapted from
http://techblog.netflix.com/2013/11/preparing-netflix-api-for-
deployment.html) [Notation: BPMN]

Each arrow in this figure represents a decision to move to the next step. This
decision may be done automatically (in Netflix’s case) or manually. The manual
role that decides to move a service to the next step in a deployment pipeline is a
gatekeeper role. The gatekeeper decides whether to allow a version of a service
or a portion of a service through “the gate” to the next step. The gatekeeper may


http://techblog.netflix.com/2013/11/preparing-netflix-api-for-deployment.html

rely on comprehensive testing results and have a checklist to use to make this
decision and may consult with others but, fundamentally, the responsibility for
allowing code or a service to move on through the deployment pipeline belongs
to the gatekeeper. In some cases, the original developer is the gatekeeper before
deployment to production, making a decision informed by test results but
carrying the full responsibility. Human gatekeepers (not the original developer)
may be required by regulators in some industries such as the financial industry.

Mozilla has a role called a release coordinator (sometimes called release
manager). This individual is designated to assume responsibility for coordinating
the entire release. The release coordinator attends triage meetings where it is
decided what is in and what is omitted from a release, understands the
background context on all work included in a release, referees bug severity
disputes, may approve late-breaking additions, and can make the back-out
decision. In addition, on the actual release day, the release coordinator is the
point for all communications between developers, QA, release engineering,
website developers, PR, and marketing. The release coordinator is a gatekeeper.

DevOps Engineer

Examine Figure 1.2 again with an eye toward the use of tools in this process.
Some of the tools used are code testing tools, configuration management tools,
continuous integration tools, deployment tools, or post-deployment testing tools.

Configuration management applies not only to the source code for the service
but also to all of the input for the various tools. This allows you to answer
questions such as “What changed between the last deployment and this one?”
and “What new tests were added since the last build?”

Tools evolve, tools require specialized knowledge, and tools require
specialized input. The DevOps engineer role is responsible for the care and
feeding of the various tools used in the DevOps tool chain. This role can be
filled at the individual level, the team level, or the organizational level. For
example, the organization may decide on a particular configuration management
tool that all should use. The team will still need to decide on its branching
strategies, and individual developers may further create branches. Policies for
naming and access will exist and possibly be automatically enforced. The choice
of which release of the configuration management tool the development teams
will use is a portion of the DevOps engineer’s role, as are the tailoring of the tool
for the development team and monitoring its correct use by the developers. The
DevOps engineering role is inherent in automating the development and
deployment pipeline. How this role is manifested in an organizational or team
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structure 1S a decision separate 1rom tne recognition tnat tne role exists and must
be filled.

1.6 Coordination

One goal of DevOps is to minimize coordination in order to reduce the time to
market. Two of the reasons to coordinate are, first, so that the pieces developed
by the various teams will work together and, second, to avoid duplication of
effort. The Oxford English Dictionary defines coordination as “the organization
of the different elements of a complex body or activity so as to enable them to
work together effectively.” We go more deeply into the concept of coordination
and its mechanisms in this section.

Forms of Coordination
Coordination mechanisms have different attributes.

= Direct—the individuals coordinating know each other (e.g., team
members).

= Indirect—the coordination mechanism is aimed at an audience known only
by its characterization (e.g., system administrators).

= Persistent—the coordination artifacts are available after the moment of the
coordination (e.g., documents, e-mail, bulletin boards).

= Ephemeral—the coordination, per se, produces no artifacts (e.g., face to
face meetings, conversations, telephone/video conferencing). Ephemeral
coordination can be made persistent through the use of human or
mechanical recorders.

= Synchronous—individuals are coordinating in real time, (e.g., face to face).

= Asynchronous—individuals are not coordinating in real time (e.g.,
documents, e-mail).

Coordination mechanisms are built into many of the tools used in DevOps.
For example, a version control system is a form of automated coordination that
keeps various developers from overwriting each other’s code. A continuous
integration tool is a form of coordinating the testing of the correctness of a build.

Every form of coordination has a cost and a benefit. Synchronous
coordination requires scheduling and, potentially, travel. The time spent in
synchronous coordination is a cost for all involved. The benefits of synchronous
coordination include allowing the people involved to have an immediate

opportunity to contribute to the resolution of any problem. Other costs and
henefits for synchronnons coordination denend on the handwidth nf
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communication, time zone differences, and persistence of the coordination. Each
form of coordination can be analyzed in terms of costs and benefits.

The ideal characteristics of a coordination mechanism are that it is low cost in
terms of delay, preparation required, and people’s time, and of high benefit in
terms of visibility of the coordination to all relevant stakeholders, fast resolution
of any problems, and effectiveness in communicating the desired information.

The Wikipedia definition of DevOps that we mentioned earlier stated that
“communication, collaboration, and integration” are hallmarks of a DevOps
process. In light of our current discussion of coordination, we can see that too
much manual communication and collaboration, especially synchronous, defeats
the DevOps goal of shorter time to market.

Team Coordination

Team coordination mechanisms are of two types—human processes and
automated processes. The DevOps human processes are adopted from agile
processes and are designed for high-bandwidth coordination with limited
persistence. Stand-up meetings and information radiators are examples of human
process coordination mechanisms.

Automated team coordination mechanisms are designed to protect team
members from interference of their and others’ activities (version control and
configuration management systems), to automate repetitive tasks (continuous
integration and deployment), and to speed up error detection and reporting
(automated unit, integration, acceptance, and live production tests). One goal is
to provide feedback to the developers as quickly as possible.

Cross-team Coordination

Examining the release process activities again makes it clear that cross-team
coordination is the most time-consuming factor. Coordination must occur with
customers, stakeholders, other development teams, and operations. Therefore,
DevOps processes attempt to minimize this coordination as much as possible.
From the development team’s perspective, there are three types of cross-team
coordination: upstream coordination with stakeholders and customers,
downstream coordination with operations, and cross-stream coordination with
other development teams.

The role of the service owner is to perform upstream coordination.
Downstream coordination is accomplished by moving many operations
responsibilities to the development team. It is cross-team coordination that we



focus on now. There are two reasons for a development team to coordinate with
other development teams—to ensure that the code developed by one team works
well with the code developed by another and to avoid duplication of effort.

1. Making the code pieces work together. One method for supporting the
independent work of different development teams while simplifying the
integration of this work is to have a software architecture. An architecture
for the system being developed will help make the pieces work together.
Some further coordination is still necessary, but the architecture serves as a
coordinating mechanism. An architecture specifies a number of the design
decisions to create an overall system. Six of these design decisions are:

a. Allocation of responsibilities. In DevOps processes, general
responsibilities are specified in the architecture but specific
responsibilities are determined at the initiation of each iteration.

b. Coordination model. The coordination model describes how the
components of an architecture coordinate at runtime. Having a single
coordination model for all elements removes the necessity of
coordination about the coordination model.

¢. Data model. As with responsibilities, the data model objects and their
life cycle are specified in the architecture but refinements may occur at
iteration initiation.

d. Management of resources. The resources to be managed are determined
by the architecture. The limits on these resources (e.g., buffer size or
thread pool size) may be determined during iteration initiation or
through system-wide policies specified in the architecture.

e. Mapping among architectural elements. The least coordination is
required among teams if these mappings are specified in the architecture
and in the work assignments for the teams. We return to this topic when
we discuss the architectural style we propose for systems developed
with DevOps processes, in Chapter 4.

f. Binding time decisions. These are specified in the overall architecture.
Many runtime binding values will be specified through configuration
parameters, and we will discuss the management of the configuration
parameters in Chapter 5.

2. Avoiding duplication of effort. Avoiding duplication of effort and
encouraging reuse is another argument for coordination among
development teams. DevOps practices essentially argue that duplication of
effort is a necessary cost for shorter time to market. There are two portions



to this argument. First, since the task each team has to accomplish is small,
any duplication is small. Large potential areas of duplication, such as each
team creating their own datastore, are handled by the architecture. Second,
since each team is responsible for its own service, troubleshooting
problems after deployment is faster with code written by the team, and it
avoids escalating a problem to a different team.

1.7 Barriers

If DevOps solves long-standing problems with development and has such clear
benefits, why haven’t all organizations adopted DevOps practices? In this
section we explore the barriers to their adoption.

Culture and Type of Organization

Culture is important when discussing DevOps. Both across organizations and
among different groups within the same organization, cultural issues associated
with DevOps affect its form and its adoption. Culture depends not only on your
role but also on the type of organization to which you belong.

One of the goals of DevOps is to reduce time to market of new features or
products. One of the tradeoffs that organizations consider when adopting
DevOps practices is the benefits of reduced time to market versus the risks of
something going awry. Almost all organizations worry about risk. The risks that
a particular organization worries about, however, depend on their domain of
activity. For some organizations the risks of problems occurring outweigh a
time-to-market advantage.

= Organizations that operate in regulated domains—financial, health care, or
utility services—have regulations to which they must adhere and face
penalties, potentially severe, if they violate the regulations under which
they operate. Even organizations in regulated domains may have products
that are unregulated. So a financial organization may use DevOps
processes for some products. For products that require more oversight, the
practices may be adaptable, for example, by introducing additional
gatekeepers. We discuss security and audit issues in Chapter 8.

= Organizations that operate in mature and slow-moving domains—
automotive or building construction—have long lead times, and, although
their deadlines are real, they are also foreseeable far in advance.

= Organizations whose customers have a high cost of switching to another
supplier, such as Enterprise Resource Planning systems, are reluctant to



risk the stability of their operations. The cost of downtime for some
systems will far outweigh the competitive advantage of introducing a new
feature somewhat more quickly.

For other organizations, nimbleness and fast response are more important than
the occasional error caused by moving too fast.

= Organizations that rely on business analytics to shape their products want
to have shorter and shorter times between the gathering of the data and
actions inspired by the data. Any errors that result can be quickly corrected
since the next cycle will happen quickly.

= Organizations that face severe competitive pressure want to have their
products and new features in the marketplace before their competitors.

Note that these examples do not depend on the size of the organization but
rather the type of business they are in. It is difficult to be nimble if you have
regulators who have oversight and can dictate your operating principles, or if
your lead time for a product feature is measured in years, or if your capital
equipment has a 40-year estimated lifetime.

The point of this discussion is that businesses operate in an environment and
inherit much of the culture of that environment. See Chapter 10 for more details.
Some DevOps practices are disruptive, such as allowing developers to deploy to
production directly; other DevOps practices are incremental in that they do not
affect the overall flow of products or oversight. Treating operations personnel as
first-class citizens should fall into this nondisruptive category.

It is possible for a slow-moving organization to become more nimble or a
nimble organization to have oversight. If you are considering adopting a DevOps
practice then you need to be aware of three things.

1. What other practices are implicit in the practice you are considering?
You cannot do continuous deployment without first doing continuous
integration. Independent practices need to be adopted prior to adopting
dependent practices.

2. What is the particular practice you are considering? What are its
assumption, its costs, and its benefits?

3. What is the culture of your business, and what are the ramifications of
your adopting this particular DevOps practice? If the practice just affects
operations and development, that is one thing. If it requires modification to
the entire organizational structure and oversight practices, that is quite
another. The difficulty of adopting a practice is related to its impact on
other portions of the organization. But even if the adoption focuses on a



single development team and a few operators, it is important that the
DevOps culture is adopted by all people involved. A commonly reported
way of failing in the adoption of DevOps is to hire a DevOps engineer and
think you are done.

Type of Department

One method for determining the culture of an organization is to look at what
kinds of results are incentivized. Salespeople who work on commission work
very hard to get sales. CEOs who are rewarded based on quarterly profits are
focused on the results of the next quarter. This is human nature. Developers are
incentivized to produce and release code. Ideally, they are incentivized to
produce error-free code but there is a Dilbert cartoon that shows the difficulty of
this: The pointy-headed boss offers $10 for every bug found and fixed, and
Wally responds, “Hooray, I am going to write me a new minivan this afternoon.”
In any case, developers are incentivized to get their code into production.

Operations personnel, on the other hand, are incentivized to minimize
downtime. Minimizing downtime means examining and removing causes of
downtime. Examining anything in detail takes time. Furthermore, avoiding
change removes one of the causes of downtime. “If it ain’t broke, don’t fix it” is
a well-known phrase dating back over decades.

Basically, developers are incentivized to change something (release new
code), and operations personnel are incentivized to resist change. These two
different sets of incentives breed different attitudes and can be the cause of
culture clashes.

Silo Mentality

It is easy to say that two departments in an organization have a common goal—
ensuring the organization’s success. It is much more difficult to make this
happen in practice. An individual’s loyalty tends to be first to her or his team and
secondarily to the overall organization. If the development team is responsible
for defining the release plan that will include what features get implemented in
what priority, other portions of the organization will see some of their power
being usurped and, potentially, their customers become unhappy. If activities
formerly performed by operations personnel are now going to be performed by
developers, what happens to the operations personnel who now have less to do?

These are the normal ebbs and flows of organizational politics but that does
not make them less meaningful and less real.



Tool Support

We described the advantages of automating processes previously, and these
advantages are real. They do not come without a cost, however.

= There must be expertise in the installation, configuration, and use of each
tool. Tools have new releases, inputs, and idiosyncrasies. Tool expertise
has to be integrated into the organization.

= If the organization uses common processes across a wide variety of
development teams, then there must be a means of defining these common
processes and ensuring that all of the development teams obey them. Use
of a tool means subscribing to the process implicit in that tool. See the case
study in Chapter 12 for an example of the definition of common processes.

Personnel Issues

According to the Datamation 2012 IT salary guide, a software engineer earns
about 50% more than a systems administrator. So by moving a task from a
system administrator (Ops) to a software engineer (Dev), the personnel
performing the task cost 50% more. Thus, the time spent performing the task
must be cut by a third just to make the performance of the task cost the same
amount. A bigger cut is necessary to actually gain time, with automation being
the prevalent method to achieve these time savings. This is the type of
cost/benefit analysis that an organization must go through in order to determine
which DevOps processes to adopt and how to adopt them.

Developers with a modern skill set are in high demand and short supply, and
they also have a heavy workload. Adding more tasks to their workload may
exacerbate the shortage of developers.

1.8 Summary

The main takeaway from this chapter is that people have defined DevOps from
different perspectives, such as operators adopting agile practices or developers
taking operations responsibilities, among others. But one common objective is to
reduce the time between the conception of a feature or improvement as a
business idea to its eventual deployment to users.

DevOps faces barriers due to both cultural and technical challenges. It can
have a huge impact on team structure, software architecture, and traditional ways
of conducting operations. We have given you a taste of this impact by listing
some common practices. We will cover all of these topics in detail throughout
the rest of the hook.



Some of the tradeoffs involved in DevOps are as follows:

= Creation of a need to support DevOps tools. This tool support is traded off
against the shortening of the time to market of new functions.

= Moving responsibilities from IT professionals to developers. This tradeoff
is multifaceted. The following are some of the facets to be considered:

= The cost to complete a task from the two groups.
= The time to complete a task from the two groups.
= The availability of personnel within the two groups.

= The repair time when an error is detected during execution. If the error is
detected quickly after deployment, then the developer may still have the
context information necessary to diagnose it quickly, whereas if the error
is initially diagnosed by IT personnel, it may take time before the error
gets back to the developer.

= Removing oversight of new features and deployment. This tradeoff is
between autonomy for the development teams and overall coordination.
The efficiencies of having autonomous development teams must outweigh
the duplications of effort that will occur because of no overall oversight.

All in all, we believe that DevOps has the potential to lead IT onto exciting
new ground, with high frequency of innovation and fast cycles to improve the
user experience. We hope you enjoy reading the book as much as we enjoyed
writing it.

1.9 For Further Reading

You can read about different takes on the DevOps definition from the following
sources:

= Gartner’s Hype Cycle [Gartner] categorizes DevOps as on the rise:
http://www.gartner.com/DisplayDocument?doc_cd=249070.

= AgileAdmins explains DevOps from an agile perspective:
http://theagileadmin.com/what-is-devops/.

You can find many more responses from the following recent surveys and
industry reports:

= XebialLabs has a wide range of surveys and state of industry reports on
DevOps-related topics that can be found at http://xebialabs.com/xI-
resources/whitepapers/

= CA Technologies’ report gives some insights into business’ different
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understanding of DevOps and can be found at
http://www.ca.com/us/collateral/white-papers/na/techinsights-report-what-
smart-businesses-know-about-devops.aspx

While some vendors or communities extended continuous integration tools
toward continuous deployment, many vendors also released completely new
tools for continuous delivery and deployment.

= The popular continuous integration tool Jenkins has many third-party plug-
ins including some workflows extending into continuous deployment. You
can find some plug-ins from Cloudbees at
http://www.slideshare.net/cloudbees

= IBM acquired UrbanCode recently. UrbanCode is one of the new vendors
providing a continuous delivery tool suite [InfoQ 13].

= ThoughtWorks also released its own continuous deployment pipeline suite
called Go, which can be found at http://www.go.cd/

Some of the basic conceptual information in this chapter comes from the
following Wikipedia links:
= One definition of DevOps we refer to is found at
http://en.wikipedia.org/wiki/System_administrator

= The steps in a release or deployment plan are adapted from
http://en.wikipedia.org/wiki/Deployment Plan

= The duties of an operator are listed in
http://en.wikipedia.org/wiki/DevOps.
= The 5 Whys originated at Toyota Motors and are discussed in
http://en.wikipedia.org/wiki/5_Whys
There are also discussions around whether or not continuous deployment is
just a dream [BostInno 11]. Scott Ambler has not only coauthored (with Mark
Lines) a book on disciplined agile delivery [Ambler 12], he also maintains a blog
from which we adapted the description of the roles in a team [Ambler 15].

Netflix maintains a technical blog where they discuss a variety of issues
associated with their platform. Their deployment steps are discussed in [Netflix
13].

Mozilla’s Release Coordinator role is discussed in [Mozilla].

Len Bass, Paul Clements, and Rick Kazman discuss architectural decisions on
page 73 and subsequently in Software Architecture in Practice [Bass 13].

The discussion of IMVU is adapted from a blog written by Timothy Fitz [Fitz
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2. The Cloud as a Platform

We’ve redefined cloud computing to include everything that we already do.
... The computer industry is the only industry that is more fashion-driven
than women’s fashion. ... We’ll make cloud computing announcements
because if orange is the new pink, we’ll make orange blouses. I’m not going
to fight this thing.

—Larry Ellison

2.1 Introduction

The standard analogy used to describe the cloud is that of the electric grid. When
you want to use electricity, you plug a device into a standard connection and turn
it on. You are charged for the electricity you use. In most cases, you can remain
ignorant of the mechanisms the various electric companies use to generate and
distribute electricity. The exception to this ignorance is if there is a power
outage. At that point you become aware that there are complicated mechanisms
underlying your use of electricity even if you remain unaware of the particular
mechanisms that failed.

The National Institute of Standards and Technology (NIST) has provided a
characterization of the cloud with the following elements:

= On-demand self-service. A consumer can unilaterally provision computing
capabilities, such as server time and network storage, as needed
automatically without requiring human interaction with each service
provider.

= Broad network access. Capabilities are available over the network and
accessed through standard mechanisms that promote use by heterogeneous
thin or thick client platforms (e.g., mobile phones, tablets, laptops, and
workstations).

= Resource pooling. The provider’s computing resources are pooled to serve
multiple consumers using a multi-tenant model, with different physical and
virtual resources dynamically assigned and reassigned according to
consumer demand. There is a sense of location independence in that the
customer generally has no control over or knowledge of the exact location
of the provided resources but may be able to specify location at a higher



level of abstraction (e.g., country, state, or datacenter). Examples of
resources include storage, processing, memory, and network bandwidth.

= Rapid elasticity. Capabilities can be elastically provisioned and released, in
some cases automatically, to scale rapidly outward and inward
commensurate with demand. To the consumer, the capabilities available
for provisioning often appear to be unlimited and can be appropriated in
any quantity at any time.

= Measured service. Cloud systems automatically control and optimize
resource use by leveraging a metering capability at some level of
abstraction appropriate to the type of service (e.g., storage, processing,
bandwidth, and active user accounts). Resource usage can be monitored,
controlled, and reported, thereby providing transparency for both the
provider and consumer of the utilized service.

From the perspective of operations and DevOps, the most important of these
characteristics are on-demand self-service and measured (or metered) service.
Even though the cloud provides what appear to be unlimited resources that you
can acquire at will, you must still pay for their use. As we will discuss, the other
characteristics are also important but not as dominant as on-demand self-service
and paying for what you use.

Implicit in the NIST characterization is the distinction between the provider
and the consumer of cloud services. Our perspective in this book is primarily
that of the consumer. If your organization runs its own datacenters then there
may be some blurring of this distinction, but even in such organizations, the
management of the datacenters is not usually considered as falling within the
purview of DevOps.

NIST also characterizes the various types of services available from cloud
providers, as shown in Table 2.1. NIST defines three types of services, any one
of which can be used in a DevOps context.

Service Model Examples

SaaS: Software as a Service E-mail, online games, Customer
Relationship Management, virtual
desktops, etc.

PaaS: Platform as a Service Web servers, database, execution
runtime, development tools, etc.

laaS: Infrastructure as a Service Virtual machines, storage, load balancers,
networks, etc.

TABLE 2.1 Cloud Service Models




= Software as a Service (SaaS). The consumer is provided the capability to
use the provider’s applications running on a cloud infrastructure. The
applications are accessible from various client devices through either a thin
client interface, such as a web browser (e.g., web-based e-mail) or an
application interface. The consumer does not manage or control the
underlying cloud infrastructure including networks, servers, operating
systems, storage, or even individual application capabilities, with the
possible exception of limited user-specific application configuration
settings.

= Platform as a Service (PaaS). The consumer is provided the capability to
deploy onto the cloud infrastructure consumer-created or acquired
applications created using programming languages, libraries, services, and
tools supported by the provider. The consumer does not manage or control
the underlying cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deployed applications and
possibly configuration settings for the application-hosting environment.

= Infrastructure as a Service (IaaS). The consumer is provided the capability
to provision processing, storage, networks, and other fundamental
computing resources where the consumer is able to deploy and run
arbitrary software, which can include operating systems and applications.
The consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, storage, and
deployed applications; and possibly limited control of select networking
components (e.g., host firewalls).

We first discuss the mechanisms involved in the cloud, and then we discuss
the consequences of these mechanisms on DevOps.

2.2 Features of the Cloud

The fundamental enabler of the cloud is virtualization over hundreds of
thousands of hosts accessible over the Internet. We begin by discussing laaS-
centric features, namely, virtualization and IP management, followed by some
specifics of PaaS offerings. Then we discuss general issues, such as the
consequences of having hundreds of thousands of hosts and how elasticity is
supported in the cloud.

Virtualization

In cloud computing, a virtual machine (VM) is an emulation of a physical



machine. A VM image is a file that contains a bootable operating system and
some software installed on it. A VM image provides the information required to
launch a VM (or more precisely, a VM instance). In this book, we use “VM” and
“VM instance” interchangeably to refer to an instance. And we use “VM image”
to refer to the file used to launch a VM or a VM instance. For example, an
Amazon Machine Image (AMI) is a VM image that can be used to launch Elastic
Compute Cloud (EC2) VM instances.

When using laaS, a consumer acquires a VM from a VM image by using an
application programming interface (API) provided by the cloud provider for that
purpose. The API may be embedded in a command-line interpreter, a web
interface, or another tool of some sort. In any case, the request is for a VM with
some set of resources—CPU, memory, and network. The resources granted may
be hosted on a computer that is also hosting other VMs (multi-tenancy) but from
the perspective of the consumer, the provider produces the equivalent of a stand-
alone computer.

Creating a Virtual Machine
In order to create a VM, two distinct activities are performed.

= The user issues a command to create a VM. Typically, the cloud provider
has a utility that enables the creation of the VM. This utility is told the
resources required by the VM, the account to which the charges accrued by
the VM should be charged, the software to be loaded (see below), and a set
of configuration parameters specifying security and the external
connections for the VM.

= The cloud infrastructure decides on which physical machine to create the
VM instance. The operating system for this physical machine is called a
hypervisor, and it allocates resources for the new VM and “wires” the new
machine so that it can send and receive messages. The new VM is assigned
an IP address that is used for sending and receiving messages. We have
described the situation where the hypervisor is running on bare metal. It is
also possible that there are additional layers of operating system—type
software involved but each layer introduces overhead and so the most
common situation is the one we described.

Loading a Virtual Machine

Each VM needs to be loaded with a set of software in order to do meaningful
work. The software can be loaded partially as a VM and partially as a result of
the activated VM loading software after launching. A VM image can be created



by loading and contiguring a machine with the desired sottware and data, and
then copying the memory contents (typically in the form of the virtual hard disk)
of the machine to a persistent file. New VM instances from that VM image
(software and data) can then be created at will.

The process of creating a VM image is called baking the image. A heavily
baked image contains all of the software required to run an application and a
lightly baked image contains only a portion of the software required, such as an
operating system and a middleware container. We discuss these options and the
related tradeoffs in Chapter 5.

Virtualization introduces several types of uncertainty that you should be aware
of.

= Because a VM shares resources with other VMs on a single physical
machine, there may be some performance interference among the VMs.
This situation may be particularly difficult for cloud consumers as they
usually have no visibility into the co-located VMs owned by other
consumers.

= There are also time and dependability uncertainties when loading a VM,
depending on the underlying physical infrastructure and the additional
software that needs to be dynamically loaded. DevOps operations often
create and destroy VMs frequently for setting up different environments or
deploying new versions of software. It is important that you are aware of
these uncertainties.

IP and Domain Name System Management

When a VM is created, it is assigned an IP address. IP addresses are the means
by which messages are routed to any computer on the Internet. IP addresses,
their routing, and their management are all complicated subjects. A discussion of
the Domain Name System (DNS), and the persistence of IP addresses with
respect to VMs follows.

DNS

Underlying the World Wide Web is a system that translates part of URLSs into IP
addresses. This function concerns the domain name part of the URL (e.g.,
ssrg.nicta.com.au), which can be resolved to an IP address through the
DNS. As a portion of normal initiation, a browser, for example, is provided with
the address of a DNS server. As shown in Figure 2.1, when you enter a URL into
your browser, it sends that URL to its known DNS server which, in association



with a larger network of DNS servers, resolves that URL into an IP address.

website.com?
Client [, *| DNS Server
123.45.67.89
123.45.67.89
Load Balancer
: f__"" r r o :
VM VM VM

FIGURE 2.1 DNS returning an IP address [Notation: Architecture]

The domain name indicates a routing path for the resolution. The domain
name Ssrg.nicta.com. au, for example, will go first to a root DNS server
to look up how to resolve . au names. The root server will provide an IP address
for the Australian DNS server where . com names for Australia are stored. The
.com. au server will provide the TP address of the nicta DNS server, which
in turn provides an IP address for ssrg.

The importance of this hierarchy is that the lower levels of the hierarchy
—.nicta and . ssrg—are under local control. Thus, the IP address of Ssrg
within the . nicta server can be changed relatively easily and locally.

Furthermore, each DNS entry has an attribute named time to live (TTL). TTL
acts as an expiration time for the entry (i.e., the mapping of the domain name
and the IP address). The client or the local DNS server will cache the entry, and
that cached entry will be valid for a duration specified by the TTL. When a
query arrives prior to the expiration time, the client/local DNS server can
retrieve the IP address from its cache. When a query arrives after the expiration
time, the IP address has to be resolved by an authoritative DNS server. Normally
the TTL is set to a large value; it may be as large as 24 hours. It is possible to set
the TTL to as low as 1 minute. We will see in our case studies, Chapters 11-13,
how the combination of local control and short TTL can be used within a
DevOps context.

One further point deserves mention. In Figure 2.1, we showed the DNS



returning a single IP address for a domain name. In fact, it can return multiple
addresses. Figure 2.2 shows the DNS server returning two addresses.
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FIGURE 2.2 DNS returning two addresses for a single URL [Notation:
Architecture]

The client will attempt the first IP address and, in the event of no response,
will try the second, and so forth. The DNS server may rotate the order of the
servers in order to provide some measure of load balancing.

Multiple sites can exist for several reasons:

= Performance. There are too many users to be served by a single site;
consequently, multiple sites exist.

= Reliability. If one site fails to respond for some reason, the client can
attempt the second site.

= Testing. The second site may provide some features or a new version that
you want to test within a limited production environment. In this case,
access to the second site is restricted to the population you want to perform
the tests on. More details on this method are given in Chapters 5 and 6.

Persistence of IP Addresses with Respect to VM

The IP address assigned to a virtual machine on its creation persists as long as
that VM is active. A VM becomes inactive when it is terminated, paused, or
stopped. In these cases, the IP address is returned to the cloud provider’s pool for
reassignment.

One consequence of IP reassignment is: If one VM within your application



sends a message to another VM within your application it must verify that the IP
address of the recipient VM is still current. Consider the following sequence
where your application contains at least VM, and VM.

1. VMg, receives a message from VM,.

2. VM, fails.

3. The cloud provider reassigns the IP address of VM 4.
4. VMg responds to the originating IP address.

5. The message is delivered to a VM that is not a portion of your application.

In order to avoid this sequence either you must ask the cloud provider for
persistent [P addresses (often available at a premium) or your application VMs
must verify, prior to sending a message, that the recipient is still alive and has
the same IP address. We discuss a mechanism for verifying the aliveness of a
VM in Chapter 4.

Platform as a Service

Many of the aspects we discussed so far are IaaS-specific. When using PaaS
offerings, you can abstract from many of these details, since PaaS services reside
at a higher level of the stack and hide underlying details to a degree.

As stated in the NIST definition earlier, PaaS offerings allow you to run
applications in predefined environments. For instance, you can compile a Java
web application into a web application archive (WAR) file and deploy it on
hosted web application containers. You can then configure the service to your
specific needs, for example, in terms of the number of underlying (often
standardized) resources, and connect the application to hosted database
management systems (SQL or NoSQL). While most PaaS platforms offer hosted
solutions, either on their own infrastructure or on an laaS base, some platforms
are also available for on-premise installation.

Most PaaS platforms provide a set of core services (e.g., hosting of Java web
apps, Ruby Gems, Scala apps, etc.) and a catalogue of add-ons (e.g., specific
monitoring solutions, autoscaling options, log streaming, and alerting, etc.). In a
way, PaaS are similar to some of the services offered by traditional Ops
departments, which usually took over the management of the infrastructure
layers and gave development teams a set of environment options for hosting
their systems from which the Dev teams could pick and choose. However, using
a provider PaaS with worldwide availability usually means that you have more
add-ons and newer options more quickly than in traditional Ops departments.



Similarly to IaaS, if you are inexperienced with a particular PaaS offering, you
first have to learn how to use it. This includes platform-specific tools, structures,
configuration options, and logic. While getting started is relatively easy in most
Paa$S platforms, there are intricate, complex details in commands and
configurations that take time to master.

The additional abstraction of PaaS over IaaS means that you can focus on the
important bits of your system—the application. You do not have to deal with the
network configuration, load balancers, operating systems, security patches on the
lower layers, and so on. But it also means you give up visibility into and control
over the underlying layers. Where this is acceptable, it might be well worthwhile
to use a PaaS solution. However, when you end up needing the additional
control at a later stage, the migration might be increasingly hard.

Distributed Environment

In this section, we explore some of the implications of having hundreds of
thousands of servers within a cloud provider’s environment. These implications
concern the time involved for various operations, the probability of failure, and
the consequences of these two aspects on the consistency of data.

Time

Within a stand-alone computer system, there are large variations in the time
required to read an item from main memory and the time required to read a data
item from a disk. The actual numbers change over time because of the
improvements in hardware speed, but just to give some idea of the difference,
accessing 1MB (roughly one million bytes) sequentially from main memory
takes on the order of 12ps (microseconds). Accessing an item from a spinning
disk requires on the order of 4ms (milliseconds) to move the disk head to the
correct location. Then, reading 1MB takes approximately 2ms.

In a distributed environment where messages are the means of communication
between the various processes involved in an application, a round trip within the
same datacenter takes approximately 500us and a round trip between California
and the Netherlands takes around 150ms.

One consequence of these numbers is that determining what data to maintain
in memory or on the disk is a critical performance decision. Caching allows for
maintaining some data in both places but introduces the problem of keeping the
data consistent. A second consequence is that where persistent data is physically
located will also have a large impact on performance. Combining these two
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to a discussion of keeping data consistent using different styles of database
management systems.

Failure

Although any particular cloud provider may guarantee high availability, these
guarantees are typically for large segments of their cloud as a whole and do not
refer to the components. Individual component failure can thus still impact your
application. The list below presents some data from Google about the kinds of
failures that one can expect within a datacenter. As you can see, the possibilities
for individual element failure are significant. Amazon released some data stating
that in a datacenter with ~64,000 servers with 2 disks each, on average more
than 5 servers and 17 disks fail each day.

Below is a list of problems arising in a datacenter in its first year of operation
(from a presentation by Jeff Dean, Google):

= ~0.5 overheating (power down most machines in <5 minutes, ~1-2 days to
recover)

= ~1 PDU failure (~500-1,000 machines suddenly disappear, ~6 hours to
come back)

= ~1 rack-move (plenty of warning, ~500—1,000 machines powered down,
~6 hours)

= ~1 network rewiring (rolling ~5% of machines down over 2-day span)

= ~20 rack failures (40—80 machines instantly disappear, 1-6 hours to get
back)

= ~5 racks go wonky (40—80 machines see 50% packet loss)

= ~8 network maintenances (4 might cause ~30-minute random connectivity
losses)

= ~12 router reloads (takes out DNS for a couple minutes)

= ~3 router failures (have to immediately pull traffic for an hour)

= ~dozens of minor 30-second blips for DNS

= ~1,000 individual machine failures

= ~thousands of hard drive failures

= slow disks, bad memory, misconfigured machines, flaky machines, etc.

= long-distance links: wild dogs, sharks, dead horses, drunken hunters, etc.

What do these failure statistics mean from an application or operations
perspective? First, any particular VM or portion of a network may fail. This VM



or network may be performing application or operation functionality. Second,
since the probability of failure of serial use of components is related to the
product of the failure rate of the individual components, the more components
involved in a request, the higher the probability of failure. We discuss these two
possibilities separately.

Failure of a VM

One of the major decisions the architect of a distributed system makes is how to
divide state among the various pieces of an application. If a stateless component
fails, it can be replaced without concern for state. On the other hand, state must
be maintained somewhere accessible to the application, and getting state and
computation together in the same VM will involve some level of overhead. We
distinguish three main cases.

1. A stateless component. If a VM is stateless, then failure of a VM is
recovered by creating another instance of the same VM image and
ensuring that messages are correctly routed to it. This is the most desirable
situation from the perspective of recovering from failure.

2. Client state. A session is a dialogue between two or more components or
devices. Typically, each session is given an ID to provide continuity within
the dialogue. For example, you may log in to a website through one
interaction between your browser and a server. Session state allows your
browser to inform the server in successive messages that you have been
successfully logged in and that you are who you purport to be. Sometimes
the client will add additional state for security or application purposes.
Since client state must be sent with a message to inform the server of the
context or a set of parameters, it should be kept to a minimum.

3. Application state contains the information specific to an application or a
particular user of an application. It may be extensive, such as a knowledge
base or the results of a web crawler, or it may be small, such as the current
position of a user when watching a streaming video. We identify three
categories of application state.

a. Small amounts of persistent state. The persistent state must be
maintained across multiple sessions or across failure of either servers or
clients. Small amounts of persistent state could be maintained in a flat
file or other structure on a file system. The application can maintain this
state either per user or for the whole application. Small amounts of state
could also be cached using a tool that maintains a persistent state across
VM instances such as ZooKeeper or Memcached.



b. Moderate amounts of persistent or semi-persistent state. The timing
numbers we saw earlier suggest that it is advantageous to cache those
portions of persistent state that are used frequently in computations. It is
also advantageous to maintain state across different instances of a VM
that allows the sharing of this state. In some sense, this is equivalent to
shared memory at the hardware level except that it is done across
different VMs across a network. Tools such as Memcached are intended
to manage moderate amounts of shared state that represent cached
database entries or generated pages. Memcached automatically presents
a consistent view of the data to its clients, and by sharing the data across
servers, it provides resilience in the case of failure of a VM.

c. Large amounts of persistent state. Large amounts of persistent state can
be kept in a database managed by a database management system or in a
distributed file system such as Hadoop Distributed File System (HDFS).
HDFS acts as a network- (or at least a cluster-) wide file system and
automatically maintains replicas of data items to protect against failure.
It provides high performance through mechanisms such as writing data
as 64MB blocks. Large block sizes lead to inefficient writing of small
amounts of data. Hence, HDFS should be used for large amounts of
data. Since an HDFS file is available throughout a cluster, any client that
fails will not lose any data that has been committed by HDFS.

The Long Tail

Many natural phenomena exhibit a normal distribution as shown in Figure 2.3a.
Values are mostly spread around the mean with a progressively smaller
likelihood of values toward the edges. In the cloud, many phenomena such as
response time to requests show a long-tail distribution, like the one depicted in
Figure 2.3b. This result is often due to the increased probability of failure with
more entities involved, and the failure of one component causes response time to
be an order slower than usual (e.g., until a network packet is routed through a
different link, after the main network link broke and the error has been detected).
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FIGURE 2.3 (a) A normal distribution where values cluster around the mean,
and the median and the mean are equal. (b) A long-tail distribution where
some values are exceedingly far from the median.

A long tail has been observed in map-reduce completion times, in response to
search queries and in launching instances in Amazon cloud. In the latter case, the
median time to satisfy a launch instance request was 23 seconds, but 4.5% of the
requests took more than 36 seconds.

Although this has not been proven, our intuition is that the skewness of a
distribution (the length of the long tail) is a function of the number of different
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elements of the cloud that are activated in order to satisfy a request. In other
words, simple requests such as computation, reading a file, or receiving a local
message will have a distribution closer to normal. Complicated requests such as
extensive map-reduce jobs, searches across a large database, or launching virtual
instances will have a skewed distribution such as a long tail.

A request that takes an exceedingly long time to respond should be treated as
a failure. However, one problem with such a request is that there is no way of
knowing whether the request has failed altogether or is going to eventually
complete. One mechanism to combat the long tail is to cancel a request that
takes too long, for example, more than the 95th percentile of historical requests,
and to reissue that request.

Consistency

Given the possibility of failure, it is prudent to replicate persistent data. Given
two copies of a data item, it is desirable that when a client reads a data item, the
client would get the same value regardless of which copy it read. If all copies of
a data item have the same value at a particular instant they are said to be
consistent at that instant. Recall that it takes time to write a data value to
persistent storage.

Consistency is maintained in a distributed system by introducing locks that
control the sequence of access to individual data items. Locking data items
introduces delays in accessing those data items; consequently, there are a variety
of different schemes for maintaining consistency and reducing the delay caused
by locks. Regardless of the scheme used, the availability of data items will be
impacted by the delays caused by the introduction of locks.

In addition, in the cloud persistent data may be partitioned among different
locales to reduce access time, especially if there is a large amount of data. Per a
theoretical result called the CAP (Consistency, Availability, Partition Tolerance)
theorem, it is not possible to simultaneously have fully available, consistent, and
partitioned data. Eventual consistency means that distributed, partitioned, and
replicated data will be consistent after a period of time even if not immediately
upon a change to a data item—the replicas will become consistent eventually.

NoSQL Databases

For a variety of reasons, including the CAP theorem and the overhead involved
in setting up a relational database system, a collection of database systems have
been introduced that go under the name NoSQL. Originally the name literally



meant No SQL, but since some of the systems now support SQL, it now stands
for Not Only SQL.

NoSQL systems use a different data model than relational systems. Relational
systems are based on presenting data as tables. NoSQL systems use data models
ranging from key-value pairs to graphs. The rise of NoSQL systems has had
several consequences.

= NoSQL systems are not as mature as relational systems, and many features
of relational systems such as transactions, schemas, and triggers are not
supported by these systems. The application programmer must implement
these features if they are needed in the application.

= The application programmer must decide which data model(s) are most
appropriate for their use. Different applications have different needs with
respect to their persistent data, and these needs must be understood prior to
choosing a database system.

= Applications may use multiple database systems for different needs. Key-
value stores can deal with large amounts of semistructured data efficiently.
Graph database systems can maintain connections among data items
efficiently. The virtue of using multiple different database systems is that
you can better match a system with your needs. The case study in Chapter
11 gives an example of the use of multiple database systems for different
purposes. Licensing costs and increased maintenance costs are the
drawbacks of using multiple different database systems.

Elasticity

Rapid elasticity and provisioning is one of the characteristics of the cloud
identified by NIST. Elasticity means that the number of resources such as VMs
used to service an application can grow and shrink according to the load.
Monitoring the utilization of the existing resources is one method for measuring
the load.

Figure 2.4 shows clients accessing VMs through a load balancer and a
monitor determining CPU and I/0 utilization of the various VMs, grouped
together in a scaling group. The monitor sends its information to the scaling
controller, which has a collection of rules that determine when to add or remove
the server in the scaling group. These rules can be reactive (e.g., “when
utilization has reached a certain stage, add an additional server”) or proactive
(e.g., “add additional servers at 7:00 am and remove them at 6:00 pm”). When a
rule to add a new server is triggered, the scaling controller will create a new



virtual machine and ensure that it is loaded with the correct software. The new
VM is then registered with the load balancer, and the load balancer will now
have an additional VM to distribute messages to. It is also possible to control
scaling through various APIs. We see an example of this in Chapter 12.
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FIGURE 2.4 Monitoring used as input to scaling [Notation: Architecture]

2.3 DevOps Consequences of the Unique Cloud Features

Three of the unique aspects of the cloud that impact DevOps are: the ability to
create and switch environments simply, the ability to create VMs easily, and the
management of databases. We begin by discussing environments.

Environments

An environment in our context is a set of computing resources sufficient to
execute a software system, including all of the supporting software, data sets,
network communications, and defined external entities necessary to execute the
software system.

The essence of this definition is that an environment is self-contained except
for explicitly defined external entities. An environment is typically isolated from
other environments. In Chapter 5, we see a number of environments such as the
Dev, integration, user testing, and production environments. In the case study in
Chapter 12, the life cycle of an environment is explicitly a portion of their
deployment pipeline. Having multiple environments during the development,
testing, and deployment processes is not a unique feature of the cloud, but
having the ability to simply create and migrate environments is—as is the ease
of cloning new instances. The isolation of one environment from another is



enforced by having no modifiable shared resources. Resources that are read-
only, such as feeds of one type or another, can be shared without a problem.
Since an environment communicates with the outside world only through
defined external entities, these entities can be accessed by URLs and, hence,
managed separately. Writing to or altering the state of these external entities
should only be done by the production environment, and separate external
entities must be created (e.g., as dummies or test clones) for all other
environments.

One method of visualizing an environment is as a silo. Figure 2.5 shows two
variants of two different environments—a testing environment and a production
environment. Each contains slightly different versions of the same system. The
two load balancers, responsible for their respective environments, have different
IP addresses. Testing can be done by forking the input stream to the production
environment and sending a copy to the testing environment as shown in Figure
2.5a. In this case, it is important that the test database be isolated from the
production database. Figure 2.5b shows an alternative situation. In this case,
some subset of actual production messages is sent to the test environment that
performs live testing. We discuss canary testing and other methods of live
testing in Chapter 6. Moving between environments can be accomplished in a
single script that can be tested for correctness prior to utilizing it. In Chapter 6,
we will see other techniques for moving between testing and production
environments.
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FIGURE 2.5 (a) Using live data to test. (b) Live testing with a subset of
users. [ Notation: Architecture]

A consequence of easily switching production from one environment to
another is that achieving business continuity becomes easier. Business continuity
means that businesses can continue to operate in the event of a disaster occurring
either in or to their main datacenter. In Chapter 11, we see a case study about
managing multiple datacenters, but for now observe that there is no requirement
that the two environments be co-located in the same datacenter. There is a
requirement that the two databases be synchronized if the goal is quickly moving
from one environment to a backup environment.

Creating Virtual Machines Easily

One of the problems that occurs in administering the cloud from a consumer’s
perspective arises because it is so easy to allocate new VMs. Virtual machines
need to have the latest patches applied, just as physical machines, and need to be
accounted for. Unpatched machines constitute a security risk. In addition, in a
public cloud, the consumer pays for the use of VMs. We know of an incident in
a major U.S. university where a student went away for the summer without
cleaning up her or his allocation and returned to find a bill of $80,000.

The term VM sprawl is used to describe the complexity in managing too many
VMs. Similarly, the challenges of having too many VM images is called image
sprawl. Tools exist, such as Janitor Monkey, to scan an account and determine
which machines are allocated and how recently they have been used. Developing
and enforcing a policy on the allocation of machines and archiving of VM
images is one of the activities necessary when utilizing the cloud as a platform.

Data Considerations

The economic viability of the cloud coincided with the advent of NoSQL
database systems. Many systems utilize multiple different database systems,
both relational and NoSQL. Furthermore, large amounts of data are being
gathered from a variety of sources for various business intelligence or
operational purposes. Just as computational resources can be added in the cloud
by scaling, storage resources can also be added. We begin by discussing the
HDFS that provides storage for applications in a cluster. HDFS provides the file
system for many NoSQL database systems. We then discuss the operational
considerations associated with distributed file systems.

HnNnragQ



U EDS NS )

HDFS provides a pool of shared storage resources. An application accesses
HDFS through a normal file system interface in Java, C, or other popular
languages. The commands available include open, create, read, write, close, and
append. Since the storage provided by HDFS is shared by multiple applications,
a manager controls the name space of file names and allocates space when an
application wishes to write a new block. This manager also provides information
so that applications can perform direct access to particular blocks. There also is a
pool of storage nodes.

In HDFS the manager is called the NameNode, and each element of the
storage pool is called a DataNode. There is one NameNode with provision for a
hot backup. Each DataNode is a separate physical computer or VM.
Applications are restricted to write a fixed-size block—typically 64MB. When
an application wishes to write a new block to a file it contacts the NameNode
and asks for the DataNodes where this block will be stored. Each block is
replicated some number of times, typically three. The NameNode responds to a
request for a write with a list of the DataNodes where the block to be written will
be stored, and the application then writes its block to each of these DataNodes.

Many features of HDFS are designed to guard against failure of the individual
DataNodes and to improve the performance of HDFS. For our purposes, the
essential element is that HDFS provides a pool of storage sites that are shared
across applications.

Operational Considerations

The operational considerations associated with a shared file system such as
HDFS are twofold.

1. Who manages the HDFS installation? HDFS can be either a shared system
among multiple applications, or it can be instantiated for a single
application. In case of a single application, its management will be the
responsibility of the development team for that application. In the shared
case, the management of the system must be assigned somewhere within
the organization.

2. How is the data stored within HDFS protected in the case of a disaster?
HDEFS itself replicates data across multiple DataNodes, but a general
failure of a datacenter may cause HDFS to become unavailable or the data
being managed by HDFS to become corrupted or lost. Consequently,
business continuity for those portions of the business dependent on the
continued execution of HDFS and access to the data stored within HDFS is



an issue that must be addressed.

2.4 Summary

The cloud has emerged as a major trend in I'T during recent years. Its
characteristics include metered usage (pay-per-use) and rapid elasticity, allowing
the scaling out of an application to virtually infinite numbers of VMs. If
architected properly, applications can indeed scale quickly, and thus you can
avoid disappointing users when your new app goes “viral” and your user
numbers double every couple of hours. Additionally, when the demand
decreases you are not stuck with major hardware investments, but can simply
release resources that are no longer needed.

Using the cloud opens up many interesting opportunities, but also means you
have to deal with many of the concerns of distributed computing;:

= The cloud rests on a platform that is inherently distributed and exploits
virtualization to allow rapid expansion and contraction of the resources
available to a given user.

= [P addresses are the key to accessing the virtualized resources and are
associated with URLSs through the DNS entries and can be manipulated to
allow for the various forms of testing through the isolation of
environments.

= Within large distributed environments, failure of the individual
components is to be expected. Failure must be accommodated. The
accommodations involve management of state and recognizing and
recovering from requests that take an exceedingly long time.

= From an operational perspective, controlling the proliferation of VMs,
managing different database management systems, and ensuring the
environments meet the needs of the development and operations tasks are
new considerations associated with the cloud.

2.5 For Further Reading
NIST’s definition of the cloud is part of the special publication SP 800-145
[NIST 11].

The latency numbers for different types of memory and network connections
are derived from
http://www.eecs.berkeley.edu/~rcs/research/interactive_latency.html

Jeff Dean’s keynote address lists problems in a new datacenter [Dean].


http://www.eecs.berkeley.edu/~rcs/research/interactive_latency.html

James Hamilton from Amazon Web Services gives insights into failures that
occur at scale in the presentation at
http://www.slideshare.net/AmazonWebServices/cpn208-failuresatscale-aws-
reinvent-2012

Memcached system’s website can be found at http://memcached.org/

More information about HDFS and its architecture is available:

= http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
= http://itm-vm.shidler.hawaii.edu/HDFS/ArchDocOverview.html

The long-tail distribution and some of its occurrences are described in [Dean
13].

Outliers in MapReduce are discussed in this PowerPoint presentation
[Kandula].

The paper “Mechanisms and Architectures for Tail-Tolerant System
Operations in Cloud” proposes methods and architecture tactics to tolerate long-
tail behavior [Lu 15].

Netflix’s Janitor Monkey helps to keep VM and image sprawl under control;

see the following website: https://github.com/Netflix/SimianArmy/wiki/Janitor-

Home

The CAP theorem was first proposed by Erick Brewer and proven by Gilbert
and Lynch [Gilbert 02].
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3. Operations

There is a core of thinkers within the DevOps community who understand
what IT management is about and are sensible about the use of ITIL within a
DevOps context; and there are others with a looser grasp on reality...
—Rob England, http://www.itskeptic.org/devops-and-itil

3.1 Introduction

Just as DevOps does not subsume Dev, it does not subsume Ops. To understand
DevOps, however, it is important to be aware of the context that people in Ops
or Dev come from. In this chapter, we present the activities that an I'T operations
group carries out. How many of these activities are suitable for a DevOps
approach is a matter for debate, and we will comment on that debate.

One characterization of Ops is given in the Information Technology
Infrastructure Library (ITIL). ITIL acts as a kind of coarse-grained job
description for the operations staff. ITIL is based on the concept of “services,”
and the job of Ops is to support the design, implementation, operation, and
improvement of these services within the context of an overall strategy. Figure
3.1 shows how ITIL views these activities interacting.

Service
Design

Service
Strateqgy

Service Service
Operation < Transition

Continual Service Improvement
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FIGURE 3.1 Service life cycle (Adapted from ITIL)

We first describe the services for which Ops historically has had
responsibility. Then we return to Figure 3.1 to discuss the service life cycle.
Finally, we discuss how DevOps fits into this overall picture.

3.2 Operations Services

An operations service can be the provisioning of hardware, the provisioning of
software, or supporting various IT functions. Services provided by operations
also include the specification and monitoring of service level agreements
(SLAs), capacity planning, business continuity, and information security.

Provisioning of Hardware

Hardware can be physical hardware owned by the organization, or it can be
virtual hardware managed by a third party or a cloud provider. It can also be
used by individuals, projects, or a large portion of an organization. Table 3.1
shows these possibilities.

Used by Physical Hardware Virtual Hardware
Individuals Laptops, desktops, tablets, Virtual machines for development
smartphones and unit tests
Projects Integration servers, version Virtual machines used for
control servers integration and version control
Organization Servers for services such as Virtual machines used for

printers, network infrastructure  organization-wide services

TABLE 3.1 Types of Hardware Used by Individuals, Projects, and
Organizations

= Physical hardware.

= Individual hardware. Individual hardware includes laptops, desktops,
tablets, and phones used by and assigned to individuals. Typically, Ops
will have standard configurations that they support. Whether the actual
ordering and configuring of the hardware is done by operations or by the
individuals will vary from organization to organization. The degree of
enforcement of the standardized configurations will also vary from
organization to organization. At one extreme, Ops provides each
employee with some set of devices that have been locked so that only
approved software and configuration settings can be loaded.
Compatibility among the configurations is provided by the



standardization. At the other extreme, Ops provides guidelines but
individuals can order whatever hardware they wish and provision it
however they wish. Compatibility among the configurations is the
responsibility of the individuals.

= Project hardware. Project hardware typically includes integration
servers and version control servers, although these could be managed in
an organization context. The requirements for project hardware are set
by the project, and Ops can be involved in ordering, configuring, and
supporting project hardware to the extent dictated by the organization or
by negotiation between the project and Ops.

= Organization-wide hardware. This hardware is the responsibility of
Ops. Any datacenters or generally available servers such as mail servers
are managed and operated by Ops.

= Virtual hardware. Virtualized hardware can also be personal, project-
specific, or organization-wide. It follows the pattern of physical hardware.
Projects are generally responsible for the specification and management of
virtualized project hardware, and Ops is generally responsible for the
specification and management of virtualized organization-wide hardware.
Ops typically has responsibility for the overall usage of virtualized
hardware, and they may have budgetary input when a project considers
their VM requirements. Note that much of the physical hardware on a
project or organization level could actually be virtualized on private or
public cloud resources. Exceptions include network infrastructure for
devices, printers, and datacenters.

Provisioning of Software

Software is either being developed internally (possibly through contractors) or
acquired from a third party. The third-party software is either project-specific, in
which case it follows the pattern we laid out for hardware (the management and
support of the software is the responsibility of the project); or it is organization-
specific, in which case the management and support of the software is the
responsibility of Ops. Delays in fielding internally developed software is one
motivation for DevOps, and we will return to the relation between traditional
operations and DevOps at the end of this chapter.

Table 3.2 shows the responsibilities for the different types of software.



Developed by Supported by

Project Project

Third party Operations or projects, depending on breadth of use
Operations Operations

DevOps group DevOps group

TABLE 3.2 Responsibilities for Different Types of Software

IT Functions

Ops supports a variety of functions. These include:

= Service desk operations. The service desk staff is responsible for handling
all incidents and service requests and acts as first-level support for all
problems.

= Technology experts. Ops typically has experts for networks, information
security, storage, databases, internal servers, web servers and applications,
and telephony.

= Day-to-day provisioning of IT services. These include periodic and
repetitive maintenance operations, monitoring, backup, and facilities
management.

The people involved in the Ops side of DevOps typically come from the last
two categories. Day-to-day IT services include the provisioning of new software
systems or new versions of current systems, and improving this process is a main
goal of DevOps. As we will see in the case study in Chapter 12, information
security and network experts are also involved in DevOps, at least in the design
of a continuous deployment pipeline, which is ideally shared across the
organization to promote standardization and avoid drifting over time.

Service Level Agreements

An organization has a variety of SLAs with external providers of services. For
example, a cloud provider will guarantee a certain level of availability. Ops
traditionally is responsible for monitoring and ensuring that the SLAs are
adhered to. An organization also has a variety of SLAs with its customers. Ops
has traditionally been responsible for ensuring that an organization meets its
external SLAs. Similarly to external SLAs, Ops is usually responsible for
meeting internal SLAs, for example, for an organization’s own website or e-mail
service. Dev and DevOps are becoming more responsible for application SLAs
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All of these functions involve monitoring and analyzing various types of
performance data from servers, networks, and applications. See Chapter 7 for an
extensive discussion of monitoring technology. See also Chapter 10 for a
discussion of what to monitor from the perspective of business.

Capacity Planning
Ops is responsible for ensuring that adequate computational resources are
available for the organization. For physical hardware, this involves ordering and

configuring machines. The lead time involved in ordering and configuring the
hardware needs to be accounted for in the planning.

More importantly, Ops is responsible for providing sufficient resources so that
consumers of an organization’s products can, for instance, browse offerings,
make orders, and check on the status of orders. This involves predicting
workload and the characteristics of that workload. Some of this prediction can be
done based on historical data but Ops also needs to coordinate with the business
in case there are new products or promotions being announced. DevOps
emphasizes coordination between Ops and Development but there are other
stakeholders involved in coordination activities. In the case of capacity planning,
these other stakeholders are business and marketing. With cloud elasticity, the
pay-as-you-go model, and the ease of provisioning new virtual hardware,
capacity planning is becoming more about runtime monitoring and autoscaling
rather than planning for purchasing hardware.

Business Continuity and Security

In the event a disaster occurs, an organization needs to keep vital services
operational so that both internal and external customers can continue to do their
business. Two key parameters enable an organization to perform a cost/benefit
analysis of various alternatives to maintain business continuity:

= Recovery point objective (RPO). When a disaster occurs, what is the
maximum period for which data loss is tolerable? If backups are taken
every hour then the RPO would be 1 hour, since the data that would be lost
is that which accumulated since the last backup.

= Recovery time objective (RTO). When a disaster occurs, what is the
maximum tolerable period for service to be unavailable? For instance, if a
recovery solution takes 10 minutes to access the backup in a separate
datacenter and another 5 minutes to instantiate new servers using the



backed-up data, the RTO is 15 minutes.

The two values are independent since some loss of data may be tolerable, but
being without service is not. It is also possible that being without service is
tolerable but losing data is not.

Figure 3.2 shows three alternative backup strategies with different RPOs. In
the case study in Chapter 11, we describe the alternative used by one
organization. Another alternative is discussed in the case study in Chapter 13,
which uses the services of the cloud provider to do replication.
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FIGURE 3.2 Database backup strategies. (a) An independent agent
performing the backup. (b) The database management system performing the
backup. (c) The database management system performing the backup and

logging all transactions. [Notation: Architecture]

1. Figure 3.2a shows an external agent—the backup process—copying the
database periodically. No application support is required but the backup
process should copy a consistent version of the database. That is, no
updates are currently being applied. If the backup process is external to the
database management system, then transactions may be in process and so
the activation of the backup should be carefully performed. In this case, the
RPO is the period between two backups. That is, if a disaster occurs just
prior to the backup process being activated, all changes in the period from
the last backup will be lost.

2. Figure 3.2b shows an alternative without an external agent. In this case,
the database management system creates a copy periodically. The
difference between 3.2a and 3.2b is that in 3.2b, guaranteeing consistency
is done by the database management system, whereas in 3.2a, consistency
is guaranteed by some mechanism that governs the activation of the
backup process. As with 3.2a, the RPO is the period between taking



copies. If the database is a relational database management system
(RDBMS) offering some level of replication (i.e., a transaction only
completes a commit when the replica database has executed the transaction
as well), then transactions lost in the event of a disaster will be those not
yet committed to the replicating database. The cost, however, is increased
overhead per transaction.

3. Figure 3.2c modifies Figure 3.2b by having the database management
system log every write. Then the data can be re-created by beginning with
the backup database and replaying the entries in the log. If both the log and
the backup database are available during recovery, the RPO is 0 since all
data is either in the backup database or in the log. The protocol for
committing a transaction to the production database is that no transaction
is committed until the respective log entry has been written. It is possible
in this scheme that some transactions have not been completed, but no data
from a completed transaction will be lost. This scheme is used by high-
reliability relational database management systems. It is also used by
distributed file systems such as Hadoop Distributed File System (HDFS).

When considering RTO (i.e., how quickly you can get your application up and
running after an outage or disaster), alternatives include: using multiple
datacenters as discussed in the case study in Chapter 11 or using distinct
availability zones or regions offered by a cloud provider, or even using several
cloud providers.

By considering RTO and RPO, the business can perform a cost/benefit
analysis of a variety of different disaster recovery techniques. Some of these
techniques will involve application systems architecture such as replication and
maintaining state consistency in the different replicas. Other techniques such as
periodic backups can be performed with any application architecture. Using
stateless servers on the application tier and different regions within a cloud
provider results in a short RTO but does not address RPO.

Traditionally, Ops is responsible for the overall security of computer systems.
Securing the network, detecting intruders, and patching operating systems are all
activities performed by Ops. Chapter 8 discusses security and its maintenance in
some depth.

Service Strategy

We now return to the ITIL life cycle shown in Figure 3.1. At the center of the
figure are strategies for each of the services that we have enumerated: hardware



provisioning, software provisioning, IT functions, capacity planning, business
continuity, and information security.

Developing a strategy is a matter of deciding where you would like your
organization to be in a particular area within a particular time frame, determining
where you currently are, and deciding on a path from the current state to the
desired state. The desired state is affected by both internal and external events.
Internal events such as personnel attrition, hardware failure, new software
releases, marketing, and business activities will all affect the desired state.
External events such as acquisitions, government policies, or consumer reaction
will also affect the desired state. The events that might occur all have some
probability of occurrence, thus, strategic planning shares some elements with
fortune telling.

Understanding future demands in terms of resources and capabilities will help
in strengthening the areas that are not covered at present. If, for example, you
want to move some of your organization’s applications to the cloud within the
next year, then it is important to know if you have people with the right skill set
in your organization. If not, you need to decide whether to hire new talent or
develop the skills of some existing employees, or a mix of both. Future demands
may lead to continual service improvement initiatives.

Strategic planning takes time and coordination among stakeholders. Its virtues
are not so much the actual plan that emerges but the consideration of multiple
viewpoints and constraints that exist within an organization. As such, defining a
service strategy should be done infrequently and should result in loose
guidelines that can be approached in shorter time frames. We discuss the
strategy planning of migrating to microservices and its implementation in the
case study in Chapter 13.

Service Design

Before a new or changed service is implemented, it must be designed. As with
any design, you need to consider not only the functions that the service aims to
achieve but also a variety of other qualities. Some of the considerations when
designing a service are:

= What automation is going to be involved as a portion of the service? Any
automation should be designed according to the principles of software
design. In general, these include the eight principles that Thomas Erl
articulated for service design:

» Standardized contract



= Loose coupling
= Abstraction
= Reusability
» Autonomy
= Statelessness
= Discoverability
= Composability
= What are the governance and management structures for the service?
Services need to be managed and evolved. People responsible for the

performance of the service and changes to the service should be identified
by title if not by name.

=« What are the SLAs for the service? How is the service to be measured, and
what monitoring structure is necessary to support the measurement?

= What are the personnel requirements for the service? Can the service be
provided with current personnel, or do personnel with specific skills need
to be hired or contracted? Alternatively, will the service be outsourced
altogether?

= What are the compliance implications of the service? What compliance
requirements are satisfied by the service, and which are introduced?

= What are the implications for capacity? Do additional resources need to be
acquired and what is the time frame for this acquisition?

= What are the business continuity implications of the service? Must the
service be continued in the event of a disaster and how will this be
accomplished?

= What are the information security implications of the service? What data is
sensitive and must be protected, and who has responsibility for that data?

The ITIL volume on service design discusses all of these issues in detail.

Service Transition

Service transition subsumes all activities between service design and operation,
namely, all that is required to successfully get a new or changed service into
operation. As such, much of the content of this book is related to service
transition insofar as it affects the introduction of new versions of software.

Transition and planning support includes aspects of: resources, capacity, and
change planning; scoping and goals of the transition; documentation



requirements; consideration of applicable rules and regulations; financial
planning; and milestones. In essence, service transition covers the
implementation and delivery phases of a service. DevOps and continuous
deployment require the delivery part of service transition to be highly automated
so it can deal with high-frequency transition and provide better quality control.
Many of these considerations are discussed in Chapters 5 and 6.

In addition to implementing the considerations enumerated in the section on
service design, service transition involves extending the knowledge of the new
or revised service to the users and the immediate supporters of that service
within operations.

Suppose, for example, a new version of a deployment tool is to be
implemented. Questions such as the following three need to be answered:

= Are all features of the old version supported in the new version? If not,
what is the transition plan for supporting users of the old version?

= Which new features are introduced? How will the scripts for the
deployment tool be modified, and who is responsible for that
modification?

= Will the new version require or support a different configuration of
servers, which includes both testing/staging and production servers?

Tools involved in a deployment pipeline change just as other software does.
One of the implications of “infrastructure-as-code” is that these changes need to
be managed in the same fashion as changes to software developed by customer
use. Some aspects of this management may be implicit in the deployment
pipeline, and other aspects may need attention. ITIL distinguishes three change
models:

= Standard changes (e.g., often-occurring and low-risk)
= Normal changes
= Emergency changes

Each of these types of change should be managed differently and will require
different levels of management attention and oversight. Many more details are
discussed in the ITIL volume on service transition.

Service Operation

While software developers and architects are most concerned with development,
operation is where the customer benefits from good design, implementation, and
transition—or not. Support plays a major role here, in particular for incident and



failure management. Monitoring and adaptation are other major concerns. We
discuss more concerns in Chapter 9.

Service Operation Concepts

During operation, events are defined by ITIL as “any detectable or discernible
occurrence that has significance for the management of the IT infrastructure or
the delivery of IT service and evaluation of the impact a deviation might cause to
the services.” Events are created by configuration items, I'T services, or
monitoring tools. More concretely, monitoring tools can actively pull event
information from configuration items or services, or they can (passively) receive
them. Events of interest during operation include

= Status information from systems and infrastructure

« Environmental conditions, such as smoke detectors

= Software license usage

= Security information (e.g., from intrusion detection)

= Normal activity, such as performance metrics from servers and
applications

An incident, according to ITIL, is “any event which disrupts, or which could
disrupt, a service.” They are raised by users (e.g., over the phone or by e-mail),
technical personnel, support desk staff, or monitoring tools. Incident
management is one area where DevOps will have an impact.

Core activities of incident management are
= Logging the incident
= Categorization and prioritization
= Initial diagnosis
= Escalation to appropriately skilled or authorized staff, if needed

= Investigation and diagnosis, including an analysis of the impact and scope
of the incident

= Resolution and recovery, either through the user under guidance from
support staff, through the support staff directly, or through internal or
external specialists

= Incident closure, including recategorization if appropriate, user satisfaction
survey, documentation, and determination if the incident is likely to recur

Incident management is one of the areas where DevOps is changing the
traditional operations activities. Incidents that are related to the operation of a



particular software system are routed to the development team. Regardless of
who is on call for a problem, incidents must still be logged and their resolution
tracked. In Part Five, we discuss how we can automate such failure detection,
diagnosis, and recovery with the help of DevOps and a process view.

3.3 Service Operation Functions

Monitoring is of central importance during operations, as it allows collecting
events, detecting incidents, and measuring to determine if SLAs are being
fulfilled; it provides the basis for service improvement. SLAs can also be
defined and monitored for operations activities, for example, for the time to react
to incidents.

Monitoring can be combined with some control, for example, as done in
autoscaling for cloud resources, where an average CPU load among the pool of
web servers of, say, 70% triggers a rule to start another web server. Control can
be open-loop or closed-loop. Open-loop control (i.e., monitoring feedback is not
taken into account) can be used for regular backups at predefined times. In
closed-loop control, monitoring information is taken into account when deciding
on an action, such as in the autoscaling example. Closed-loop feedback cycles
can be nested into more complex control loops, where lower-level control reacts
to individual metrics and higher-level control considers a wider range of
information and trends developing over longer time spans. At the highest level,
control loops can link the different life-cycle activities. Depending on the
measured deviations from the desired metrics, continual service improvement
can lead to alterations in service strategy, design, or transition—all of which
eventually comes back to changes in service operation.

The results of the monitoring are analyzed and acted upon by either the Dev or
Ops group. One decision that must be made when instituting DevOps processes
is: Which group is responsible for handling incidents? See Chapter 10 for a
discussion of incident handling. One DevOps practice is to have the
development group analyze the monitoring of the single system that they
developed. Monitoring of multiple systems including the infrastructure will be
the responsibility of the Ops group, which is also responsible for the escalation
procedure for any incidents that require handling through one or more
development teams.

3.4 Continual Service Improvement

Every process undertaken by an organization should be considered from the
perspective of: How well is the process working? How can the process be



improved? How does this process fit in the organization’s overall set of
processes?

All of the Ops services we discussed—the provisioning of hardware and
software, I'T support functions, specification and monitoring of SLAs, capacity
planning, business continuity, and information security—are organizational
processes. They should be monitored and evaluated from the perspective of the
questions we have identified.

Organizationally, each of these services should have an owner, and the owner
of a service is the individual responsible for overseeing its monitoring,
evaluation, and improvement.

Continual service improvement’s main focus is to achieve better alignment
between IT services and business needs—whether the needs have changed or are
the same. If the needs have changed, desired changes to the IT services can
concern scope, functionality, or SLAs. If the business needs are the same, IT
services can be extended to better support them, but their improvement can also
focus on increasing the efficiency. DevOps is concerned with bringing those
changes into practice more quickly and reliably.

Figure 3.3 depicts the seven-step process for improvement, as suggested by
ITIL. This data-driven process starts off with an identification of the vision,
strategy, and goals that are driving the current improvement cycle. Based on
that, Step 1 defines what should be measured so as to gain an understanding of
what should be improved, and after the improvement is completed, if the desired
goals were achieved. Metrics can roughly be divided into the three categories:
technology, process, and service.
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FIGURE 3.3 Continual service improvement process (Adapted from ITIL)
[Notation: BPMN]

The actual data gathering is performed in Step 3. Here it is important to
establish baselines—if they do not exist already—for later comparison.
Furthermore. the collection of the data (who collects it and how. when. and how



frequently it is collected) needs to be specified clearly. In Step 4, the data is
processed (e.g., by aggregating data from different sources or over specified time
intervals). Analyzing the data is done in Step 5. In Step 6, the information
derived from the analysis is presented and corrective actions are determined. The
chosen corrective actions are then implemented in Step 7. These actions can
impact all phases of the service life cycle—that is, strategy, design, transition, or
operation.

3.5 Operations and DevOps

After discussing the core concepts and phases of ITIL, we now highlight how
interactions between traditional IT Ops and DevOps can be shaped in the future.
Our basic message is that ignoring ITIL because it looks heavyweight and not
suited for the processes of DevOps is shortsighted and will require relearning the
lessons incorporated into the ITIL framework.

Ops is responsible for provisioning of hardware and software; personnel with
specialized skills; specification and monitoring of SLAs; capacity planning;
business continuity; and information security. Most of these responsibilities have
aspects that are included both inside and outside of DevOps processes. Any
discussion of which aspects of Ops are to be included in DevOps must take into
consideration all of the activities that Ops currently performs and involves both
functional activities, personnel skills, and availability. The aspects of these
activities that impact DevOps are:

= Hardware provisioning. Virtualized hardware may be allocated by a
development team or application with more automation.

= Software provisioning. Internally developed software will be deployed by
Dev. Other software is provisioned by Ops.

= IT function provision. To the extent that a Dev team is responsible for
incident management and deployment tools, it must have people with the
expertise to perform these tasks.

= Specification and monitoring of SLAs. For those SLAs that are specific to a
particular application, Dev will be responsible for monitoring, evaluating,
and responding to incidents.

= Capacity planning. Dev is responsible for capacity planning for individual
applications, and Ops is responsible for overall capacity planning.

= Business continuity. Dev is responsible for those aspects of business
continuity that involve the application architecture, and Ops is responsible



for the remainder. Ops can provide services and policies for business
continuity, which in turn are used by Dev.

= Information security. Dev is responsible for those aspects of information
security that involve a particular application, and Ops is responsible for the
remainder.

The number of people who are involved in DevOps will depend on which
processes are adopted by the organization. One organization estimates that 20%
of the Ops team and 20% of the Dev team are involved in DevOps processes.
Some factors that impact the breadth of involvement of the different teams are:

= The extent to which Dev becomes the first responder in the event of an
incident

= Whether there is a separate DevOps group responsible for the tools used in
the continuous deployment pipeline

= The skill set and availability of personnel from the two groups

One difference between ITIL’s service transition and the DevOps approach is
that ITIL assumes fairly large release packages where careful planning, change
management, and so on are feasible—in contrast to the high-frequency small
releases encountered in typical DevOps scenarios. Rob Spencer suggests in a
blog post to view DevOps releases as “concurrent streams of smaller
deliverables” and gives the following example in Table 3.3.

Stream Frequency ITIL Roles/Processes

1 Code objects checked in, Daily Research & Development

tested, and deployed Management (R&DM), Service
Asset and Configuration
Management (SACM)

2 Knowledge updates created Every otherday SACM, Service Validation and

and tested for the new Testing (SV&T), Knowledge

functional requirements Management

3 Formal Operational 2 times/week SV&T, Service Level

acceptance tests Management (SLM), Business

Relationship Manager (BRM),
App/Tech Function Managers

4 Hardware deliveries As required R&DM, Tech Management

5 Early Life Support Daily Continual Service Improvement
and Continual Service (CSl), SLM, BRM, Service
Improvement Owner

TABLE 3.3 Release Package Examples (Adapted from R. Spencer’s blog



post)

Most rows in Table 3.3 now contain criteria that can be seen as invariants in
the cycles of the development process. In DevOps, the typical frequency of these
invariants is significantly higher than in ITIL. Yet, the processes and roles in the
right-hand column are taken from ITIL, thus making use of proven methods and
processes. Notably, the last row contains the now-joint stream of “Early Life
Support and Continual Service Improvement.” Given that releases are daily, the
early life support phase is effectively never-ending.

While many startups would consider such an approach overkill, larger and
more mature organizations will find defining the relation between DevOps and
ITIL useful, and this approach could increase the acceptance of and buy-in to
DevOps.

3.6 Summary

ITIL provides general guidance for the activities of Ops. These activities include
provisioning of hardware and software; providing functions such as service desk
operations and specialized technology experts; and day-to-day provisioning of
IT services. As with many such process specification standards, ITIL provides
general guidance on how activities are to be carried out rather than specific
guidance. For example, instead of saying “measure A with a goal of X,” ITIL
says something like “for goal X, choose the measurements that will allow you to
determine X.”

Organizational activities should satisfy some strategic purpose for the
organization and need to be designed, implemented, monitored, and improved.
DevOps practices with the goals of reducing the time from developer commit to
production and rapid repair of discovered errors will impact some of the types of
services provided by Ops and will provide mechanisms for monitoring and
improving those services. The specifics of the impact of DevOps on Ops will
depend on the type of organization and the particular DevOps practices that are
adopted.

One method of viewing the relationship between DevOps and ITIL is that
DevOps provides continuous delivery of the various ITIL services rather than
requiring those services to be packaged into a major release.

3.7 For Further Reading

ITIL is a standardization effort begun by the government of the United Kingdom
in the 1980s. It has gone through a series of revisions, consolidations,



amendments, and so forth. The latest version of ITIL is from 2011. It is
published in five volumes [Cannon 11; Hunnebeck 11; Lloyd 11; Rance 11;
Steinberg 11].

Thomas Erl has written extensively about design issues of services in a
service-oriented architecture sense, but his requirements are more generally
applicable than just for software. We applied them to the services provided by
operations. See his book Service-Oriented Architecture: Principles of Service
Design, which describes designing services [Erl 07].

Some blogs that discuss ITIL and its relation to DevOps are
= “DevOps and ITIL: Continuous Delivery Doesn’t Stop at Software”
[Spencer 14]
= “What is IT Service?” [Agrasala 11]
= FireScope is a company involved in enterprise monitoring: See the blog
“What is an IT Service?” [FireScope 13]

Recovery point objective (RPO) is defined and contrasted with recovery time
objective (RTO) in a Wikipedia article at
http://en.wikipedia.org/wiki/Recovery_point_objective



http://en.wikipedia.org/wiki/Recovery_point_objective

Part Two: The Deployment Pipeline

In this part, we focus on the methods for placing code into production as quickly
as possible, while maintaining high quality. These methods are manifested as a
pipeline, where the code has to pass quality gates one by one before reaching
production. The deployment pipeline is the place where the architectural aspects
and the process aspects of DevOps intersect. The goals of minimizing the
coordination requirements between different development teams, minimizing the
time required to integrate different development branches, having a high-quality
set of tests, and placing the code into production with high speed and quality are
covered in the three chapters in this part.

In Chapter 4, we explain the microservice architecture and argue why it
satisfies many of the coordination requirements and, hence, removes the
requirement for explicit coordination prior to deployment.

Requirements for a continuous deployment pipeline mandate that testing be
efficient and only a limited amount of merging needs to be done. We discuss
these issues in Chapter 5.

Once code is “production ready” there are a number of options for actually
deploying the code. Several different all-or-nothing deployment strategies exist,
as well as several different partial deployment strategies. One common
deployment strategy results in multiple versions of a service being
simultaneously active and this, in turn, raises questions of consistency.
Furthermore, allowing any team to deploy at any time results in potential
inconsistency between clients and the services they are using. We discuss these
and other issues in Chapter 6.



4. Overall Architecture

A distributed system is one in which the failure of a computer you didn’t
even know existed can render you own computer unusable.
—Leslie Lamport

In this chapter we begin to see the structural implications of the DevOps
practices. These practices have implications with respect to both the overall
structure of the system and techniques that should be used in the system’s
elements. DevOps achieves its goals partially by replacing explicit coordination
with implicit and often less coordination, and we will see how the architecture of
the system being developed acts as the implicit coordination mechanism. We
begin by discussing whether DevOps practices necessarily imply architectural
change.

4.1 Do DevOps Practices Require Architectural Change?

You may have a large investment in your current systems and your current
architecture. If you must re-architect your systems in order to take advantage of
DevOps, a legitimate question is “Is it worth it?” In this section we see that some
DevOps practices are independent of architecture, whereas in order to get the
full benefit of others, architectural refactoring may be necessary.

Recall from Chapter 1 that there are five categories of DevOps practices.

1. Treat Ops as first-class citizens from the point of view of requirements.
Adding requirements to a system from Ops may require some architectural
modification. In particular, the Ops requirements are likely to be in the
area of logging, monitoring, and information to support incident handling.
These requirements will be like other requirements for modifications to a
system: possibly requiring some minor modifications to the architecture
but, typically, not drastic modifications.

2. Make Dev more responsible for relevant incident handling. By itself, this
change is just a process change and should require no architectural
modifications. However, just as with the previous category, once Dev
becomes aware of the requirements for incident handling, some
architectural modifications may result.



3. Enforce deployment process used by all, including Dev and Ops
personnel. In general, when a process becomes enforced, some individuals
may be required to change their normal operating procedures and,
possibly, the structure of the systems on which they work. One point where
a deployment process could be enforced is in the initiation phase of each
system. Each system, when it is initialized, verifies its pedigree. That is, it
arrived at execution through a series of steps, each of which can be
checked to have occurred. Furthermore, the systems on which it depends
(e.g., operating systems or middleware) also have verifiable pedigrees.

4. Use continuous deployment. Continuous deployment is the practice that
leads to the most far-reaching architectural modifications. On the one
hand, an organization can introduce continuous deployment practices with
no major architectural changes. See, for example, our case study in
Chapter 12. On the other hand, organizations that have adopted continuous
deployment practices frequently begin moving to a microservice-based
architecture. See, for example, our case study in Chapter 13. We explore
the reasons for the adoption of a microservice architecture in the remainder
of this chapter

5. Develop infrastructure code with the same set of practices as application
code. These practices will not affect the application code but may affect
the architecture of the infrastructure code.

4.2 Overall Architecture Structure

Before delving into the details of the overall structure, let us clarify how we use
certain terminology. The terms module and component are frequently overloaded
and used in different fashions in different writings. For us, a module is a code
unit with coherent functionality. A component is an executable unit. A compiler
or interpreter turns modules into binaries, and a builder turns the binaries into
components. The development team thus directly develops modules.
Components are results of the modules developed by development teams, and so
it is possible to speak of a team developing a component, but it should be clear
that the development of a component is an indirect activity of a development
team.

As we described in Chapter 1, development teams using DevOps processes
are usually small and should have limited inter-team coordination. Small teams
imply that each team has a limited scope in terms of the components they
develop. When a team deploys a component, it cannot go into production unless



the component is compatible with other components with which it interacts. This
compatibility can be ensured explicitly through multi-team coordination, or it
can be ensured implicitly through the definition of the architecture.

An organization can introduce continuous deployment without major
architectural modifications. For example, the case study in Chapter 12 is
fundamentally architecture-agnostic. Dramatically reducing the time required to
place a component into production, however, requires architectural support:

= Deploying without the necessity of explicit coordination with other teams
reduces the time required to place a component into production.

= Allowing for different versions of the same service to be simultaneously in
production leads to different team members deploying without
coordination with other members of their team.

= Rolling back a deployment in the event of errors allows for various forms
of live testing.

Microservice architecture is an architectural style that satisfies these
requirements. This style is used in practice by organizations that have adopted or
inspired many DevOps practices. Although project requirements may cause
deviations to this style, it remains a good general basis for projects that are
adopting DevOps practices.

A microservice architecture consists of a collection of services where each
service provides a small amount of functionality and the total functionality of the
system is derived from composing multiple services. In Chapter 6, we also see
that a microservice architecture, with some modifications, gives each team the
ability to deploy their service independently from other teams, to have multiple
versions of a service in production simultaneously, and to roll back to a prior
version relatively easily.

Figure 4.1 describes the situation that results from using a microservice
architecture. A user interacts with a single consumer-facing service. This
service, in turn, utilizes a collection of other services. We use the terminology
service to refer to a component that provides a service and client to refer to a
component that requests a service. A single component can be a client in one
interaction and a service in another. In a system such as LinkedIn, the service
depth may reach as much as 70 for a single user request.
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FIGURE 4.1 User interacting with a single service that, in turn, utilizes
multiple other services [Notation: Architecture]

Having an architecture composed of small services is a response to having
small teams. Now we look at the aspects of an architecture that can be specified
globally as a response to the requirement that inter-team coordination be
minimized. We discuss three categories of design decisions that can be made
globally as a portion of the architecture design, thus removing the need for inter-
team coordination with respect to these decisions. The three categories are: the
coordination model, management of resources, and mapping among architectural
elements.

Coordination Model

If two services interact, the two development teams responsible for those
services must coordinate in some fashion. Two details of the coordination model
that can be included in the overall architecture are: how a client discovers a
service that it wishes to use, and how the individual services communicate.

Figure 4.2 gives an overview of the interaction between a service and its



client. The service registers with a registry. The registration includes a name for
the service as well as information on how to invoke it, for example, an endpoint
location as a URL or an IP address. A client can retrieve the information about
the service from the registry and invoke the service using this information. If the
registry provides IP addresses, it acts as a local DNS server—Ilocal, because
typically, the registry is not open to the general Internet but is within the
environment of the application. Netflix Eureka is an example of a cloud service
registry that acts as a DNS server. The registry serves as a catalogue of available
services, and can further be used to track aspects such as versioning, ownership,
service level agreements (SLAs), etc., for the set of services in an organization.
We discuss extensions to the registry further in Chapter 6.
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Service g Load Balancer
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FIGURE 4.2 An instance of a service registers itself with the registry, the
client queries the registry for the address of the service and invokes the
service. [Notation: Architecture]

There will typically be multiple instances of a service, both to support a load
too heavy for a single instance and to guard against failure. The registry can
rotate among the instances registered to balance the load. That is, the registry
acts as a load balancer as well as a registry. Finally, consider the possibility that
an instance of a service may fail. In this case, the registry should not direct the
client to the failed instance. By requiring the service to periodically renew its
registration or proactively checking the health of the service, a guard against
failure is put in place. If the service fails to renew its registration within the
specified period, it is removed from the registry. Multiple instances of the
service typically exist, and so the failure of one instance does not remove the
service. The above-mentioned Netflix Eureka is an example for a registry
offering load balancing. Eureka supports the requirement that services
periodically renew their registration.

The protocol used for communication between the client and the service can
be any remote communication protocol, for example, HTTP, RPC, SOAP, etc.
The service can provide a RESTful interface or not. The remote communication
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details of the interface provided by the service still require cross-team
coordination. When we discuss the example of Amazon later, we will see one
method of providing this coordination. We will also see an explicit requirement
for restricting communication among services to the remote communication
protocol.

Management of Resources

Two types of resource management decisions can be made globally and
incorporated in the architecture—provisioning/deprovisioning VMs and
managing variation in demand.

Provisioning and Deprovisioning VMs

New VMs can be created in response to client demand or to failure. When the
demand subsides, instances should be deprovisioned. If the instances are
stateless (i.e., they do not retain any information between requests), a new
instance can be placed into service as soon as it is provisioned. Similarly, if no
state is kept in an instance, deprovisioning becomes relatively painless: After a
cool-down period where the instance receives no new requests and responds to
existing ones, the instance can be deprovisioned. The cool-down period should
therefore be long enough for an instance to respond to all requests it received
(i.e., the backlog). If you deprovision an instance due to reduced demand, the
backlog should be fairly small—in any other case this action needs to be
considered carefully. An additional advantage of a stateless service is that
messages can be routed to any instance of that service, which facilitates load
sharing among the instances.

This leads to a global decision to maintain state external to a service instance.
As discussed in Chapter 2, large amounts of application state can be maintained
in persistent storage, small amounts of application state can be maintained by
tools such as ZooKeeper, and client state should not be maintained on the
provider’s side anyway.

Determining which component controls the provisioning and deprovisioning
of a new instance for a service is another important aspect. Three possibilities
exist for the controlling component.

1. A service itself can be responsible for (de)provisioning additional
instances. A service can know its own queue lengths and its own
performance in response to requests. It can compare these metrics to
thresholds and (de)provision an instance itself if the threshold is crossed.



Assuming that the distribution of requests is fair, in some sense, across all
instances of the service, one particular instance (e.g., the oldest one) of the
service can make the decision when to provision or deprovision instances.
Thus, the service is allowed to expand or shrink capacity to meet demand.

2. A client or a component in the client chain can be responsible for
(de)provisioning instances of a service. For instance, the client, based on
the demands on it, may be aware that it will shortly be making demands on
the service that exceed a given threshold and provisions new instances of
the service.

3. An external component monitors the performance of service instances
(e.g., their CPU load) and (de)provisions an instance when the load reaches
a given threshold. Amazon’s autoscaling groups provide this capability, in
collaboration with the CloudWatch monitoring system.

Managing Demand

The number of instances of an individual service that exist should reflect the
demand on the service from client requests. We just discussed several different
methods for provisioning and deprovisioning instances, and these methods make
different assumptions about how demand is managed.

» One method for managing demand is to monitor performance. Other
decisions to be made include determining how to implement monitoring
(e.g., whether done internally by running a monitoring agent inside each
service instance or externally by a specialized component). That is, when
demand grows that needs to be detected, a new instance can be
provisioned. It takes time to provision a new instance, so it is important
that the indicators are timely and even predictive to accommodate for that
time. We discuss more details about monitoring in Chapter 7.

= Another possible technique is to use SLAs to control the number of
instances. Each instance of the service guarantees through its SLAs that it
is able to handle a certain number of requests with a specified latency. The
clients of that service then know how many requests they can send and still
receive a response within the specified latency. This technique has several
constraints. First, it is likely that the requirements that a client imposes on
your service will depend on the requirements imposed on the client, so
there is a cascading effect up through the demand chain. This cascading
will cause uncertainty in both the specification and the realization of the
SLAs. A second constraint of the SLA technique is that each instance of
your service may know how many requests it can handle, but the client has



multiple available instances of your service. Thus, the provisioning
component has to know how many instances currently exist of your
service.

Mapping Among Architectural Elements

The final type of coordination decision that can be specified in the architecture is
the mapping among architectural elements. We discuss two different types of
mappings—work assignments and allocation. Both of these are decisions that are
made globally.

= Work assignments. A single team may work on multiple modules, but
having multiple development teams work on the same module requires a
great deal of coordination among those development teams. Since
coordination takes time, an easier structure is to package the work of a
single team into modules and develop interfaces among the modules to
allow modules developed by different teams to interoperate. In fact, the
original definition of a module by David Parnas in the 1970s was as a work
assignment of a team. Although not required, it is reasonable that each
component (i.e., microservice) is the responsibility of a single development
team. That is, the set of modules that, when linked, constitute a component
are the output of a single development team. This does not preclude a
single development team from being responsible for multiple components
but it means that any coordination involving a component is settled within
a single development team, and that any coordination involving multiple
development teams goes across components. Given the set of constraints
on the architecture we are describing, cross-team coordination
requirements are limited.

= Allocation. Each component (i.e., microservice) will exist as an
independent deployable unit. This allows each component to be allocated
to a single (virtual) machine or container, or it allows multiple components
to be allocated to a single (virtual) machine. The redeployment or upgrade
of one microservice will not affect any other microservices. We explore
this choice in Chapter 6.

4.3 Quality Discussion of Microservice Architecture

We have described an architectural style—microservice architecture—that
reduces the necessity for inter-team coordination by making global architectural
choices. The style provides some support for the qualities of dependability
(stateless services) and modifiabilitv (small services). but there are additional



practices that a team should use to improve both dependability and modifiability
of their services.

Dependability

Three sources for dependability problems are: the small amount of inter-team
coordination, correctness of environment, and the possibility that an instance of
a service can fail.

Small Amount of Inter-team Coordination

The limited amount of inter-team coordination may cause misunderstandings
between the team developing a client and the team developing a service in terms
of the semantics of an interface. In particular, unexpected input to a service or
unexpected output from a service can happen. There are several options. First, a
team should practice defensive programming and not assume that the input or
the results of a service invocation are correct. Checking values for
reasonableness will help detect errors early. Providing a rich collection of
exceptions will enable faster determination of the cause of an error. Second,
integration and end-to-end testing with all or most microservices should be done
judiciously. It can be expensive to run these tests frequently due to the
involvement of a potentially large number of microservices and realistic external
resources. A testing practice called Consumer Driven Contract (CDC) can be
used to alleviate the problem. That is, the test cases for testing a microservice are
decided and even co-owned by all the consumers of that microservice. Any
changes to the CDC test cases need to be agreed on by both the consumers and
the developers of the microservice. Running the CDC test cases, as a form of
integration testing, is less expensive than running end-to-end test cases. If CDC
is practiced properly, confidence in the microservice can be high without
running many end-to-end test cases.

CDC serves as a method of coordination and has implications on how user
stories of a microservice should be made up and evolve over time. Consumers
and microservice developers collectively make up and own the user stories. CDC
definition becomes a function of the allocation of functionality to the
microservice, is managed by the service owner as a portion of the coordination
that defines the next iteration, and, consequently, does not delay the progress of
the current iteration.

Correctness of Environment
A service will operate in multiple different environments during the passage



from unit test to post-production. Each environment is provisioned and
maintained through code and a collection of configuration parameters. Errors in
code and configuration parameters are quite common. Inconsistent configuration
parameters are also possible. Due to a degree of uncertainty in cloud-based
infrastructure, even executing the correct code and configuration may lead to an
incorrect environment. Thus, the initialization portion of a service should test its
current environment to determine whether it is as expected. It should also test the
configuration parameters to detect, as far as possible, unexpected inconsistencies
from different environments. If the behavior of the service depends on its
environment (e.g., certain actions are performed during unit test but not during
production), then the initialization should determine the environment and
provide the settings for turning on or off the behavior. An important trend in
DevOps is to manage all the code and parameters for setting up an environment
just as you manage your application code, with proper version control and
testing. This is an example of “infrastructure-as-code” as defined in Chapter 1
and discussed in more detail in Chapter 5. The testing of infrastructure code is a
particularly challenging issue. We discuss the issues in Chapters 7 and 9.

Failure of an Instance

Failure is always a possibility for instances. An instance is deployed onto a
physical machine, either directly or through the use of virtualization, and in large
datacenters, the failure of a physical machine is common. The standard method
through which a client detects the failure of an instance of a service is through
the timeout of a request. Once a timeout has occurred, the client can issue a
request again and, depending on the routing mechanism used, assume it is routed
to a different instance of the service. In the case of multiple timeouts, the service
is assumed to have failed and an alternative means of achieving the desired goal
can be attempted.

Figure 4.3 shows a time line for a client attempting to access a failed service.
The client makes a request to the service, and it times out. The client repeats the
request, and it times out again. At this point, recognizing the failure has taken
twice the timeout interval. Having a short timeout interval (failing fast) will
enable a more rapid response to the client of the client requesting the service. A
short timeout interval may, however, introduce false positives in that the service
instance may just be slow for some reason. The result may be that both initial
requests for service actually deliver the service, just not in a timely fashion.
Another result may be that the alternative action is performed as well. Services
should be designed so that multiple invocations of the same service will not



introduce an error. Idempotent is the term for a service that can be repeatedly
invoked with the same input and always produces the same output—namely, no
error is generated.
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FIGURE 4.3 Time line in recognizing failure of a dependent service
[Notation: UML Sequence Diagram]

Another point highlighted in Figure 4.3 is that the service has an alternative
action. That is, the client has an alternative action in case the service fails. Figure
4.3 does not show what happens if there is no alternative action. In this case, the
service reports failure to its client together with context information—namely,
no response from the particular underlying service. We explore the topic of
reporting errors in more depth in Chapter 7.

Modifiability
Making a service modifiable comes down to making likely changes easy and
reducing the ripple effects of those changes. In both cases, a method for making

the service more modifiable is to encapsulate either the affected portions of a
likely change or the interactions that might cause ripple effects of a change.

Identifying Likely Changes
Some likely changes that come from the development process, rather than the
service being provided, are:

= The environments within which a service executes. A module goes through
unit tests in one environment, integration tests in another, acceptance tests
in a third, and is in production in a fourth.



= The state of other services with which your service interacts. If other
services are in the process of development, then the interfaces and
semantics of those services are likely to change relatively quickly. Since
you may not know the state of the external service, a safe practice is to
treat, as much as possible, all communication with external services as
likely to change.

= The version of third-party software and libraries that are used by your
service. Third-party software and libraries can change arbitrarily,
sometimes in ways that are disruptive for your service. In one case we
heard, an external system removed an essential interface during the time
the deployment process was ongoing. Using the same VM image in
different environments will protect against those changes that are
contained within the VM but not against external system changes.

Reducing Ripple Effects

Once likely changes have been discovered, you should prevent these types of
changes from rippling through your service. This is typically done by
introducing modules whose sole purpose is to localize and isolate changes to the
environment, to other services, or to third-party software or libraries. The
remainder of your service interacts with these changeable entities through the
newly introduced modules with stable interfaces.

Any interaction with other services, for example, is mediated by the special
module. Changes to the other services are reflected in the mediating module and
buffered from rippling to the remainder of your service. Semantic changes to
other services may, in fact, ripple, but the mediating module can absorb some of
the impact, thereby reducing this ripple effect.

4.4 Amazon’s Rules for Teams

As we mentioned in Chapter 1, Amazon has a rule that no team should be larger
than can be fed with two pizzas; in the early years of this century they adopted
an internal microservice architecture. Associated with the adoption was a list of
rules to follow about how to use the services:

= “All teams will henceforth expose their data and functionality through
service interfaces.

= Teams must communicate with each other through these interfaces.

= There will be no other form of inter-service/team communication allowed:
no direct linking, no direct reads of another team’s datastore, no shared-



memory model, no backdoors whatsoever. The only communication
allowed is via service interface calls over the network.

= It doesn’t matter what technology they [other services] use.

= All service interfaces, without exception, must be designed from the
ground up to be externalizable. That is to say, the team must plan and
design to be able to expose the interface to developers in the outside
world.”

Each team produces some number of services. Every service is totally
encapsulated except for its public interface. If another team wishes to use a
service, it must discover the interface. The documentation for the interface must
include enough semantic information to enable the user of a service to determine
appropriate definitions for items such as “customer” or “address.” These
concepts can sometimes have differing meanings within different portions of an
organization. The semantic information about an interface can be kept in the
registry/load balancer that we described earlier, assuming that the semantic
information is machine interpretable.

By making every service potentially externally available, whether or not to
offer a service globally or keep it local becomes a business decision, not a
technical one. External services can be hidden behind an application
programming interface (API) bound through a library, and so this requirement is
not prejudging the technology used for the interface.

A consequence of these rules is that Amazon has an extensive collection of
services. A web page from their sales business makes use of over 150 services.
Scalability is managed by each service individually and is included in its SLA in
the form of a guaranteed response time given a particular load. The contract
covers what the service promises against certain demand levels. The SLA binds
both the client side and the service side. If the client’s demand exceeds the load
promised in the SLA, then slow response times become the client’s problem, not
the service’s.

4.5 Microservice Adoption for Existing Systems

Although microservices reflect the small, independent team philosophy of
DevOps, most organizations have large mission-critical systems that are not
architected that way. These organizations need to decide whether to migrate their
architectures to microservice architectures, and which ones to migrate. We
discuss this migration somewhat in Chapter 10. Some of the things an architect
thinking of adopting a microservice architecture should ensure are the following:



= Operational concerns are considered during requirements specification.

= The overarching structure of the system being developed should be a
collection of small, independent services.

= Each service should be distrustful of both clients and other required
services.

= Team roles have been defined and are understood.

= Services are required to be registered with a local registry/load balancer.
= Services must renew their registration periodically.

= Services must provide SLAs for their clients.

= Services should aim to be stateless and be treated as transient.

« If a service has to maintain state, it should be maintained in external
persistent storage.

= Services have alternatives in case a service they depend on fails.

= Services have defensive checks to intercept erroneous input from clients
and output from other services.

= Uses of external services, environmental information, and third-party
software and libraries are localized (i.e., they require passage through a
module specific to that external service, environment information, or
external software or library).

However, adopting a microservice architecture will introduce new challenges.
When an application is composed of a large number of network-connected
microservices, there can be latency and other performance issues. Authentication
and authorization between services need to be carefully designed so that they do
not add intolerable overhead. Monitoring, debugging, and distributed tracing
tools may need to be modified to suit microservices. As mentioned earlier, end-
to-end testing will be expensive. Rarely can you rebuild your application from
scratch without legacy components or existing data.

Migrating from your current architecture to a microservice architecture
incrementally without data loss and interruption is a challenge. You may need to
build interim solutions during this migration. We discuss these challenges and
some solutions in the Atlassian case study in Chapter 13, wherein Atlassian
describes the initial steps of their journey to a microservice architecture. An
architect should have a checklist of things to consider when performing a
migration.

4.6 Summary



The DevOps goal of minimizing coordination among various teams can be
achieved by using a microservice architectural style where the coordination
mechanism, the resource management decisions, and the mapping of
architectural elements are all specified by the architecture and hence require
minimal inter-team coordination.

A collection of practices for development can be added to the microservice
architectural style to achieve dependability and modifiability, such as identifying
and isolating areas of likely change.

Adopting a microservice architectural style introduces additional challenges in
monitoring, debugging, performance management, and testing. Migrating from
an existing architecture to a microservice architectural style requires careful
planning and commitment.

4.7 For Further Reading
For more information about software architecture, we recommend the following
books:

= Documenting Software Architectures, 2nd Edition [Clements 10]

= Software Architecture in Practice, 3rd Edition [Bass 13]

Service description, cataloguing, and management are discussed in detail in
the Handbook of Service Description [Barros 12]. This book describes services
that are externally visible, not microservices, but much of the discussion is
relevant to microservices as well.

The microservice architectural style is described in the book Building
Microservices: Designing Fine-Grained Systems [Newman 15].

Many organizations are already practicing a version of the microservice
architectural development and DevOps, and sharing their valuable experiences.

= You can read more about the Amazon example here:
http://apievangelist.com/2012/01/12/the-secret-to-amazons-success-
internal-apis/ and http://www.zdnet.com/blog/storage/soa-done-right-the-
amazon-strategy/152

= Netflix points out some challenges in using microservice architecture at
scale [Tonse 14].

The Netflix implementation of Eureka—their open source internal load
balancer/registry—can be found at
https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance



http://apievangelist.com/2012/01/12/the-secret-to-amazons-success-internal-apis/
http://www.zdnet.com/blog/storage/soa-done-right-the-amazon-strategy/152
https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance

Consumer Driven Contracts (CDCs) are discussed in Martin Fowler’s blog
“Consumer-Driven Contracts: A Service Evolution Pattern,” [Fowler 06].



5. Building and Testing

Testing leads to failure, and failure leads to understanding.
—Burt Rutan

5.1 Introduction

Although architects like to focus on design and implementation, the
infrastructure that is used to support the development and deployment process is
important for a number of reasons. This infrastructure should support the
following requirements:

= Team members can work on different versions of the system concurrently.

= Code developed by one team member does not overwrite the code
developed by another team member by accident.

= Work is not lost if a team member suddenly leaves the team.
= Team members’ code can be easily tested.

= Team members’ code can be easily integrated with the code produced by
other members of the same team.

= The code produced by one team can be easily integrated with code
produced by other teams.

= An integrated version of the system can be easily deployed into various
environments (e.g., testing, staging, and production).

= An integrated version of the system can be easily and fully tested without
affecting the production version of the system.

= A recently deployed new version of the system can be closely supervised.

= Older versions of the code are available in case a problem develops once
the code has been placed into production.

= Code can be rolled back in the case of a problem.

The most important reason why practicing architects should probably be
concerned about the development and deployment infrastructure is: Either they
or the project managers are responsible for ensuring that the development
infrastructure can meet the preceding requirements. There is nothing like being
responsible for an outcome to focus attention.



None of the requirements are new, although the tools used to support these
tasks have evolved and gained sophistication over the years. We organize this
chapter using the concept of deployment pipeline. A deployment pipeline, as
shown in Figure 5.1, consists of the steps that are taken between a developer
committing code and the code actually being promoted into normal production,
while ensuring high quality
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FIGURE 5.1 Deployment pipeline [Notation: BPMN]

The deployment pipeline begins when a developer commits code to a joint
versioning system. Prior to doing this commit, the developer will have
performed a series of pre-commit tests on their local environment; failure of the
pre-commit tests of course means that the commit does not take place. A commit
then triggers an integration build of the service being developed. This build is
tested by integration tests. If these tests are successful, the build is promoted to a
quasi-production environment—the staging environment—where it is tested
once more. Then, it is promoted to production under close supervision. After
another period of close supervision, it is promoted to normal production. The
specific tasks may vary a bit for different organizations. For example, a small
company may not have a staging environment or special supervision for a
recently deployed version. A larger company may have several different
production environments for different purposes. We describe some of these
different production environments in Chapter 6.

One way to define continuous integration is to have automatic triggers
between one phase and the next, up to integration tests. That is, if the build is
successful then integration tests are triggered. If not, the developer responsible
for the failure is notified. Continuous delivery is defined as having automated
triggers as far as the staging system. This is the box labeled UAT (user
acceptance test)/staging/performance tests in Figure 5.1. We use the term staging
for these various functions. Continuous deployment means that the next to last
step (i.e., deployment into the production system) is automated as well. Once a



service is deployed into production it is closely monitored for a period and then
it is promoted into normal production. At this final stage, monitoring and testing
still exist but the service is no different from other services in this regard. In this
chapter, we are concerned with the building and testing aspects of this pipeline.
Chapter 6 describes deployment practices, and Chapter 7 discusses monitoring
methods.

We use the deployment pipeline as an organizing theme for this chapter. Then
we discuss crosscutting concerns of the different steps, followed by sections on
the pre-commit stage, build and integration testing, UAT/staging/performance
tests, production, and post-production. Before moving to that discussion,
however, we discuss the movement of a system through the pipeline.

5.2 Moving a System Through the Deployment Pipeline

Committed code moves through the steps shown in Figure 5.1, but the code does
not move of its own volition. Rather, it is moved by tools. These tools are
controlled by their programs (called scripts in this context) or by
developer/operator commands. Two aspects of this movement are of interest in
this section:

1. Traceability
2. The environment associated with each step of the pipeline

Traceability

Traceability means that, for any system in production, it is possible to determine
exactly how it came to be in production. This means keeping track not only of
source code but also of all the commands to all the tools that acted on the
elements of the system. Individual commands are difficult to trace. For this
reason, controlling tools by scripts is far better than controlling tools by
commands. The scripts and associated configuration parameters should be kept
under version control, just as the application code. A movement called
Infrastructure as Code uses this rationale. Tests are also maintained in version
control. Configuration parameters can be kept as files that are stored in version
control or handled through dedicated configuration management systems.

Treating infrastructure-as-code means that this code should be subject to the
same quality control as application source code. That is, this code should be
tested, changes to it should be regulated in some fashion, and its different parts
should have owners.

Keeping everything in version control and configuration management systems



allows you to re-create the exact environments used anywhere, from local
development to production. Not only is this very helpful in tracing issues, it also
allows fast and flexible redeployment of your application in a new environment.

A complication to the requirement to keep everything in version control is the
treatment of third-party software such as Java libraries. Such libraries can be
bulky and can consume a lot of storage space. Libraries also change, so you must
find a mechanism to ensure you include the correct version of third-party
software in a build, without having multiple copies of the same version of the
library on the servers running your system. Software project management tools
like Apache Maven can go a long way to managing the complexities of library
usage.

The Environment

An executing system can be viewed as a collection of executing code, an
environment, configuration, systems outside of the environment with which the
primary system interacts, and data. Figure 5.2 shows these elements.
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FIGURE 5.2 A sample environment [ Notation: Architecture]

As the system moves through the deployment pipeline, these items work
together to generate the desired behavior or information.

= Pre-commit. The code is the module of the system on which the developer
is working. Building this code into something that can be tested requires
access to the appropriate portions of the version control repository that are
being created by other developers. In Chapter 1, we discussed reducing
coordination among teams. Pre-commit requires coordination within a



team. The environment is typically a laptop or a desktop, the external
systems are stubbed out or mocked, and only limited data is used for
testing. Read-only external systems, for example, an RSS feed, can be
accessed during the pre-commit stage. Configuration parameters should
reflect the environment and also control the debugging level.

Build and integration testing. The environment is usually a continuous
integration server. The code is compiled, and the component is built and
baked into a VM image. The image can be either heavily or lightly baked
(see the later section on packaging). This VM image does not change in
subsequent steps of the pipeline. During integration testing, a set of test
data forms a test database. This database is not the production database,
rather, it consists of a sufficient amount of data to perform the automated
tests associated with integration. The configuration parameters connect the
built system with an integration testing environment.

UAT/staging/performance testing. The environment is as close to
production as possible. Automated acceptance tests are run, and stress
testing is performed through the use of artificially generated workloads.
The database should have some subset of actual production data in it. With
very large data sets, it may not be possible to have a complete copy of the
actual data, but the subset should be large enough to enable the tests to be
run in a realistic setting. Configuration parameters connect the tested
system with the larger test environment. Access to the production database
should not be allowed from the staging environment.

Production. The production environment should access the live database
and have sufficient resources to adequately handle its workload.
Configuration parameters connect the system with the production
environment.

The configuration for each of these environments will be different. For
instance, logging in the development environment is usually done in a much
more detailed fashion than in the production environment. Doing so helps the
developer find bugs, and the performance overhead created does not matter as
much. Another example concerns credentials: The credentials for accessing
production resources, such as the live customer database, should not be made
available to developers. While some changes in configuration are unavoidable, it
is important to keep these changes to a minimum to prevent affecting the
behavior of the system. As such, testing with a vastly different configuration
from the production system will not be helpful.

Wikipedia has a longer list of environments than we provide here because it



enumerates more distinct testing environments. For the purposes of this chapter,
the environments we enumerated are sufficient but, as noted, depending on the
size of your organization, the regulatory environment, and other factors, more
environments may be necessary. The Wikipedia list is:

= Local: Developer’s laptop/desktop/workstation
= Development: Development server, a.k.a. sandbox

= Integration: Continuous integration (CI) build target, or for developer
testing of side effects

= Test/QA: For functional, performance testing, quality assurance, etc.
= UAT: User acceptance testing

= Stage/Pre-production: Mirror of production environment

= Production/Live: Serves end-users/clients

Before we turn to the actual steps of the deployment pipeline we discuss the
crosscutting aspects of testing.

5.3 Crosscutting Aspects

In this section, we discuss various crosscutting aspects of a deployment pipeline:
test harnesses, negative tests, regression tests, traceability of errors, the size of
components, and tearing down of environments.

= Test harnesses. A test harness is a collection of software and test data
configured to test a program unit by running it under varying conditions
and monitoring its behavior and output. Test harnesses are essential in
order to automate tests. A critical feature of a test harness is that it
generates a report. In particular it should, at a minimum, identify which
tests failed. Most of the types of tests discussed in this chapter should be
able to be automated and driven by the test harness.

= Negative tests. Most tests follow the “happy path” and check if the system
behaves as expected when all assumptions about the environment hold and
the user performs actions in the right order with the right inputs. It is also
important to test if the system behaves in a defined way when these
assumptions are not met. Tests that follow this purpose are collectively
called negative tests. Examples are (simulated or actual) users performing
actions in the wrong order (e.g., clicking buttons, calling commands,
terminating the user interface (UI)/browser at an unexpected point in time,
etc.) or simulated connectivity issues, such as external services becoming
unavailable, connections being dropped at unexpected points in time, and



so forth. The common expectation is that the application should degrade or
fail gracefully (i.e., only degrade the functionality as necessitated by the
actual problem), and, if failure is unavoidable, provide meaningful error
messages and exit in a controlled manner.

= Regression testing is the core reason for maintaining and rerunning tests
after they first passed. According to Wikipedia, regression testing “...
seeks to uncover new software bugs, or regressions, in existing functional
and non-functional areas of a system after changes such as enhancements,
patches or configuration changes, have been made to them.” Another use
of regression testing is to ensure that any fixed bugs are not reintroduced
later on. When fixing a bug in test-driven development, it is good practice
to amend the test suite by adding a test that reproduces the bug. In the
current version, this test should fail. After the bug has been fixed, the test
should pass. It is possible to automate the regression test creation: Failures
detected at later points in the deployment pipeline (e.g., during staging
testing) can be automatically recorded and added as new tests into unit or
integration testing.

= Traceability of errors (also referred to as lineage or a form of provenance).
If a bug occurs in production, you want to be able to find out quickly
which version of the source code is running, so that you can inspect and
reproduce the bug. We outline two options to handle this situation, both of
which assume that you have a single mechanism for changing a system, be
it through a configuration management system such as Chef, heavily baked
images, and so forth. Regardless of the change mechanism, an assumption
is made that every valid change uses that mechanism. Deviations from that
practice are in principle possible, whether done inadvertently or
maliciously, and you want to have mechanisms in place to detect or
prevent them.

= The first option to enable traceability is to associate identifying tags to

the packaged application, such as the commit ID of various pieces of
software and scripts that specify the provenance. In Java and .NET
environments, packages can be enriched with metadata, where the
commit ID can be added. Containers or VM images can be enriched in a
similar fashion. The information can be added to log lines, and these can
(selectively) be shipped to a central log repository. By doing so, a failing
VM does not destroy the information necessary for analyzing the failure.

= Another option is to have an external configuration management system
that contains the provenance of each machine in production. One



example for this is Chef, which keeps track of all changes it applies to a
machine. The virtue of this approach is that the provenance information
is at a known location for any application that needs to access that list.
The drawback is that, when not using an existing system which offers
this functionality, keeping a centralized list up to date can be a complex
undertaking.

= Small components. We mentioned in Chapter 1 that small teams mean
small components. In Chapter 4, we discussed microservices as a
manifestation of small components. It is also the case that small
components are easier to test individually. A small component has fewer
paths through it and likely has fewer interfaces and parameters. These
consequences of smallness mean that small components are easier to test,
with fewer test cases necessary. However, as mentioned in Chapter 1, the
smallness also introduces additional challenges in integration and requires
end-to-end tests due to the involvement of more components.

= Environment tear down. Once an environment is no longer being used for
a specific purpose, such as staging, it should be dismantled. Freeing
resources associated with the environment is one rationale for tearing
down an environment; avoiding unintended interactions with resources is
another. The case study in Chapter 12 makes tear down an explicit portion
of the process. It is easy to lose track of resources after their purpose has
been achieved. Every VM must be patched for security purposes, and
unused and untracked resources provide a possible attack surface from a
malicious user. We discuss an example of an exploitation of an unused
VM in Chapter 8.

We will discuss testing in more detail later in the chapter. For now, you
should understand that different environments allow for different kinds of tests,
and the more tests are completed successfully, the more confidence you should
have in a version’s quality.

5.4 Development and Pre-commit Testing

All tasks prior to the commit step are performed by individual developers on
their local machines. Code development and language choice is out of scope
here. We cover the general topics of versioning and branching, feature toggles,
configuration parameters, and pre-commit testing.

Version Control and Branching



Even small development projects are nowadays placed into systems for version
control—also called revision control or source control. Such systems date from
the 1950s as manual systems. CVS (Concurrent Versions System) dates from the
1980s, and SVN (Subversion) dates from 2000. Git (released in 2005) is
currently a popular version control system. Core features of version control are:
the ability to identify distinct versions of the source code, sharing code revisions
between developers, recording who made a change from one version to the next,
and recording the scope of a change.

CVS and SVN are centralized solutions, where each developer checks out
code from a central server and commits changes back to that server. Git is a
distributed version control system: Every developer has a local clone (or copy)
of a Git repository that holds all contents. Commits are done to the local
repository. A set of changes can be synchronized against a central server, where
changes from the server are synchronized with the local repository (using the
pull command) and local changes can be forwarded to the server (using the push
command). Push can only be executed if the local repository is up-to-date, hence
a push is usually preceded by a pull. During this pull, changes to the same files
(e.g., to the same Java class) are merged automatically. However, this merge can
fail, in which case the developer has to resolve any conflicts locally. The
resulting changes from an (automatic or semi-manual) merge are committed
locally and then pushed to the server.

Almost all version control systems support the creation of new branches. A
branch is essentially a copy of a repository (or a portion) and allows independent
evolution of two or more streams of work. For example, if part of the
development team is working on a set of new features while a previous version
is in production and a critical error is discovered in the production system, the
version currently in production must be fixed. This can be done by creating a
branch for the fix based on the version of the code that was released into
production. After the error has been fixed and the fixed version has been
released into production, the branch with the fix is typically merged back into
the main branch (also called the trunk, mainline, or master branch).

This example is useful in highlighting the need for traceability that we
discussed previously. In order to fix the error, the code that was executing needs
to be determined (traceability of the code). The error may be due to a problem
with the configuration (traceability of the configuration) or with the tool suite
used to promote it into production (traceability of the infrastructure).

Although the branch structure is useful and important, two problems exist in
using branches.



1. You may have too many branches and lose track of which branch you
should be working on for a particular task. Figure 5.3 shows a branch
structure with many branches. Determining within this structure on which
branch a particular change should be made can be daunting. For this
reason, short-lived tasks should not create a new branch.

Branches

? Joda time added

Added correct annotations to Controller
Mock class added
ok Merge branch “master” of github.com:foo/bar
ey Merge branch ‘master” of github.com:foo/bar
e Fixed the build
A Updated the controller

p
Updated the controller
Merge branch “master” of github.com:foo/bar
Merge branch “master” of github.com:foo/bar
Updated the controller
Merge branch ‘master” of github.com:foo/bar
O Added another controller

\

Created item view
g/ Preparation for adding mongo DB: testcase written
Created new module for mongo, etc.
Configuration file moved
Added project for static web resources
Merge branch ‘'master’ of github.com:foo/bar
Wrote more tests for mongo
Merge branch "master’ of github.com:foo/bar
Fixed the build
FIGURE 5.3 Git history of a short-lived project with 20 developers showing
many merges (Adapted from http://blog.xebia.com/2010/09/20/git-workflow/)
[The straight lines represent distinct branches and the diagonal lines represent
either forks or merges.]

\

2. Merging two branches can be difficult. Different branches evolve
concurrently, and often developers touch many different parts of the code.
For instance, a few developers might make changes to the version
currently in production in order to fix bugs, shield the version from newly
discovered vulnerabilities, or support urgently required changes. At the
same time, several groups of developers might be working toward a new


http://blog.xebia.com/2010/09/20/git-workflow/

release, each group working on a separate feature branch. Toward the end
of the development cycle, you need to merge all feature branches and
include the changes resulting from maintenance of the previous release.

An alternative to branching is to have all developers working on the trunk
directly. Instead of reintegrating a big branch, a developer deals with integration
issues at each commit, which is a simpler solution, but requires more frequent
action than using branches. Paul Hammant discussed how Google uses this
technique. Development at Google is trunk-based and at full scale: 15,000
developers committing to trunk, with an average of 5,500 submissions per day
and 75 million test cases run per day.

The problem with doing all of the development on one trunk is that a
developer may be working on several different tasks within the same module
simultaneously. When one task is finished, the module cannot be committed
until the other tasks are completed. To do so would introduce incomplete and
untested code for the new feature into the deployment pipeline. Solving this
problem is the rationale for feature toggles.

Feature Toggles

A feature toggle (also called a feature flag or a feature switch) is an “if”
statement around immature code. Listing 5.1 shows an example. A new feature
that is not ready for testing or production is disabled in the source code itself, for
example, by setting a global Boolean variable. Once the feature is ready, the
toggle is flipped and the respective code is enabled. Common practice places the
switches for features into configuration, which is the subject of the next section.
Feature toggling allows you to continuously deliver new releases, which may
include unfinished new features—but these do not impact the application, since
they are still switched off. The switch is toggled in production (i.e., the feature is
turned on) only once the feature is ready to be released and has successfully
passed all necessary tests.

LISTING 5.1 Pseudo-code sample use of feature toggle

If (Feature_Toggle) then
new code
else
old code
end;




We will discuss another use for feature toggles in Chapter 6.

There are, however, certain dangers in feature toggles. Recall the case of
Knight Industries discussed in Chapter 1. The issue that led to a loss of more
than (US) $440 million in about 45 minutes included wrong treatment of a
feature toggle: The name of a toggle from years earlier was reused in the latest
version, but it meant something else in the previous version. Since one of the
production servers was still running the old version when the toggle was
switched on, (US) $440 million was lost. Lesson 1: Do not reuse toggle names.
Lesson 2: Integrate the feature and get rid of the toggle tests as soon as is timely.

When there are many feature toggles, managing them becomes complicated. It
would be useful to have a specialized tool or library that knows about all of the
feature toggles in the system, is aware of their current state, can change their
state, and can eventually remove the feature toggle from your code base.

Configuration Parameters

A configuration parameter is an externally settable variable that changes the
behavior of a system. A configuration setting may be: the language you wish to
expose to the user, the location of a data file, the thread pool size, the color of
the background on the screen, or the feature toggle settings. As you can see, the
list of potential configuration parameters is endless.

For the purposes of this book, we are interested in configuration settings that
either control the relation of the system to its environment or control behavior
related to the stage in the deployment pipeline in which the system is currently
run.

The number of configuration parameters should be kept at a manageable level.
More configuration parameters usually result in complex connections between
them, and the set of compatible settings to several parameters will only be
known to experts in the configuration of the software. While flexibility is an
admirable goal, a configuration that is too complex means you are essentially
creating a specialized programming language. For instance, the SAP Business
Suite had tens of thousands of configuration parameters at one point. While that
flexibility allows many companies to use the software in their environments, it
also implies that only a team of experts can make the right settings.

Nowadays there are good libraries for most programming languages to
provide relatively robust configuration handling. The actions of these libraries
include: checking that values have been specified (or default values are
available) and are in the right format and range, ensuring that URLSs are valid,
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options.

You can split configuration parameters into groups according to usage time,
for example, whether they are considered at build time, deployment, startup, or
runtime. Any important option should be checked before its usage. URLs and
other references to external services should be rechecked during startup to make
sure they are reachable from the current environment.

One decision to make about configuration parameters is whether the values
should be the same in the different steps of the deployment pipeline. If the
production system’s values are different, you must also decide whether they
must be kept confidential. These decisions yield three categories.

1. Values are the same in multiple environments. Feature toggles and
performance-related values (e.g., database connection pool size) should be
the same in performance testing/UAT/staging and production, but may be
different on local developer machines.

2. Values are different depending on the environment. The number of virtual
machines (VMs) running in production is likely bigger than that number
for the testing environments.

3. Values must be kept confidential. The credentials for accessing the
production database or changing the production infrastructure must be kept
confidential and only shared with those who need access to them—no
sizeable organization can take the risk that a development intern walks
away with the customer data.

Keeping values of configuration parameters confidential introduces some
complications to the deployment pipeline. The overall goal is to make these
values be the current ones in production but keep them confidential. One
technique is to give meta-rights to the deployment pipeline and restrict access to
the pipeline. When, for instance, a new VM is deployed into production, the
deployment pipeline can give it rights to access a key store with the credentials
required to operate in production. Another technique is for the deployment
pipeline to set the network configuration in a virtual environment for a machine
such that it gets to access the production database servers, the production
configuration server, and so forth, if the machine is to be part of the production
environment. In this case, only the deployment pipeline should have the right to
create machines in the production portion of the network.

Testing During Development and Pre-commit Tests

Two tvpes of testing processes occur during development. The first is a design



philosophy—test-driven development—and the second is unit testing.

= Test-driven development. When following this philosophy, before writing
the actual code for a piece of functionality, you develop an automated test
for it. Then the functionality is developed, with the goal of fulfilling the
test. Once the test passes, the code can be refactored to meet higher-quality
standards. A virtue of this practice is that happy or sunny day path tests are
created for all of the code.

= Unit tests. Unit tests are code-level tests, each of which is testing
individual classes and methods. The unit test suite should have exhaustive
coverage and run very fast. Typical unit tests check functionality that relies
solely on the code in one class and should not involve interactions with the
file system or the database. A common practice is to write the code in a
way that complicated but required artifacts (such as database connections)
form an input to a class—unit tests can provide mock versions of these
artifacts, which require less overhead and run faster.

While these tests can be run by the developer at any point, a modern practice
is to enforce pre-commit tests. These tests are run automatically before a commit
is executed. Typically they include a relevant set of unit tests, as well as a few
smoke tests. Smoke tests are specific tests that check in a fast (and incomplete)
manner that the overall functionality of the service can still be performed. The
goal is that any bugs that pass unit tests but break the overall system can be
found long before integration testing. Once the pre-commit tests succeed, the
commit is executed.

5.5 Build and Integration Testing

Build is the process of creating an executable artifact from input such as source
code and configuration. As such, it primarily consists of compiling source code
(if you are working with compiled languages) and packaging all files that are
required for execution (e.g., the executables from the code, interpretable files
like HTML, JavaScript, etc.). Once the build is complete, a set of automated
tests are executed that test whether the integration with other parts of the system
uncovers any errors. The unit tests can be repeated here to generate a history
available more broadly than to a single developer.

Build Scripts

The build and integration tests are performed by a continuous integration (CI)
server. The input to this server should be scripts that can be invoked by a single



command. In other words, the only input from an operator or the CI server to
create a build is the command “build”; the rest of the action of the continuous
integration server is controlled by the scripts. This practice ensures that the build
is repeatable and traceable. Repeatability is achieved because the scripts can be
rerun, and traceability is achieved because the scripts can be examined to
determine the origin of the various pieces that were integrated together.

Packaging
The goal of building is to create something suitable for deployment. There are
several standard methods of packaging the elements of a system for deployment.

The appropriate method of packaging will depend on the production
environment. Some packaging options are:

= Runtime-specific packages, such as Java archives, web application
archives, and federal acquisition regulation archives in Java, or .NET
assemblies.

= Operating system packages. If the application is packaged into software
packages of the target OS (such as the Debian or Red Hat package system),
a variety of well-proven tools can be used for deployment.

= VM images can be created from a template image, to include the changes
from the latest revision. Alternatively, a new build can be distributed to
existing VMs. These options are discussed next. At any rate, VM images
can be instantiated for the various environments as needed. One downside
of their use is that they require a compatible hypervisor: VMware images
require a VMware hypervisor; Amazon Web Services can only run
Amazon Machine Images; and so forth. This implies that the test
environments must use the same cloud service. If not, the deployment
needs to be adapted accordingly, which means that the deployment to test
environments does not necessarily test the deployment scripts for
production.

= Lightweight containers are a new phenomenon. Like VM images,
lightweight containers can contain all libraries and other pieces of software
necessary to run the application, while retaining isolation of processes,
rights, files, and so forth. In contrast to VM images, lightweight containers
do not require a hypervisor on the host machine, nor do they contain the
whole operating system, which reduces overhead, load, and size.
Lightweight containers can run on local developer machines, on test
servers owned by the organization, and on public cloud resources—but



they require a compatible operating system. Ideally the same version of the
same operating system should be used, because otherwise, as before, the
test environments do not fully reflect the production environment.

There are two dominant strategies for applying changes in an application
when using VM images or lightweight containers: heavily baked versus lightly
baked images, with a spectrum between the extreme ends. Baking here refers to
the creation of the image. Heavily baked images cannot be changed at runtime.
This concept is also termed immutable servers: Once a VM has been started, no
changes (other than configuration values) are applied to it. If the baking
automatically takes place during the build phase, then the same server image is
used in all subsequent test phases and at production. An image that has passed
all tests gives a strong guarantee: Minus some configuration values, the servers
spun off this image will face the same conditions in production as in testing.
Heavily baked images do not only encapsulate changes to the application, but
also to the installed packages. Whenever changes to the packages are required, a
new image is baked and tested. This increases trust in the image and removes
uncertainty and delay during launch/runtime of new VMs, since no software
updates get in the way of either. Chapter 6 discusses how to roll out new
revisions based on heavily baked images.

Lightly baked images are fairly similar to heavily baked images, with the
exception that certain changes to the instances are allowed at runtime. For
example, it might be overkill to bake a new image, launch new VMs based on it,
and retire all existing VMs every time a PHP-based application changes. In this
case it should be sufficient to stop the web application server, check out the new
PHP code from version control, and restart the web application server. While
doing so may inspire less confidence than heavily baked images, it can be more
efficient in terms of time and money.

The artifact resulting from the build (e.g., a binary executable), which is tested
(and found to be of acceptable quality) should be the one that is deployed into
production. In other words: if your executable code is in a language that needs to
be compiled, like Java, C, etc., do not recompile after the build phase. We have
seen a bug that depended on the version of the compiler being used. The bug
existed in one version of a compiler and was repaired in the next version.
Recompiling during passage through the deployment pipeline introduces the
possibility of changing the behavior of the application as a result of a compiler
bug.

Whatever packaging mechanism is used, the build step in the deployment
pipeline should consist of compiling, packaging or baking an image, and



archiving the build in a build repository.

Continuous Integration and Build Status

Once building is set up as a script callable as a single command, continuous
integration can be done as follows:

= The CI server gets notified of new commits or checks periodically for
them.

= When a new commit is detected, the CI server retrieves it.
= The CI server runs the build scripts.

« If the build is successful, the CI server runs the automated tests—as
described previously and in the next section.

= The CI server provides results from its activities to the development team
(e.g., via an internal web page or e-mail).

An important concept in CI is called breaking the build. A commit is said to
break the build if the compilation/build procedure fails, or if the automatic tests
that are triggered by it violate a defined range of acceptable values for some
metrics. For instance, forgetting to add a new file in a commit but changing other
files that assume the presence of a new file will break the build. Tests can be
roughly categorized into critical (a single failure of a test would result in
breaking the build) and less critical (only a percentage of failed tests larger than
a set threshold would result in breaking the build).

All metrics can be summarized into a binary result: Is your build good
(enough)? (i.e., a nonbroken or green build); or is your build not good (enough)?
(i.e., a broken or red build).

Breaking the build means that other team members on the same branch can
also not build. Thus, continuous integration testing is effectively shut down for
much of the team. Fixing the build becomes a high-priority item. Some teams
have an “I broke the build” hat that a team member must wear until the build is
fixed as a means of emphasizing the importance of not breaking the build.

Test status can be shown in a variety of ways. Some teams use electronic
widgets (such as lava lamps), or have big, visible monitors showing red/green
lights for each component. Other teams use desktop notifications, particularly
when they are located at a client’s site, where the client might get nervous if a
big red light shows up.

Finally, if your project is split into multiple components, these components
can be built separately. In version control, they may be kept as one source code



project or as several. In either case, the components can be built separately into
distinct executables (e.g., separate JARs in Java). If that is the case, it makes
sense to have a dedicated build step that combines all components into one
package. This adds flexibility in the deployment pipeline (e.g., in how to
distribute the components). It also enables decentralized building: The CI server
can distribute build jobs to several machines, such as idle developer machines.
However, one challenge of building components separately is to ensure that only
compatible versions of the components are deployed. These and related
considerations will be discussed in Chapter 6.

Integration Testing

Integration testing is the step in which the built executable artifact is tested. The
environment includes connections to external services, such as a surrogate
database. Including other services requires mechanisms to distinguish between
production and test requests, so that running a test does not trigger any actual
transactions, such as production, shipment, or payment. This distinction can be
achieved by providing mock services, by using a test version provided by the
owner of the service, or—if dealing with test-aware components—by marking
test messages as such by using mechanisms built into the protocol used to
communicate with that service. If mock versions of services are used, it is good
practice to separate the test network from the real services (e.g., by firewall
rules) to make absolutely sure no actual requests are sent by running the tests.
Much worse than breaking the build is affecting the production database during
test. We return to this topic when we discuss incidents in Section 5.8.

As with all of the tests we discussed, integration tests are executed by a test
harness, and the results of the tests are recorded and reported.

5.6 UAT/Staging/Performance Testing

Staging is the last step of the deployment pipeline prior to deploying the system
into production. The staging environment mirrors, as much as possible, the
production environment. The types of tests that occur at this step are the
following:

= User acceptance tests (UATSs) are tests where prospective users work with
a current revision of the system through its UI and test it, either according
to a test script or in an exploratory fashion. This is done in the UAT
environment, which closely mirrors production but still uses test or mock
versions of external services. Furthermore, some confidential data may be



removed or replaced in the UAT environment, where test users or UAT
operators do not have sufficient levels of authorization. UATSs are valuable
for aspects that are hard or impossible to automate, such as consistent look
and feel, usability, or exploratory testing.

Automated acceptance tests are the automated version of repetitive UATS.
Such tests control the application through the UlI, trying to closely mirror
what a human user would do. Automation takes some load off the UATsSs,
while ensuring that the interaction is done in exactly the same way each
time. As such, automated acceptance tests enable a higher rate of repetition
than is possible with relatively expensive human testers, at odd times of
the day or night. Due to the relatively high effort to automate acceptance
tests, they are often done only for the most important checks, which need
to be executed repetitively and are unlikely to require a lot of maintenance.
Typically these tests are specified in and executed by specialized test
suites, which should not trip over minor changes in the UI, such as moving
a button a few pixels to the right. Automated acceptance tests are relatively
slow to execute and require proper setup.

Smoke tests, mentioned earlier, are a subset of the automated acceptance
tests that are used to quickly analyze if a new commit breaks some of the
core functions of the application. The name is believed to have originated
in plumbing: A closed system of pipes is filled with smoke, and if there are
any leaks, it is easy to detect them. One rule of thumb is to have a smoke
test for every user story, following the happy path in it. Smoke tests should
be implemented to run relatively fast, so that they can be run even as part
of the pre-commit tests.

Nonfunctional tests test aspects such as performance, security, capacity,
and availability. Proper performance testing requires a suitable setup, using
resources comparable to production and very similar every time the tests
are run. This ensures that changes from the application, not background
noise, are measured. As with the setup of other environments,
virtualization and cloud technology make things easier. However,
especially when it comes to public cloud resources, one needs to be careful
in that regard because public clouds often exhibit performance variability.

5.7 Production

Deploying a system to production does not mean that observing its behavior or
running tests is completed. We discuss early release testing, error detection, and
live testing.



Early Release Testing

There are several forms of early release testing. Chapter 6 discusses how to
release the application to achieve early release testing; here we focus on the
testing method.

= The most traditional approach is a beta release: A selected few users, often
subscribed to a beta program, are given access to a prerelease (beta)
version of the application. Beta testing is primarily used for on-premises
use of software.

= Canary testing is a method of deploying the new version to a few servers
first, to see how they perform. It is the cloud equivalent of beta testing.
Analogous to using canary birds in underground coal mining, where
distress signals from the birds indicated the presence of toxic gases, these
first few servers are monitored closely to detect undesired effects from the
upgrade. One (or a few) of the application servers are upgraded from the
current version to a stable and well-tested release candidate version of the
application. Load balancers direct a small portion of the user requests to
the candidate version, while monitoring is ongoing. If the candidate servers
are acceptable in terms of some metrics (e.g., performance, scalability,
number of errors, etc.) the candidate version is rolled out to all servers.

= A/B testing is similar to canary testing, except that the tests are intended to
determine which version performs better in terms of certain business-level
key performance indicators. For example, a new algorithm for
recommending products may increase revenue, or Ul changes may lead to
more click-throughs.

Error Detection

Even systems that have passed all of their tests may still have errors. These
errors can be either functional or nonfunctional. Techniques used to determine
nonfunctional errors include monitoring of the system for indications of poor
behavior. This can consist of monitoring the timing of the response to user
requests, the queue lengths, and so forth. Netflix reports they have 95 different
metrics that they monitor and compare with historical data. Deviations from the
historical data trigger alerts to the operator, the developers, or both.

Once an alert has been raised, tracking and finding its source can be quite
difficult. Logs produced by the system are important in enabling this tracking.
We discuss this in Chapter 7, but for the purposes of this chapter, it is important



that the provenance of the software causing the alert and the user requests that
triggered the alert all can be easily obtained. Enabling the diagnosis of errors is
one of the reasons for the emphasis on using automated tools that maintain
histories of their activities.

In any case, once the error is diagnosed and repaired, the cause of the error
can be made one of the regression tests for future releases.

Live Testing

Monitoring is a passive form of testing. That is, the systems run in their normal
fashion and data is gathered about their behavior and performance. Another form
of testing after the system has been placed in production is to actually perturb the
running system. This form is called live testing. Netflix has a set of test tools
called the Simian Army. The elements of the Simian Army are both passive and
active. The passive elements examine running instances to determine unused
resources, expired certificates, health checks on instances, and adherence to best
practices.

The active elements of the Simian Army inject particular types of errors into
the production system. For example, the Chaos Monkey kills active VMs at
random. Recall in Chapter 2 that we discussed the fact that failure is common in
the cloud. If a physical server fails then all of the VMs hosted on that machine
abruptly terminate. Consequently, applications should be resilient to that type of
failure. The Chaos Monkey simulates that type of failure. An instance is killed,
and overall metrics such as response time are monitored to ensure that the
system is not affected by that failure. Of course, you would not want to kill too
many instances at once.

Another active element of the Simian Army is the Latency Monkey. The
Latency Monkey injects delays into messages. Networks become busy and are
unexpectedly slow. The Latency Monkey simulates slow networks by artificially
delaying messages from one service to another. As with the Chaos Monkey, this
testing is done carefully to avoid impacting customers.

5.8 Incidents

No matter how well you test or organize a deployment, errors will exist once a
system gets into production. Understanding potential causes of post-deployment
errors helps to more quickly diagnose problems. We do not have a taxonomy or
relative frequency of various types of post-deployment errors. What we have
instead are several anecdotes we have heard from IT professionals.



= A developer connected test code to a production database. We have heard
this example multiple times. One time it was an inexperienced developer,
and another time it was a developer who opened an SSH through a tunnel
into the production environment.

= Version dependencies existing among the components. When
dependencies exist among components, the order of deployment becomes
important and it is possible if the order is incorrect that errors will result.
In Chapter 6, we discuss the use of feature toggles to avoid this problem.

= A change in a dependent system coincided with a deployment. For
instance, a dependent system removed a service on which an application
depended, and this removal happened after all of the staging tests had been
passed. The discussion about “baking” in this chapter relates to this
problem. If the dependent system had been baked into an image then
subsequent changes to it would not have been incorporated. If the
dependent system is external to the image then the characteristics of
building an executable image will not affect the occurrence of this error.

= Parameters for dependent systems were set incorrectly. That is, queues
overflowed or resources were exhausted in dependent systems. Adjusting
the configurations for the dependent systems and adding monitoring rules
were the fixes adopted by the affected organization.

5.9 Summary

Having an appropriate deployment pipeline is essential for rapidly creating and
deploying systems. The pipeline has at least five major steps—pre-commit, build
and integration testing, UAT/staging/performance tests, production, and
promoting to normal production.

Each step operates within a different environment and with a set of different
configuration parameter values—although this set should be limited in size as
much as possible. As the system moves through the pipeline, you can have
progressively more confidence in its correctness. Even systems promoted to
normal production, however, can have errors and can be improved from the
perspective of performance or reliability. Live testing is a mechanism to
continue to test even after placing a system in production or promoting it to
normal production.

Feature toggles are used to make code inaccessible during production. They
allow incomplete code to be contained in a committed module. They should be
removed when no longer necessary because otherwise they clutter the code base;



also, repurposed feature toggles can cause errors.

Tests should be automated, run by a test harness, and report results back to the
development team and other interested parties. Many incidents after placing a
system in production are caused by either developer or configuration errors.

An architect involved in a DevOps project should ensure the following:

= The various tools and environments are set up to enable their activities to
be traceable and repeatable.

= Configuration parameters should be organized based on whether they will
change for different environments and on their confidentiality.

= Each step in the deployment pipeline has a collection of automated tests
with an appropriate test harness.

= Feature toggles are removed when the code they toggle has been placed
into production and been judged to be successfully deployed.

5.10 For Further Reading

For a more detailed discussion of many of the issues covered in the chapter, see
the book: Continuous Delivery: Reliable Software Releases through Build, Test,
and Deployment Automation [Humble 10].

Carl Caum discusses the difference between continuous delivery and
continuous deployment in his blog [Puppet Labs 13].
Much of the basic conceptual information in this chapter comes from
Wikipedia.
= Revision control systems are discussed in general at

http://en.wikipedia.org/wiki/Revision control. Specific systems such as
Git have their own entries.

= Test harnesses are discussed in http://en.wikipedia.org/wiki/Test_harness

= Regression testing is discussed in

http://en.wikipedia.org/wiki/Regression_testing
= Different types of types of environments (or server tiers) are listed in
http://en.wikipedia.org/wiki/Development environment

Paul Hammant discusses branch versus trunk-based approaches in [DZone
13].

The argument between heavily baked and lightly baked images can be
sampled at [Gillard-Moss 13]

The topic of performance variation in public clouds has been investigated in



http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/Test_harness
http://en.wikipedia.org/wiki/Regression_testing
http://en.wikipedia.org/wiki/Development_environment

several scientific publications, such as “Runtime Measurements in the Cloud:
Observing, Analyzing, and Reducing Variance” [Schad 10].

The Simian Army is defined and discussed in [Netflix 15].



6. Deployment

Error Code 725: It works on my machine.
—RFC for HTTP Status Code 7XX: Developer Errors

6.1 Introduction

Deployment is the process of placing a version of a service into production. The
initial deployment of a service can be viewed as going from no version of the
service to the initial version of the service. Because an initial deployment
happens only once for most systems and new versions happen frequently, we
discuss upgrading a service in this chapter. If it is the initial version then some of
the issues we discuss (such as downtime of the currently deployed version) are
not relevant. The overall goal of a deployment is to place an upgraded version of
the service into production with minimal impact to the users of the system, be it
through failures or downtime.

There are three reasons for changing a service—to fix an error, to improve
some quality of the service, or to add a new feature. For simplicity in our initial
discussion, we assume that deployment is an all-or-nothing process—at the end
of the deployment either all of the virtual machines (VMs) running a service
have had the upgraded version deployed or none of them have. Later in this
chapter, we see that there are places for partial deployments, but we defer this
discussion for now.

Figure 6.1 shows the situation with which we are concerned. This is a
refinement of Figure 4.1 where microservice 3 is being upgraded (shown in dark
gray). Microservice 3 depends on microservices 4 and 5, and microservices 1
and 2 (i.e., clients of microservice 3) depend on it. For now, we assume that any
VM runs exactly one service. This assumption allows us to focus on services—
their design and their relationships—and to equate deployment of services with
deployment of VMs. We discuss other options later in this chapter.
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Figure 6.1 also shows the multiple VMs on which the service is running. The
number of VMs for a particular service depends on the workload experienced by
that service and may grow into the hundreds or even thousands for VMs that
must provide for many clients. Each active VM has a single version of the
service being deployed, but not all VMs may be executing the same version.

The goal of a deployment is to move from the current state that has N VMs of
the old version, A, of a service executing, to a new state where there are N VMs
of the new version, B, of the same service in execution.

6.2 Strategies for Managing a Deployment

There are two popular strategies for managing a deployment—blue/green
deployment and rolling upgrade. They differ in terms of costs and complexity.
The cost may include both that of the VM and the licensing of the software
running inside the VM. Before we discuss these strategies in more detail, we



need to make the following two assumptions:

1. Service to the clients should be maintained while the new version is being
deployed. Maintaining service to the clients with no downtime is essential
for many Internet e-commerce businesses. Their customers span the globe
and expect to be able to transact business around the clock. Certainly,
some periods of a day are going to be busier than others, but service must
be available at all times. Organizations that have customers primarily
localized in one geographic area can afford scheduled downtime—but why
have downtime if it is avoidable? Scheduled off-hours during downtime
requires system administrators and operators to work in the off-hours. This
is another reason to avoid downtime.

2. Any development team should be able to deploy a new version of their
service at any time without coordinating with other teams. This may
certainly have an impact on client services developed by other teams. We
have previously discussed the relationship between synchronous
coordination of development teams and the time to release new features.
Allowing a development team or individual developer to release a new
version of their service without coordinating with teams developing client
services removes one cause for synchronous coordination. It may,
however, cause logical problems, which we discuss in Section 6.3.

In addition, the placement of a new VM with a version into production takes
time. In order to place an upgraded VM of a service into production, the new
version must be loaded onto a VM and be initialized and integrated into the
environment, sometimes with dependency on placements of some other services
first. This can take on the order of minutes. Consequently, depending on how
parallel some actions can be and their impact on the system still serving clients,
the upgrade of hundreds or thousands of VMs can take hours or, in extreme
cases, even days.

Blue/Green Deployment

A blue/green deployment (sometimes called big flip or red/black deployment)
consists of maintaining the N VMs containing version A in service while
provisioning N VMs of virtual machines containing version B. Once N VMs
have been provisioned with version B and are ready to service requests, then
client requests can be routed to version B. This is a matter of instructing the
domain name server (DNS) or load balancer to change the routing of messages.
This routing switch can be done in a single stroke for all requests. After a



supervisory period, the N VMs provisioned with version A are removed from the
system. If anything goes wrong during the supervisory period, the routing is
switched back, so that the requests go to the VMs running version A again. This
strategy is conceptually simple, but expensive in terms of both VM and software
licensing costs. Long-running requests and stateful data during the switch-over
and rollback require special care.

The provisioning of the N VMs containing version B prior to terminating all
version A VMs is the source of the cost. First, the new VMs must all be
provisioned. The provisioning can be done in parallel, but the total time for
provisioning hundreds of VMs can still be time-consuming. There will be an
additional N VMs allocated beyond what is necessary to provide service to
clients for the duration of the whole process, including initial provisioning of
version B and the supervisory time after fully switching to version B. For this
period of time, therefore, the VM-based cost doubles.

A variation of this model is to do the traffic switching gradually. A small
percentage of requests are first routed to version B, effectively conducting a
canary test. We mentioned canary testing in Chapter 5 and discuss it in more
detail in the section “Canary Testing.” If everything goes well for a while, more
version B VMs can be provisioned and more requests can be routed to this pool
of VMs, until all requests are routed to version B. This increases confidence in
your deployment, but also introduces a number of consistency issues. We
discuss these issues in Section 6.3.

Rolling Upgrade

A rolling upgrade consists of deploying a small number of version B VMs at a
time directly to the current production environment, while switching off the
same number of VMs running version A. Let us say we deploy one version B
VM at a time. Once an additional version B VM has been deployed and is
receiving requests, one version A VM is removed from the system. Repeating
this process N times results in a complete deployment of version B. This strategy
is inexpensive but more complicated. It may cost a small number of additional
VMs for the duration of the deployment, but again introduces a number of issues
of consistency and more risks in disturbing the current production environment.

Figure 6.2 provides a representation of a rolling upgrade within the Amazon
cloud. Each VM (containing exactly one service for the moment) is
decommissioned (removed, deregistered from the elastic load balancer (ELB),
and terminated) and then a new VM is started and registered with the ELB. This



process continues until all of the VMs containing version A have been replaced
with VMs containing version B. The additional cost of a rolling upgrade can be
low if you conduct your rolling upgrade when your VMs are not fully utilized,
and your killing of one or a small number of VMs at a time still maintains your
expected service level. It may cost a bit if you add a small number of VMs
before you start the rolling upgrade to mitigate the performance impact and risk
of your rolling upgrade.
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FIGURE 6.2 Representation of a rolling upgrade [Notation: BPMN]

During a rolling upgrade, one subset of the VMs is providing service with
version A, and the remainder of the VMs are providing service with version B.
This creates the possibility of failures as a result of mixed versions. We discuss
this type of failure in the next section.

6.3 Logical Consistency

Assuming that the deployment is done using a rolling upgrade introduces one
type of logical inconsistency—multiple versions of the same service will be
simultaneously active. This may also happen with those variants of the
blue/green deployment that put new versions into service prior to the completion
of the deployment.

Revisiting Figure 6.1 and assuming that a service is being deployed without
synchronous coordination with its client or dependent services, we can see a
second possible source of logical inconsistency—inconsistency in functionality
between a service and its clients.

A third source of logical inconsistency is inconsistency between a service and
data kept in a database.

We now discuss these three types of inconsistencies.

Multiple Versions of the Same Service Simultaneously
Active

Figure 6.3 shows an instance of an inconsistency because of two active versions
of the same service. Two components are shown—the client and two versions
(versions A and B) of a service. The client sends a message that is routed to
version B. Version B performs its actions and returns some state to the client.
The client then includes that state in its next request to the service. The second
request is routed to version A, and this version does not know what to make of
the state, because the state assumes version B. Therefore, an error occurs. This
problem is called a mixed-version race condition.
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Several different techniques exist to prevent this situation.

= Make the client version aware so that it knows that its initial request was
serviced by a version B VM. Then it can require its second request to be
serviced by a version B VM. In Chapter 4, we described how a service is
registered with a registry/load balancer. This registration can contain the
version number. The client can then request a specific version of the
service. Response messages from the service should contain a tag so that
the client is aware of the version of the service with which it has just
interacted.

= Toggle the new features contained in version B and the client so that only
one version is offering the service at any given time. More details are
given below.

= Make the services forward and backward compatible, and enable the
clients to recognize when a particular request has not been satisfied. Again,
more details are given below.

These options are not mutually exclusive. That is, you can use feature toggles
within a backward compatible setting. Suppose for example, you make a major
reorganization of a service and add new features to it. Within a rolling upgrade
you will have installed some VMs of the new version with its reorganization

while still not having activated the new features. This requires the new version to
he harkward comnatihle
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We begin by discussing feature toggling. Feature toggling was introduced in
Chapter 5 as a means for deploying partially completed code without it
impacting the testing process. Here we use the same mechanism for activating
new capabilities in an upgrade.

Feature Toggling

If services are developed by a single small team, the features of the services will
be limited. This means that features are likely to span multiple services. In turn,
this means that you must coordinate the activation of the feature in two
directions. First, all of the VMs for the service you just deployed must have the
service’s portion of the feature activated. And second, all of the services
involved in implementing the feature must have their portion of the feature
activated.

Feature toggles, as described in Chapter 5, can be used to control whether a
feature is activated. A feature toggle, to repeat, is a piece of code within an if
statement where the if condition is based on an externally settable feature
variable. Using this technique means that the problems associated with
activating a feature are (a) determining that all services involved in
implementing a feature have been sufficiently upgraded and (b) activating the
feature in all of the VMs of these services at the same time.

Both of these problems are examples of synchronizing across the elements of
a distributed system. The primary modern methods for performing such
synchronization are based on the Paxos or ZAB algorithms. These algorithms are
difficult to implement correctly. However, standard implementations are
available in systems such as ZooKeeper, which are not difficult to use.

Let us look at how this works from the service’s perspective. For simplicity of
description, we assume the service being deployed implements a portion of a
single feature, Feature X. When a VM of the service is deployed, it registers
itself as being interested in FeatureXActivationFlag. If the flag is false, then the
feature is toggled off; if the flag is true, the feature is toggled on. If the state of
the FeatureXActivationFlag changes, then the VM is informed of this and reacts
accordingly.

An agent external to any of the services in the system being upgraded is
responsible for setting FeatureXActivationFlag. This agent can be a human
gatekeeper, or it can be automated. The flag is maintained in ZooKeeper and
thus kept consistent across the VMs involved. As long as all of the VMs are
informed simultaneously of the toggling, then the feature is activated



simultaneously and there is no version inconsistency that could lead to failures.
The simultaneous information broadcast is performed by ZooKeeper. This
particular use of ZooKeeper for feature toggling is often implemented in other
tools. For example, Netflix’s Archaius tool provides configuration management
for distributed systems. The configuration being managed can be feature toggles
or any other property.

The agent is aware of the various services implementing Feature X and does
not activate the feature until all of these services have been upgraded. Thus,
there is no requirement that the services involved be upgraded in any particular
order or even in temporal proximity to each other. It could be a matter of days or
even weeks before all of the services involved have been modified to implement
Feature X.

One complication comes from deciding when the VMs have been “sufficiently
upgraded.” VMs may fail or become unavailable. Waiting for these VMs to be
upgraded before activating the feature is not desirable. The use of a registry/load
balancer as described in Chapter 4 enables the activation agent to avoid these
problems. Recall that each VM must renew its registration periodically to
indicate that it is still active. The activation agent examines the relevant VMs
that are registered to determine when all VMs of the relevant services have been
upgraded to the appropriate versions.

Backward and Forward Compatibility

Using feature toggles to coordinate the various services involved in a new
feature is one option for preventing failures as a result of multiple versions.
Another option is to ensure forward and backward compatibility of services.

= A service is backward compatible if the new version of the service behaves
as the old version. For requests that are known to the old version of a
service, the new version provides the same behavior. In other words, the
external interfaces provided by version B of a service are a superset of the
external interfaces provided by version A of that service.

= Forward compatibility means that a client deals gracefully with error
responses indicating an incorrect method call. Suppose a client wishes to
utilize a method that will be available in version B of a service but the
method is not present in version A. Then if the service returns an error
code indicating it does not recognize the method call, the client can infer
that it has reached version A of the service.

Requiring backward compatibility might seem at first to preclude many



changes to a service. If you cannot change an interface, how can you add new
features or, for example, refactor your service? In fact, maintaining backward
compatibility can be done using the pattern depicted in Figure 6.4.
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FIGURE 6.4 Maintaining backward compatibility for service interfaces
[Notation: Architecture]

The service being upgraded makes a distinction between internal and external
interfaces. External interfaces include all of the existing interfaces from prior
versions as well as, possibly, new ones added with this version. Internal
interfaces can be restructured with every version. In-between the external
interfaces and the internal interfaces is a translation layer that maps the old
interfaces to the new ones. As far as a client is concerned, the old interfaces are
still available for the new version. If a client wishes to use a new feature, then a
new interface is available for that feature.

One consequence of using this pattern is that obsolete interfaces may be
maintained beyond the point where any clients use them. Determining which
clients use which interfaces can be done through monitoring and recording all
service invocations. Once there are no usages for a sufficiently long time, the
interface can be deprecated. The deprecating of an interface may result in
additional maintenance work, so it should not be done lightly.

Forward and backward compatibility allows for independent upgrade for
services under your control. Not all services will be under your control. In
particular, third-party services, libraries, or legacy services may not be backward
compatible. In this case, there are several techniques you can use, although none
of them are foolproof.

= Discovery. In Chapter 4, we described how services register so that clients
can find them. This registration should involve the version number of the
service. The clients can request that they be connected to particular
versions of services or versions satisfying some constraint. If no existing



service satisfies the constraint then the client either executes a fall-back
action or reports failure. This requires the client to be aware of the version
of the service that they require and that the service conforms to the
architecture by registering its version number. There is an ongoing
discussion in the standards community as to whether version numbers
should be included as a portion of service interfaces.

Exploration. Discovery assumes that a service registers with a registry.
Libraries and many third-party software systems do not perform such a
registration. In this case, using introspection on the library or third-party
system enables the client to determine the version number. Introspection
requires that the library or third-party software makes their version number
accessible at runtime, either through an interface or through other
mechanisms such as recording the version number on a file. Introspection
also assumes that the client is aware of the version of the service that it
requires.

Portability layer. Figure 6.5 shows the concept of a portability layer. A
portability layer provides a single interface that can be translated into the
interfaces for a variety of similar systems. This technique has been used to
port applications to different operating systems, to allow multiple different
devices to look identical from the application perspective, or to allow for
the substitution of different database systems. In Chapter 4, we identified
the requirement that interactions with external systems from a component
be localized into a single module. This module acts as a portability layer.
One requirement is that the interface defined for the portability layer be
adequate to manage all versions of the external system. Two variants of
this pattern exist depending on whether the two versions of the external
system need to coexist. If the two versions need to coexist, the portability
layer must decide at runtime which version of the external system to use
and the service must provide some basis to allow the portability layer to
choose. Managing devices with different protocols falls into this category.
If the two versions do not need to coexist, then the decision can be made at
build time and the correct version of the portability layer can be
incorporated into the service. Figure 6.5 shows the two versions
coexisting.
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Compatibility with Data Kept in a Database

In addition to maintaining compatibility among the various services, some
services must also be able to read and write to a database in a consistent fashion.
Suppose, for example, that the data schema changes: In the old version of the
schema, there is one field for customer address; in the new version, the address
is broken into street, city, postal code, and country. Inconsistency, in this case,
might mean that a service intends to write the address as a single field using the
schema that has the address broken into portions. Inconsistencies are triggered
by a change in the database schema. Note that a schema can be either explicit
such as in relational database management systems (RDBMSs) or implicit such
as in various NoSQL database management systems.

The most basic solution to such a schema change is not to modify existing
fields but only to add new fields or tables, which can be done without affecting
existing code. The use of the new fields or tables can be integrated into the
application incrementally. One method for accomplishing this is to treat new
fields or tables as new features in a release. That is, either the use of the new
field or table is under the control of a feature toggle or the services are forward
and backward compatible with respect to database fields and tables.

If, however, a change to the schema is absolutely required you have two
options:
1. Convert the persistent data from the old schema to the new one.

2. Convert data into the appropriate form during reads and writes. This could
be done either by the service or by the database management system.

These options are not mutually exclusive. You might perform the conversion
in the background and convert data on the fly while the conversion is ongoing.
Modern RDBMSs provide the ability to reorganize data from one schema to



another online while satisfying requests—although at a storage and performance
cost. See Sockut and Iyer cited in Section 6.10 for a discussion of the issues and
the techniques used. NoSQL database systems typically do not provide this
capability, and so, if you use them, you have to engineer a solution for your
particular situation.

6.4 Packaging

We now turn from consistency of services during runtime to consistency of the
build process in terms of getting the latest versions into the services. Deciding
that components package services and that each service is packaged as exactly
one component, as we discussed in Chapter 4, does not end your packaging
decisions. You must decide on the binding time among components residing on
the same VM and a strategy for placing services into VMs. Packaging
components onto a VM image is called baking and the options range from lightly
baked to heavily baked. We discussed these options in Chapter 5. What we add
to that discussion here is the number of processes loaded into each VM.

A VM is an image that is running on top of a hypervisor that enables sharing a
single bare metal processor, memory, and network among multiple tenants or
VMs. The image of the VM is loaded onto the hypervisor from which it is
scheduled.

A VM image could include multiple independent processes—each a service.
The question then is: Should multiple services be placed in a single VM image?
Figure 6.6 shows two options. In the top option, a developer commits a service
for deployment, which is embedded into a single VM image. For example,
Netflix claims they package one service per VM. In the bottom option, different
developers commit different services into a single VM image. The emergence of
lightweight containers often assumes one service per container, but with the
possibility to have multiple containers per VM.
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One difference in these two options is the number of times that a VM image
must be baked. If there is one service per VM, then that VM image is created
when a change in its service is committed. If there are two services per VM, then
the VM image must be rebaked whenever a change to either the first or second
service is committed. This difference is minor.

A more important difference occurs when service 1 sends a message to service
2. If the two are in the same VM, then the message does not need to leave the
VM to be delivered. If they are in different VMs, then more handling and,
potentially, network communication are involved. Hence, the latency for
messages will be higher when each service is packaged into a single VM.

On the other hand, packaging multiple services into the same VM image
opens up the possibility of deployment race conditions. The race conditions arise
because different development teams do not coordinate over their deployment
schedules. This means that they may be deploying their upgrades at (roughly)
the same time. Our examples below assume the upgraded services are included
in the deployed portion of the VM (heavily baked) and not loaded later by the
deployed software.

We see one possibility in Figure 6.7. Development team 1 creates a new
image with a new version (v,,) of service 1 (§1) and an old version of service 2

(S2). Development team 2 creates a new image with an old version of service 1



and a new version (v,,) of service 2. The provisioning processes of the two

teams overlap, which causes a deployment race condition. We see another
version of the same problem in Figure 6.8. In this example, development team 1
builds their image after development team 2 has committed their changes. The
result is similar in that the final version that is deployed does not have the latest
version of both service 1 and service 2.
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FIGURE 6.7 One type of race condition when two development teams deploy
independently [Notation: UML Sequence Diagram]
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FIGURE 6.8 A different type of race condition when two development teams
deploy independently [Notation: UML Sequence Diagram]

The tradeoff for including multiple services into the same VM is between
reduced latency and the possibility of deployment race conditions.

6.5 Deploying to Multiple Environments

You may wish to deploy some of your services to one environment such as
VMware and other services to a different environment such as Amazon EC2. As
long as services are independent and communicate only through messages, such
a deployment is possible basically with the design we have presented. The
registry/load balancer that we discussed in Chapter 4 needs to be able to direct
messages to different environments.

There will also be a performance penalty for messages sent across
environments. The amount of this penalty needs to be determined experimentally
so that the overall penalty is within acceptable limits.



Business Continuity

In Chapter 2, we briefly discussed the need for and the concepts associated with
business continuity. Recall that business continuity is the ability for a business to
maintain service when facing a disaster or serious outages. Now we can begin to
see how business continuity is achieved. Fundamentally, it is achieved by
deploying to sites that are physically and logically separated from each other.
We differentiate between deploying to a public cloud and a private cloud,
although the essential element, the management of state, is the same. We discuss
more about disaster recovery in Chapter 10 and in the case study in Chapter 11.

Public Cloud

Public clouds are extremely reliable in the aggregate. They consist of hundreds
of thousands of physical servers and provide extensive replication and failover
services. Failures, however, do occur. These failures can be to particular VMs of
your system or to other cloud services.

= A failure to a VM is not a rare occurrence. Cloud providers achieve
economies of scale partially by purchasing commodity hardware. Any
element of the hardware can fail—memory, disk, motherboard, network, or
CPU. Failures may be total or partial. A partial failure in the underlying
hardware can make your VM run slowly although it is still executing. In
either case, you must architect your system to detect VM failures and
respond to them. This is outside the scope of this chapter.

= A failure to the cloud infrastructure is a rare but not impossible occurrence.
A quick search on “public cloud outages” can give you information about
the latest high-profile outages that have occurred. Other outages are lower-
profile but do still occur. You can survive many outages by choosing how
you deploy your VMs.

Amazon EC2 has multiple regions (nine as of this writing) scattered around
the globe. Each region has multiple availability zones. Each availability zone is
housed in a location that is physically distinct from other availability zones and
that has its own power supply, physical security, and so forth. If you deploy
VMs of your system to different availability zones within the same region, you
have some measure of protection against a cloud outage. If you deploy VMs of
your system to different regions, then you have much more protection against
outages, since some of the services such as elastic load balancing are per-region.
Two considerations that you must keep in mind when you deploy to different
availability zones or regions are state management and latency.



1. State management. Making services stateless has several advantages, as
discussed, for example, in Chapter 4. If a service is stateless then
additional VMs can be created at any time to handle increased workload.
Additional VMs can also be created in the event of a VM failure. With
appropriate infrastructure, the creation or deletion of VMs of a stateless
service is transparent to the client. The disadvantages of stateless services
are that state must be maintained somewhere in the system and latency
may increase when the service needs to obtain or change this state. One
consequence of increased latency is that services may cache state locally.
This means that you may be required to purge the cache in certain
circumstances. Small amounts of state can be maintained in various
services such as Memcached, which is designed for caching (as indicated
by the name). Large amounts of state should be maintained in a persistent
repository. Deploying to different availability zones or regions requires
that your persistent repositories be kept consistent. MRDMSs can be
configured to provide this service automatically. Some of the NoSQL
database systems also provide replication across multiple VMs of the
repository. Public cloud providers typically offer specific services for this
purpose, although in the case of Amazon, the replication between Amazon
RDS replicas is only offered across availability zones.

One problem with making services stateless is that the service may be
provided by third-party software that does maintain state, is outside of your
control, and does not provide replication services. Migrating from such
software to a different supplier is one of the tradeoffs that you must
consider when making your business continuity plans.

2. Latency. Sending messages from one availability zone to another adds a
bit of latency; messages sent from one region to another adds more latency
to your system. One set of measurements puts the additional latency at
1.35ms across availability zones within the EU region and 231ms between
the EU and the eastern United States. The additional latency is another one
of the tradeoffs that you must consider with respect to business continuity.

Private Cloud

Many organizations may be required or may decide to maintain private
datacenters rather than utilizing the public cloud. These datacenters are located
in distinct physical locations, for example, ~100 miles apart, and with a high-
speed link between them. We have seen many organizations with two
datacenters but none with three. Having three datacenters adds 50% to the cost
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usually judged to be highly unlikely. This is a risk management decision a
particular organization must make.

From a software architectural perspective, the only difference between using
two datacenters and two availability zones in the public cloud is the choice of
hardware within the datacenter. In the public cloud, you can specify which sort
of (virtual) hardware you wish to have allocated. In the private cloud, a solution
to the problem of disparate hardware is to make the hardware identical across
both datacenters. Then services can be deployed into either datacenter without
making the services or the deployment tools aware of the datacenter.
Virtualization provides some measure of hardware independence, but hardware
features such as the number of physical cores or the use of blades impact the
operating system and the performance. If the two datacenters have hardware
features that impact the operating system and these features are visible to VMs,
then a VM cannot be directly moved from one environment to another. If
performance is impacted by the differing hardware, the deployment tools need to
cater to that, for example, by provisioning 50% more virtual machines per
service in the second datacenter, because the machines are slower by that much.

A further advantage of having two identical datacenters is that one can be
used for pre-production testing during periods when the expected load on that
datacenter is low.

6.6 Partial Deployment

Up to this point, our discussion has been focused on all-or-nothing deployments.
Now we discuss two types of partial deployments—canary testing and A/B
testing. We introduced these briefly in Chapter 5; here we elaborate on how to
achieve these types of partial deployments.

Canary Testing

A new version is deployed into production after having been tested in a staging
environment, which is as close to a production environment as possible. There is
still a possibility of errors existing in the new version, however. These errors can
be either functional or have a quality impact. Performing an additional step of
testing in a real production environment is the purpose of canary testing. A
canary test is conceptually similar to a beta test in the shrink-wrapped software
world.

One question is to whom to expose the canary servers. This can be a random
sample of users. An alternative is to decide the question based on the



organization a user belongs to, for example, the employees of the developing
organization, or particular customers. The question could also be answered based
on geography, for example, such that all requests that are routed to a particular
datacenter are served by canary versions.

The mechanism for performing the canary tests depends on whether features
are activated with feature toggles or whether services are assumed to be forward
or backward compatible. In either case, a new feature cannot be fully tested in
production until all of the services involved in delivering the feature have been
partially deployed.

Messages can be routed to the canaries by making the registry/load balancer
canary-aware and having it route messages from the designated testers to the
canary versions. More and more messages can be routed until a desired level of
performance has been exhibited.

If new features are under the control of feature toggles, then turning on the
toggle for the features on the canary versions activates these features and enables
the tests to proceed.

If the services use forward and backward compatibility, then the tests will be
accomplished once all of the services involved in a new feature have been
upgraded to the new version. In either case, you should carefully monitor the
canaries, and they should be rolled back in the event an error is detected.

A/B Testing

We introduced A/B testing in Chapter 5. It is another form of testing that occurs
in the production environment through partial deployment. The “A” and “B”
refer to two different versions of a service that present either different user
interfaces or different behavior. In this case, it is the behavior of the user when
presented with these two different versions that is being tested.

If either A or B shows preferable behavior in terms of some business metric
such as orders placed, then that version becomes the production version and the
other version is retired.

Implementing A/B testing is similar to implementing canaries. The
registry/load balancer must be made aware of A/B testing and ensure that a
single customer is served by VMs with either the A behavior or the B behavior
but not both. The choice of users that are presented with, say, version B may be
randomized, or it may be deliberate. If deliberate, factors such as geographic
location, age group (for registered users), or customer level (e.g., “gold” frequent
flyers), may be taken into account.



6.7 Rollback

For some period after deployment, the new version of a service is on probation.
It has gone through testing of a variety of forms but it still is not fully trusted.
Recognition of the potential untrustworthiness of a new version is contained in
the release plan that we discussed in Chapter 1 where testing the rollback plan is
one of the dictates of the plan. Rolling back means reverting to a prior release. It
is also possible to roll forward—that is, correct the error and generate a new
release with the error fixed. Rolling forward is essentially just an instance of
upgrading, so we do not further discuss rolling forward.

Because of the sensitivity of a rollback and the possibility of rolling forward,
rollbacks are rarely triggered automatically. A human should be in the loop who
decides whether the error is serious enough to justify discontinuing the current
deployment. The human then must decide whether to roll back or roll forward.

If you still have VMs with version A available, as in the blue/green
deployment model before decommissioning all version A VMs, rolling back can
be done by simply redirecting the traffic back to these. One way of dealing with
the persistent state problem is to keep version A VMs receiving a replicated
copy of the requests version B has been receiving during the probation period.

However, if you are using a rolling upgrade model or you cannot simply
replace version B by version A as a whole, you have to replace a version B VM
with a version A VM in more complicated ways. The new version B can be in
one of four states during its lifetime: uninstalled, partially installed, fully
installed but on probation, or committed into production.

Two of these states have no rollback possibilities. If version B has not yet
been installed then it cannot be rolled back. Once it has been committed, it also
cannot be rolled back—although the old version could be treated as a new
deployment and be redeployed. As we said in Chapter 5, if version B has been
committed then removal of all of the feature toggles that have been activated
within version B should be put on the development teams’ list of activities to
perform.

The remaining two states—namely, version B is partially installed or fully
installed but on probation—have rollback possibilities. The strategy for rolling
back depends on whether feature toggles are being used and have been activated.
This pertains to both of the remaining two states.

= Not using feature toggles. Rolling back VMs in this case is a matter of
disabling those VMs and reinstalling VMs running version A of the
service.



= Using feature toggles. If the features have not been activated, then we have
the prior version. Disable VMs running version B and reinstall version A.
If the feature toggles have been activated, then deactivate them. If this
prevents further errors, then no further action is required. If it does not,
then we have the situation as if feature toggles were not present.

The remaining case deals with persistent data and is the most complicated.
Suppose all of the version B VMs have been installed and version B’s features
activated, but a rollback is necessary. Rolling back to the state where version B
is installed but no features activated is a matter of toggling off the new features,
which is a simple action. The complications come from consideration of
persistent data.

A concern when an error is detected is that incorrect values have been written
into the database. Dealing with erroneous database values is a delicate operation
with significant business implications. We present a general approach here but it
should be used with caution. You certainly do not want to make the situation
worse.

Our general approach is to roll back those requests that were processed by
versions of the service where new features were activated and replay them with
an older, working version. We first discuss what is necessary to accomplish the
rollback, and then we discuss potential problems that can occur.

In order to roll back potentially questionable transactions, they need to be
identified. This can be accomplished by maintaining a pedigree for each data
item. The pedigree includes the version number of the service that wrote the data
item and an identification of the request that triggered the writing of the data
item. It also involves logging requests with sufficient information so that you
can recover a causal chain from initial request to writing the data.

When a rollback is triggered, the versions of the services involved in
implementing that feature are identified. This enables you to identify the data
items that were written by those versions, which, in turn, enables the
identification of the requests to be replayed. Removing the identified data items
and restoring any overwritten items purges the database of potentially erroneous
directly written values. Restoring overwritten items requires keeping a history of
data fields and their values. It is possible that an erroneous data value could have
cascaded through the triggering of dependent actions. Worse, it is possible that
an erroneous data value could have external effects. For example, a customer
may have been shown a much reduced fare and purchased a ticket.

Tracking the cascading of actions and determining which data values are
notentiallv erroneons and which have escaned the svstem can he done hv
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maintaining a pedigree of the data items. If the pedigree of a data item includes
the data items on which it depends then those dependent data items that are
saved in the database can be located and removed. For those dependent actions
that are externally visible, logging the source of any externally visible data item
enables you to determine the consequences of the erroneous feature, but
correction becomes a business matter. Some of the incorrect externally visible
data may not have a severe impact, others do. Determining the consequences of
externally visible erroneous data requires special handling and must be done in
conjunction with business decision makers.

Once the offending data is removed, the specified requests can be replayed
with older versions of the services. This regenerates the data that has been
removed, but in a non-erroneous fashion. A problem with this strategy is that the
requests may depend on the features that have been removed. In this case, the
replay should trigger an error indication from one of the services. The replay
mechanism must know what to do with these errors.

As you may have gathered, identifying and correcting incorrect values in the
database is a delicate and complicated operation requiring the collection of much
metadata.

6.8 Tools

A large number of tools exist to manage deployment. One method for
categorizing tools is to determine whether they directly affect the internals of the
entity being deployed. As mentioned in Chapter 5, if a VM image contains all
the required software including the new version, you can replace a whole VM of
the old version with a whole VM of the new version. This is called using a
heavily baked deployment approach. Alternatively, you can use tools to change
the internals of a VM, so as to deploy the new version by replacing the old
version without terminating the VM. Even if you terminate the VM with the old
version, you can start a new lightly baked VM but then access the machine from
the inside to deploy the new version at a later stage of the deployment process.

Netflix Asgard, for example, is an open source, web-based tool for managing
cloud-based applications and infrastructure. Asgard is not interested in the
contents of these VMs. It uses a VM image that contains the new version and
creates VMs for these images. One of the features of Asgard is that it
understands deployment processes such as rolling upgrade. It allows
specification of the number of VMs to be upgraded in a single cycle.
Infrastructure-as-a-Service (IaaS) vendors also provide specific tools for
coordinated VM nrovisioning. which is used as a nart of a denlovment. For
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example, Amazon allows users to use CloudFormation scripts as a
parameterized, declarative approach for deployment of VMs. CloudFormation
scripts understand dependencies and rollback.

Chef and Puppet are two examples of tools that manage the items inside a
virtual machine. They can replace a version of a piece of software inside a VM
and ensure that configuration settings conform to a specification.

One emerging trend is the use of lightweight container tools, such as Docker,
in deployment. A lightweight container is an OS-level virtualization technique
for running multiple isolated OSs on a single host (VM or physical machine).
They are like VMs, but they are smaller and start much faster.

Image management and testing tools such as Vagrant and Test Kitchen help
control both VMs and items inside the VMs. A developer can spin up
production-like environments for pre-commit testing and integration testing to
reveal issues that would only surface in production.

6.9 Summary

Strategies for deploying multiple VMs of a service include blue/green
deployment and rolling upgrade. A blue/green deployment does not introduce
any logical problems but requires allocating twice the number of VMs required
to provide a service. A rolling upgrade is more efficient in how it uses resources
but introduces a number of logical consistency problems.

= Multiple different versions of a single service can be simultaneously
active. These multiple versions may provide inconsistent versions of the
service.

= A client may assume one version of a dependent service and actually be
served by a different version.

= Race conditions can exist because of the choice of packing multiple and
dependent services and multiple development teams performing concurrent
deployment. Choosing the number of services to be packed into a single
VM is often a tradeoff among resource utilization, performance, and
complexity of deployment.

Solutions to the problems of logical consistency involve using some
combination of feature toggles, forward and backward compatibility, and version
awareness.

Deployments must occasionally be rolled back. Feature toggles support rolling
back features, but the treatment of persistent data is especially sensitive when
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Deployment also plays an important role for achieving business continuity.
Deploying into distinct sites provides one measure of continuity. Having an
architecture that includes replication allows for a shorter time to repair and to
resume processing in the event of an unexpected outage.

A variety of tools exist for managing deployment. The emergence of
lightweight containers and image management tools is helping developers to
deploy into small-scale production-like environments more easily for testing.

6.10 For Further Reading

To learn more about the peril of doing an upgrade, you can find an empirical
study on the topic at [Dumitras 09].

The Paxos algorithm is difficult to understand and implement. That is why we
recommend the use of libraries or tools that have already implemented it and
provide higher-level features. But if you do want to have a better understanding
of the algorithm, have a look at the latest, supposedly simple, explanation of it
from the Turing Award—winning author, Leslie Lamport [Lamport 14].

ZooKeeper is based on the ZAB algorithm, and is arguably used much more
widely than Paxos. You can find more about ZooKeeper and some links to
higher-level tools at http://zookeeper.apache.org. For a comparison of Paxos and
ZooKeeper’s ZAB, see [Confluence 12].

Whether it be for a schema change or a rollback of erroneous upgrade, you
can find more about the reorganization of a live database at [Sockut 09].

To read more about the pros and cons of the heavily baked and the lightly
baked approach for VM images, see [InformationWeek 13].

You can find more about latency between services involving multiple
regions/VMs at the links:

http://www.smart421.com/cloud-computing/amazon-web-services-inter-az-
latency-measurements/

http://www.smart421.com/cloud-computing/which-amazon-web-services-
region-should-you-use-for-your-service/

As for tooling, you can find more information about the various tools we
mentioned here:

= Netflix Asgard: https://github.com/Netflix/asgard
= Amazon CloudFormation: http://aws.amazon.com/cloudformation/

= Chef: http://docs.opscode.com/chef overview.html



http://zookeeper.apache.org
http://www.smart421.com/cloud-computing/amazon-web-services-inter-az-latency-measurements/
http://www.smart421.com/cloud-computing/which-amazon-web-services-region-should-you-use-for-your-service/
https://github.com/Netflix/asgard
http://aws.amazon.com/cloudformation/
http://docs.opscode.com/chef_overview.html

= Puppet: http://puppetlabs.com/puppet/what-is-puppet
= Docker: https://www.docker.com/whatisdocker/

= Vagrant: https://www.vagrantup.com/
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https://www.docker.com/whatisdocker/
https://www.vagrantup.com/

Part Three: Crosscutting Concerns

Part Two described the facets of a deployment pipeline. This is a functional
perspective that focuses on the parts of the pipeline. In this part, we focus on
those topics that crosscut the pipeline. There are four such chapters in Part
Three.

In Chapter 7, we discuss the collection, processing, and interpretation of data
during the execution of a system. Such data is vital for several purposes
including error detection and recovery, forecasting, and the identification of
performance problems.

In Chapter 8, we discuss security from several different perspectives. One
perspective is that of the auditor who must evaluate the extent to which the
security of your application or environment complies with its requirements. We
also discuss securing the deployment pipeline. In either case, our discussion
includes both malicious attempts to breach your security and accidental breaches
committed by your personnel who mean no harm.

In addition to security, several other quality attributes are important to
DevOps. We discuss these in Chapter 9. We show how qualities such as
traceability, performance, reliability, and repeatability are important to the
successful execution of a deployment pipeline.

Finally, in Chapter 10, we focus on business. An organization cannot adopt
many DevOps practices without buy-in from other portions of the business
including management. This chapter discusses how you could develop a
business plan for DevOps, including the types of measurements you should take
and how you can approach an incremental adoption of DevOps practices.



7. Monitoring

With Adnene Guabtni and Kanchana Wickremasinghe

First get your facts; then you can distort them at your leisure.
—Mark Twain

7.1 Introduction

Monitoring has a long history in software development and operation. The
earliest monitors were hardware devices like oscilloscopes, and such hardware
devices still exist in the monitoring ecosystem. We are going to ignore this
history, however, and focus on software monitoring in this chapter. Software
monitoring comprises myriad types of monitoring and the considerations that
come with them. Activities as varied as collecting metrics at various levels
(resources/OS/middleware/application-level), graphing and analyzing metrics,
logging, generating alerts concerning system health status, and measuring user
interactions all are a portion of what is meant by monitoring.

As Richard Hamming said: “The purpose of computing is insight, not
numbers.” The insights available from monitoring fall into five different
categories.

1. Identifying failures and the associated faults both at runtime and during
postmortems held after a failure has occurred.

2. Identifying performance problems of both individual systems and
collections of interacting systems.

3. Characterizing workload for both short- and long-term capacity planning
and billing purposes.

4. Measuring user reactions to various types of interfaces or business
offerings. We discussed A/B testing in Chapters 5 and 6.

5. Detecting intruders who are attempting to break into the system.

We use the term monitoring to refer to the process of observing and recording
system state changes and data flows. State changes can be expressed by direct
measurement of the state or by logs recording updates that impact part of the
state. Data flows can be captured by logging requests and responses between



both internal components and external systems. The software supporting such a
process is called a monitoring system.

When we speak of monitoring a workload, we are including the tools and
infrastructure associated with operations activities. All of the activities in an
environment contribute to a datacenter’s workload, and this includes both
operations-centric and monitoring tools.

In this chapter, we focus on new aspects of monitoring and challenges that
arise with the advent of the DevOps movement. DevOps’ continuous
delivery/deployment practices and strong reliance on automation mean that
changes to the system happen at a much higher frequency. Use of a microservice
architecture also makes monitoring of data flows more challenging. We discuss
these and other challenges in more detail in Section 7.6. Some examples of the
new challenges are

= Monitoring under continuous changes is difficult. Traditional monitoring
relies heavily on anomaly detection. You know the profile of your system
during normal operation. You set thresholds on metrics and monitor to
detect abnormal behavior. If your system changes, you may have to
readjust them. This approach becomes less effective if your system is
constantly changing due to continuous deployment practices and cloud
elasticity. Setting thresholds based on normal operation will trigger
multiple false alarms during a deployment. Disabling alarms during
deployments will, potentially, miss critical errors when a system is already
in a fairly unstable state. Multiple deployments can simultaneously occur
as we discussed in Chapter 6, and these deployments further complicate
the setting of thresholds.

= The cloud environment introduces different levels from application
programming interface (API) calls to VM resource usage. Choosing
between a top-down approach and a bottom-up approach for different
scenarios and balancing the tradeoffs is not easy.

= When adopting the microservice architecture we introduced in Chapter 4,
monitoring requires attention to more moving parts. It also requires
logging more inter-service communication to ensure a user request
traversing through a dozen services still meets your service level
agreements. If anything goes wrong, you need to determine the cause
through analysis of large volumes of (distributed) data.

= Managing logs becomes a challenge in large-scale distributed systems.
When you have hundreds or thousands of nodes, collecting all logs



centrally becomes difficult or prohibitively expensive. Performing analysis
on huge collections of logs is challenging as well, because of the sheer
volume of logs, noise, and inconsistencies in logs from multiple
independent sources.

Monitoring solutions must be tested and validated just as other portions of the
infrastructure. Testing a monitoring solution in your various environments is one
portion of the testing, but the scale of your non-production environments may
not approach the scale of your production—which implies that your monitoring
environments may be only partially tested prior to being placed into production.
We have heard how a feature toggle involving monitoring brought down a major
Internet service for 45 minutes. This reinforces not only the importance of
testing monitoring software but also the importance of maintaining control of
feature toggles.

We organize this chapter by describing what to monitor, how to monitor,
when to monitor, and how to interpret the monitoring data. We provide pointers
to tools, further discuss the challenges just described, and provide an example of
interpreting monitoring data.

7.2 What to Monitor

The data to be monitored for the most part comes from the various levels of the
stack. Table 7.1 lists the insights you might gain from the monitoring data and
the portions of the stack where such data can be collected. Notice that the whole
stack is involved in most of the purposes for which you will do monitoring. We
emphasize that tools supporting operations are applications that contribute to the
workload, have failures, and should be monitored. In Chapter 6, we pointed out
the failures that can come from race conditions during deployment. Monitoring
changes to configurations and resource specification files enables the detection
of such errors.

Goal of Monitoring Source of Data

Failure detection Application and infrastructure
Performance degradation detection Application and infrastructure
Capacity planning Application and infrastructure
User reaction to business offerings Application

Intruder detection Application and infrastructure

TABLE 7.1 Goals of Monitoring by Level of the Stack
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outcomes. The resources can be hard resources such as CPU, memory, disk, and
network—even if virtualized. They can also be soft resources such as queues,
thread pools, or configuration specifications. The outcomes include items such
as transactions and business-oriented activities.

We now discuss the monitoring goals from Table 7.1.

Failure Detection

Any element of the physical infrastructure can fail. The cause can be anything
from overheating to mice eating the cables. Total failures are relatively easy to
detect: No data is flowing where data used to flow. It is the partial failures that
are difficult to detect, for instance: a cable is not firmly seated and degrades
performance; before a machine totally fails because of overheating it experiences
intermittent failure; and so forth.

Detecting failure of the physical infrastructure is the datacenter provider’s
problem. Instrumenting the operating system or its virtual equivalent will
provide the data for the datacenter.

Software can also fail, either totally or partially. Total failure, again, is
relatively easy to detect. Partial software failures have myriad causes, just as
partial hardware failures do. The underlying hardware may have a partial failure;
a downstream service may have failed; the software, or its supporting software,
may have been misconfigured, and so forth.

Detecting software failures can be done in one of three fashions.

1. The monitoring software performs health checks on the system from an
external point.

2. A special agent inside the system performs the monitoring.
3. The system itself detects problems and reports them.

Partial failures may also manifest as performance problems, which we now
discuss.

Performance Degradation Detection

Detecting performance degradations is, arguably, the most common use of
monitoring data. Degraded performance can be observed by comparing current
performance to historical data—or by complaints from clients or end users.
Ideally your monitoring system catches performance degradation before users
are impacted at a notable strength.
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Latency

Latency is the time from the initiation of an activity to its completion. It can be
measured at various levels of granularity. At a coarse grain, latency can refer to
the period from a user request to the satisfaction of that request. At a fine grain,
latency can refer to the period from placing a message on a network to the
receipt of that message.

Latency can also be measured at either the infrastructure or the application
level. Measuring latency within a single physical computer can be done by
reading the clock prior to initiating an activity, reading the clock subsequent to
the activity, and calculating the difference. Measuring latency across different
physical computers is more problematic because of the difficulty of
synchronizing clocks. We discuss this problem in more detail later.

It is important when reporting latency numbers to associate them with the
activity that they are measuring. Furthermore, latency is cumulative in the sense
that the latency of responding to a user request is the sum of the latency of all of
the activities that occur until the request is satisfied, adjusted for parallelism. It is
useful when diagnosing the cause of a latency problem to know the latency of
the various subactivities performed in the satisfaction of the original request.

Throughput

Throughput is the number of operations of a particular type in a unit time.
Although throughput could refer to infrastructure activities (e.g., the number of
disk reads per minute), it is more commonly used at the application level. For
example, the number of transactions per second is a common reporting measure.

Throughput provides a system-wide measure involving all of the users,
whereas latency has a single-user or client focus. High throughput may or may
not be related to low latency. The relation will depend on the number of users
and their pattern of use.

A reduction in throughput is not, by itself, a problem. The reduction in
throughput may be caused by a reduction in the number of users. Problems are
indicated through the coupling of throughput and user numbers.

Utilization

Utilization is the relative amount of use of a resource and is, typically, measured
by inserting probes on the resources of interest. For example, the CPU utilization
may be 80%. High utilization can be used as either an early warning indicator of
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cause of problems with latency or throughput.

The resources can either be at the infrastructure or application level. Hard
resources such as CPU, memory, disk, or network are best measured by the
infrastructure. Soft resources such as queues or thread pools can be measured
either by the application or the infrastructure depending on where the resource
lives.

Making sense of utilization frequently requires attributing usage to activities
or applications. For example, app1 is using 20% of the CPU, disk compression is
using 30%, and so on. Thus, connecting the measurements with applications or
activities is an important portion of data collection.

Capacity Planning
We distinguish between long- and short-term capacity planning. Long-term
capacity planning involves humans and has a time frame on the order of days,

weeks, months, or even years. Short-term capacity planning is performed
automatically and has a time frame on the order of minutes.

Long-Term Capacity Planning

Long-term capacity planning is intended to match hardware needs, whether real
or virtualized, with workload requirements. In a physical datacenter, it involves
ordering hardware. In a virtualized public datacenter, it involves deciding on the
number and characteristics of the virtual resources that are to be allocated. In
both cases, the input to the capacity planning process is a characterization of the
current workload gathered from monitoring data and a projection of the future
workload based on business considerations and the current workload. Based on
the future workload, the desired throughput and latency for the future workload,
and the costs of various provisioning options, the organization will decide on
one option and provide the budget for it.

Short-Term Capacity Planning

In the context of a virtualized environment such as the cloud, short-term capacity
planning means creating a new virtual machine (VM) for an application or
deleting an existing VM. A common method of making and executing these
decisions is based on monitoring information collected by the infrastructure. In
Chapter 4, we discussed various options for controlling the allocation of VM
instances based on the current load. Monitoring the usage of the current VM
instances was an important portion of each option.



Monitoring data is also used for billing in public clouds. Charging for use is
an essential characteristic of the cloud as defined by the U.S. National Institute
of Science and Technology and discussed in Chapter 2. In order to charge for
use, the use must be determined, and this is accomplished through monitoring by
the cloud provider.

User Interaction

User satisfaction is an important element of a business. Besides the utility and
quality of the application itself, user satisfaction depends on four elements that
can be monitored.

1. The latency of a user request. Users expect decent response times.
Depending on the application, seemingly trivial variations in response can
have a large impact. Google reports that delaying a search results page by
100ms to 400ms has a measurable impact on the number of searches that
users perform. Amazon reports a similar effect.

2. The reliability of the system with which the user is interacting. We
discussed failure and failure detection earlier.

3. The effect of a particular business offering or user interface modification.
We discussed A/B testing in Chapters 5 and 6. The measurements
collected from A/B testing must be meaningful for the goal of the test, and
the data must be associated with variant A or B of the system.

4. The organization’s particular set of metrics. Every organization has a set
of metrics that it uses to determine the effectiveness of their offerings and
their support services. If you run a photo gallery website, you may be
interested specifically in metrics like photo upload rates, photo sizes, photo
processing times, photo popularity, advertisement click-through rates, and
levels of user activity. Other organizations will have different metrics, but
they should all be important indicators of either user satisfaction or the
effectiveness of the organization’s computer-based services.

There are generally two types of user interaction monitoring.

1. Real user monitoring (RUM). RUM essentially records all user
interactions with an application. RUM data is used to assess the real
service level a user experiences and whether server side changes are being
propagated to users correctly. RUM is usually passive in terms of not
affecting the application payload without exerting load or changing the
server-side application.

2. Synthetic monitoring. Synthetic monitoring is similar to developers



performing stress testing on an application. Expected user behaviors are
scripted either using some emulation system or using actual client software
(such as a browser). However, the goal is often not to stress test with heavy
loads, but again to monitor the user experience. Synthetic monitoring
allows you to monitor user experience in a systematic and repeatable
fashion, not dependent on how users are using the system right now.
Synthetic monitoring may be a portion of the automated user acceptance
tests that we discussed in Chapter 5.

Intrusion Detection

Intruders can break into a system by subverting an application, for example,
through incorrect authorization or a man-in-the-middle attack. Applications can
monitor users and their activities to determine whether the activities are
consistent with the users’ role in the organization or their past behavior. For
instance, if user John has a mobile phone using the application, and the phone is
currently in Australia, any log-in attempts from, say, Nigeria should be seen as
suspicious.

An intrusion detector is a software application that monitors network traffic
by looking for abnormalities. These abnormalities can be caused either by
attempts to compromise a system by unauthorized users or by violations of an
organization’s security policies.

Intrusion detectors use a variety of different techniques to identify attacks.
They frequently use historical data from an organization’s network to understand
what is normal. They also use libraries that contain the network traffic patterns
observed during various attacks. Current traffic on a network is compared to the
expected (from an organization’s history) and the abnormal (from the attack
history) to decide whether an attack is currently under way.

Intrusion detectors can also monitor traffic to determine whether an
organization’s security policies are being violated without malicious intent. For
example, a current employee may attempt to open a port for external traffic for
experimental purposes. The organization may have a policy disallowing external
traffic on particular ports. The intrusion detector can detect such violations.

Intrusion detectors generate alerts and alarms as we discuss in Section 7.5.
Problems with false positives and false negatives exist with intrusion detectors
as they do with all monitoring systems.

Determining whether a particular data anomaly reflects an intrusion is not an
easy task. We discuss an example in more detail in Section 7.8.



7.3 How to Monitor

Monitoring systems typically interact with the elements being monitored, as
shown in Figure 7.1. The system to be monitored (Systems 1, 2, ... in Figure
7.1) can be as broad as a collection of independent applications or services, or as
narrow as a single application. If the system is actively contributing to the data
being monitored (the arrow labeled “agentless™) then the monitoring is intrusive
and affects the system design. If the system is not actively contributing to the
data being monitored (the arrow labeled “agent-based”) then the monitoring is
nonintrusive and does not affect the system design. A third source of data is
indicted by the arrow labeled “health checks.” External systems can also monitor
system or application-level states through health checks, performance-related
requests, or transaction monitoring.
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FIGURE 7.1 Monitoring system interacting with the elements being
monitored [Notation: Architecture]

The data collected either through agents or through agentless means is
eventually sent to a central repository (“Monitoring data storage” in Figure 7.1).
The central repository is typically distributed—so it is logically but not
physically central. Each step from the initial collection to the central repository
can do filtering and aggregation. The considerations in determining the amount
of filtering and aggregation are: the volume of data being generated, the
potential failure of local nodes, and the granularity of the necessary
communication. Retrieving the data from local nodes is important because the
local node may fail and the data become unavailable. Sending all of the data
directly to a central repository may introduce congestion to the network. Thus,
selecting the intermediate steps from the local nodes to the central repository and
the filtering and aggregation done at each step are important architectural
decisions when setting up a monitoring framework.

One strategy for making the filtering/consolidation decision is to consider the
effect of the loss of data. Some data represents instantaneous readings that are
shortly to be superseded by another set of instantaneous readings. Loss of one set
of readings may not affect the overall monitoring or the triggering of alarms.

Once monitoring data is collected, you can do many things. Alarms can be
configured to trigger alerts that notify operators or other systems about major
state changes. Graphing and dashboards can be used to visualize system state
changes for human operators. A monitoring system also allows operators to drill
down into detailed monitoring data and logs, which is important for error
diagnosis, root cause analysis, and deciding on the best reaction to a problem.

So far we have presented a traditional view of the monitoring system, but this
view is increasingly being challenged by new interactions between the
monitoring system and other systems. We show these outside of the dotted areas
in Figure 7.1.

You can perform stream processing and (big) data analytics on monitoring
data streams and historical data. Not only can you gain insights into system
characteristics using system-level monitoring data, you may also gain insights
into user behaviors and intentions using application- and user-level monitoring
data.

Because of these growing different uses of monitoring data, many companies
are starting to use a unified log and metrics-centric publish-subscribe
architecture for both the monitoring system and the overall application system.

NMMara nnd mara txmne Af Antn inclhiaAdinag nantraditianal Tax anAd matrice Antn Ara



lViUlCT dliu 11HULIT Ly ped Ul uala, liviuuling ulidauiuuvliadl 1ug diiu eIy udia, aic
being put into a unified storage, where various other systems (whether
monitoring-related or not) can subscribe to the data of interest. Several
implications of the unified view are

= It significantly reduces the coupling of any two systems. Systems interact
with the unified log in a publish-subscribe fashion that makes publishers
ignorant of the specific identity of the subscriber and vice versa.

= It simplifies the integration of multiple sources of data. Much of the
analysis of monitoring data involves the correlation of multiple sources of
data. We have mentioned relating business metrics to performance metrics.
The sources of these measurements are not going to be the same. Using a
central log store allows data to be correlated based on attributes such as
time stamps rather than their source.

The line between the monitoring system and the system to be monitored is
getting blurred when application and user monitoring data are treated the same
as system-level monitoring data—data from anywhere and at any level could
contribute to insights about both systems and users. Thus, the architecture
presented here is no longer just a monitoring system architecture when you
consider all the other systems putting information into and getting information
out of the central storage.

We now discuss several aspects of the architecture in more detail, namely, the
method of retrieving monitoring data, monitoring operations, and data collection
and storage.

Agent-Based and Agentless Monitoring

In some situations, the system to be monitored already has internal monitoring
facilities that can be accessed through a defined protocol. For example, the
Simple Network Management Protocol (SNMP) is a common mechanism for
gathering metrics from servers and network equipment. It is especially useful on
network equipment because that equipment often comes as a closed system and
you cannot install monitoring agents. Windows Management Instrumentation
(WMI) provides access to management data for Windows systems. You can use
protocols like Secure Shell (SSH) to remotely access a system and retrieve
available data. Agentless monitoring is particularly useful when you cannot
install agents, and it can simplify the deployment of your monitoring system. In
Section 7.2, we discussed applications that contributed information to the
monitoring system. Application Response Measurement (ARM) is an industry
standard that provides ways for an application to trigger actions such as



requesting an external ARM-supported system to start or stop tracking a
transaction and correlating times spent in different systems for a single
transaction.

The agent-based and agentless approaches both have their strengths and
weaknesses. The agentless approach is better in terms of deployment and
maintenance effort. However, it is less secure if the collection repository is
outside of your network because more ports need to be opened and firewall rules
relaxed to allow different layers of a system to communicate its data to the
external world. In contrast, an agent on a host can communicate with the OS and
applications locally and send all collected information over a single channel.
This also allows an agent-based approach to optimize network traffic and
processing overhead.

In addition to collecting monitoring data from inside a system, you can collect
information from an external viewpoint. You can set up health checks to
periodically check a system or conduct performance monitoring from an external
user’s point of view.

As we mentioned earlier, multiple types of information are considered
monitoring information or at least as contributing to monitoring data analysis.
Questions to be considered when designing a system include: Where does this
information come from? How does this information fit into the application and
monitoring architecture? What are the quality implications?

Monitoring Operation Activities

Some operations tools, such as Chef, monitor resources such as configuration
settings to determine whether they conform to prespecified settings. We also
mentioned monitoring resource specification files to identify changes. Both of
these types of monitoring are best done by agents that periodically sample the
actual values and the files that specify those values.

Treating infrastructure-as-code implies that infrastructure should contribute
monitoring information in the same fashion as other applications. This can be
through any of the means that we have discussed: agents, agentless, or external.

In Chapter 14, we discuss how to perform fine-grained monitoring of the
behavior of operations tools and scripts. This can include assertions over
monitoring data. For instance, during a rolling upgrade a number of VMs are
taken out of service to be replaced with VMs running a newer version of the
application. Then you can expect the average CPU utilization of the remaining
machines to increase by a certain factor.



Collection and Storage

The core of monitoring is recoding and analyzing time series data, namely, a
sequence of time-stamped data points. These data points are typically acquired at
successive intervals in time and represent certain aspects of states and state
changes. In addition, the system being monitored will generate time-stamped
event notifications at various levels of severity. These notifications are typically
output as logs. The monitoring system can conduct direct measurement or collect
existing data, statistics, or logs and then turn them into metrics, which have a set
of properties usually indicating time and space. The data is then transferred to a
repository using a predefined protocol. The incoming data streams often need to
be further processed into a time series and stored in a time series database. Three
key challenges are: collating related items by time, collating related items by
context, and handling the volume of monitoring data.

= Collating related items by time. Time stamps in a distributed system are
not going to be consistent. Different nodes in a single cluster may differ in
their clocks by several microseconds. Different nodes across multiple
clusters may differ by much more. Thus, using time stamps to decide that
two items are related in time or even if they are sequential is problematic.
Using time intervals to determine relation rather than exact measurements
is one technique, although it may miss some relationships if the time
difference between two related measurements is greater than the window
defined as determining a relationship.

= Collating related items by context. The context for a message is often as
important as the message. Suppose you are performing a rolling upgrade
and replacing two instances in each wave of the upgrade. Different nodes
may produce log messages about the state of the instance upgrade. Without
being able to determine that two messages refer to the same instance, it is
very difficult to reconstruct a sequence of events to diagnose a problem.
This same problem occurs when monitoring data flows. A particular
message from an instance of a system is in direct response to the input to
that instance and in indirect response to a user request or an external event.
Identifying both the direct and indirect triggers for a particular message is
important to enable analysis of performance problems or failures.

= The volume of monitoring data. You may need a retention policy to cope
with the volume of data collected. A simple retention time for your
monitoring data may be suboptimal: you may be interested in storing finer-
grained monitoring data for the recent past and increasingly course-grained



data aggregates for a more distant past. Your varying policies may also be
related to your current remaining storage capacity and the criticality of the
metrics. For fast processing of queries or display, you may also choose to
process the basic data into special views with indexing.

One popular time series database is the Round-Robin Database (RRD), which
is designed for storing and displaying time series data with good retention policy
configuration capabilities. As we are moving into the big data age, big data
storage and processing solutions are increasingly used for monitoring data. You
can treat your monitoring data as data streams feeding into streaming systems for
real-time processing, combined with (big) historical data. You can load all your
data into big data storage systems such as Hadoop Distributed File System
(HDFS) or archive it in relatively inexpensive online storage systems such as
Amazon Glacier.

7.4 When to Change the Monitoring Configuration

Monitoring is either time- or event-based. Time-based monitoring is based on a
reporting interval but the interval does not need to be a constant interval for all

applications and throughout the execution of an application. Timing frequency

and generation of events should all be configurable and changed in response to

events occurring in the datacenter. Some examples of events that could change

the monitoring configuration are:

= An alert. We discuss alarms and alerts in detail in the next section. One
consequence of an alert could be that the frequency of sampling is
increased. The frequency could be decreased if the alert does not turn into
an alarm.

= Deployment. Any of the deployment scenarios we discussed in Chapter 6
can trigger changes to monitoring. These include

= Canary deployment. Since the purpose of a canary deployment is to test
new versions, these new versions should be monitored more closely.

= Rolling upgrade. We discussed several possible race conditions
depending on your packaging of services into VMs. Closer monitoring
will help detect the occurrence of a race condition more quickly.

= Feature activation or deactivation. Activating or deactivating features
will change the behavior of services. Such changes should trigger
changes in the monitoring configuration.

= Changes to any infrastructure software including DevOps tools. Changes
to infrastructure software can affect the behavior or performance of



applications just as changes to the applications themselves.

= Changes to any configuration parameters. One of the major sources of
errors in modern distributed systems is incorrect parameters. More detailed
monitoring in the wake of changes to parameters can help detect problems
more quickly.

7.5 Interpreting Monitoring Data

Now assume that the monitoring data (both time- and event-based) has been
collected in a central repository. This data is being added and examined
continually, by both other systems and humans. We begin by describing some
general principles about the content of log messages.

Logs

A log is a time series of events, since it is a sequence of records ordered by time.
Records are typically appended to the end of the log. Rather than directly
recording the states, logs usually record the actions performed that may result in
a state change of the system. The changed value itself may not be included in the
log.

Logs play an important role in monitoring, especially in DevOps settings. In
development, programmers are familiar with application logging, where they
print out system states and actions to assist their development, testing, and
debugging activities. Most logging will then be turned off or removed for
production deployment, so that only warnings and critical information will be
logged and displayed. Logs written by the developers are frequently for the
developers’ use rather than for operators. One of the motivations of the DevOps
movement has been to treat operators as first-class stakeholders, and this means
writing logs that they can use. The sources of these logs are not only
applications. Web servers, database systems, and the DevOps pipeline all
produce logs. Another type of important log is composed of the log lines printed
by operations tools. When a system is being upgraded by an upgrade tool,
migrated by a migration tool, or reconfigured by a configuration management
tool, logs about the operations or change histories are recorded—these are very
important for error detection and diagnosis of any operation, including those
triggered by the DevOps pipeline.

Logs are used during operations to detect and diagnose problems. Logs are
used during debugging to detect errors. Logs are used during post-problem
forensics to understand the sequence that led to a particular problem. Some
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= Logs should have a consistent format. This is not always possible since
some logs are produced by third-party systems out of your control. The log
production that is within your control should be consistent, however.

= Logs should include an explanation for why this particular log message
was produced. Tags such as “error condition detected” or “tracing of code”
can be used.

= Log entries should include context information. Context is more than date
and time; it also includes information to support tracking the log entry such
as:

= Source of the log entry within the code
= Process ID for the process executing when the log entry was produced

= Request ID for the request that caused that process to execute this log
producer

= VM ID for the VM that produced this message

= Logs should provide screening information. Log messages are collected in
a repository that is accessed through queries. Severity levels are an
example of screening information, alert levels are another.

Graphing and Display

Once you have all relevant data, it is useful to visualize it in various ways. Most
monitoring data is time series data, which is amenable to plotting. A flexible
system should allow you to have full control over what to plot and how. Some
monitoring systems have strong visualization capabilities embedded. There are
also specialized systems just for visualization and querying, such as Graphite,
which support real-time graphing of large amounts of data.

You can set up a dashboard showing important real-time aspects of your
system and its components at an aggregated level. You can also dive into the
details interactively or navigate through history when you detect an issue. An
experienced operator will use visual patterns of graphs to discern problems. The
graphs may show spikes, bursts, cyclic variation, steadily trending up/down, or
sparse events, all of which need to be understood in the context of characteristics
of the state being monitored and the environment. In a virtualized environment
running on shared physical resources or in a continuous deployment setting,
there will be a large number of legitimate changes going on, such as resource
scaling, resource migration, and rolling upgrade. Therefore, visual abnormalities
may not always indicate problems. It is becoming increasingly challenging for



human operators to look at the graphs and figure out which interactions in a
complex setup lead to the perceived graphs. This naturally leads to challenges
for alerting systems and alarm configuration.

Alarms and Alerts

Monitoring systems inform the operator of significant events. This information
can be in the form of either an alarm or an alert. Technically, alerts are raised for
purposes of informing and may be in advance of an alarm (e.g., the datacenter
temperature is rising), whereas alarms require action by the operator or another
system (e.g., the datacenter is on fire). Alarms and alerts are generated based on
configurations set by the operators. Alarms and alerts can be triggered by events
(e.g., a particular physical machine is not responding), by values crossing a
threshold (e.g., the response time for a particular disk is greater than an
acceptable value), or by sophisticated combinations of values and trends.

In an ideal world, every alarm generated by the monitoring system represents
a real issue that needs attention and every issue that needs attention generates an
alarm. When an alarm is triggered, the alerts should provide information to
enable further diagnosis of the situation and provide guidance as to the remedial
action. Unfortunately, we do not live in an ideal world. The typical issues
therefore are

= How do you configure your monitoring system to reduce false positives
(alarms without the necessity for action) and false negatives (the necessity
for action without an alarm being raised)?

=« How do you configure your monitoring system so that the alerts provide
necessary information to diagnose an alarm?

In a monitoring system with many metrics covering many aspects of the
system, generating an alert or an alarm can pose very tricky tradeoffs. A problem
for operators is receiving false positive alarms or a flood of alerts from different
channels about the same event. Under such conditions, operators will quickly get
“alert fatigue” and start ignoring alerts or simply turn some of them off. On the
other hand, if you try to reduce false positives, you may risk missing important
events, which increases false negatives. If your alarms are very specific in their
triggering conditions, you may be informed about some subtle errors early in
their occurrence—but you may risk rendering your alarms less effective when
the system undergoes changes over time, or when the system momentarily
exhibits interference of legitimate but previously unknown operations.
Continuous deployment and cloud elasticity exacerbate the problem. As you can



see, determining the correct configurations for a monitoring system is nontrivial
and will vary depending on the environment and the severity of problems you
might uncover.

Some general rules to improve the usefulness of alerts and alarms are

= Introduce context to your alarms. This could be as simple as disabling
certain alerts during specific times or actions; for example, when replacing
a physical computer it does not make sense to raise alarms about the
computer’s health. Other more complex contexts could be related to
external events or interfering operations.

= Alarms can not only go off if something happens, they can also be set to go
off if an expected event did not happen. This helps with drills and testing
of your alarms since you can set an alarm to go off when an event that you
know is not going to happen does not, in fact, happen.

= Aggregate different alerts that are likely referring to the same events.

= Set clear severity levels and urgency levels so people or systems receiving
the alerts can act accordingly.

Diagnosis and Reaction

Operators often use monitoring systems to diagnose the causes and observe the
progress of mitigation and recovery. However, monitoring systems are not
designed for interactive or automated diagnosis. Thus, operators, in ad hoc ways,
will try to correlate events, dive into details and execute queries, and examine
logs. Concurrently, they manually trigger more diagnostic tests and recovery
actions (such as restarting processes or isolating problematic components) and
observe their effects from the monitoring system.

We discussed reliability engineers in an earlier chapter. The essence of the
skill of a reliability engineer is the ability to diagnose a problem in the presence
of uncertainty. Once the problem has been diagnosed, frequently the reaction is
clear although, at times, possible reactions have different business consequences.
If there are business consequences of the reactions to a problem, the escalation
procedures of an organization should indicate who makes the decision.

Monitoring DevOps Processes

DevOps processes should be monitored so that they can be improved and
problems can be detected. In Chapter 3, we discussed the improvement of
processes. Such improvement depends on gathering information.
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1. A business metric

2. Cycle time

3. Mean time to detect errors
4. Mean time to report errors
5. Amount of scrap (rework)

Observe that the raw data for these five values will come from multiple
sources and multiple reporting systems. As we said earlier, being able to
correlate data from multiple sources is important in interpreting monitoring data.

7.6 Challenges

In this section, we discuss the four challenges mentioned in Section 7.1 in more
detail. These challenges arise due to DevOps practices and modern computing
environments.

Challenge 1: Monitoring Under Continuous Changes

A problem in the operations context is signaled by a deviation from normal
behavior. Normal behavior assumes the system is relatively stable over time.
However, in a large-scale complex environment, changes are the norm. We are
not talking about varying workloads or dynamic aspects of your application,
which are often well anticipated. The new challenges come from both cloud
elasticity, making infrastructure resources more volatile, and the automated
DevOps operations, which trigger various sporadic operations (such as upgrade,
reconfiguration, or backups). Sporadic operations and continuous deployment
and deployment practices make software changes more frequent. As we have
seen, deploying a new version into production multiple times a day is becoming
a common practice. Each deployment is a change to the system and may impact
monitoring. Furthermore, these changes may be happening simultaneously in
different portions of an application or the infrastructure.

To what extent can you use the past monitoring data of your system to do
performance management, capacity planning, anomaly detection, and error
diagnosis for the new system? In practice, operators may turn off monitoring
during scheduled maintenance and upgrades as a work-around to reduce false
positive alerts triggered by those changes. When change is the norm, this can
lead to no monitoring—for example, flying blind.

One technique is to carefully identify the non-changing portions of the data.
For example, use dimensionless data (i.e., ratios). You may find that although



individual variables change frequently, the ratio of two variables is relatively
constant. Another technique is to focus monitoring on those things that have
changed.

We also discussed, in Chapter 6, the merits of canary testing as a way of
monitoring a small rollout of a new system for issues in production. One
technique is to compare performance of the canaries with historical performance.
Changes that cannot be rationalized because of feature changes may indicate
problems.

Another challenge related to monitoring under continuous changes is the
specification of monitoring parameters. When your system is not overly complex
and relatively stable, specifying what needs to be monitored, setting thresholds,
and defining the alerting logic can be done manually. In the past, large-scale
monitoring reconfiguration usually happened during major infrastructure
changes and migration to new infrastructure, for example, to a virtualized
environment or the cloud. A new software release came in every few months,
and there was ample time left for tweaking the monitoring part. Even in such an
environment, the complexity of setting up and maintaining a monitoring system
during occasional changes is still often mentioned as the number one challenge
identified by monitoring experts.

Continuous changes in the system infrastructure and the system itself
complicate the setting of monitoring parameters. On the infrastructure side, we
mentioned in Chapter 5 that there can be significant variation in performance
even if you are requesting exactly the same VM type. This variance is due to
factors beyond your control, such as the CPU type you get. Your monitoring
may need to be adjusted for this, or you may configure your scaling controller to
replace VMs that are performing slowly with new VMs, in the hope of being
luckier with the next ones.

As a consequence, it makes sense to automate the configuration of alarms,
alerts, and thresholds as much as possible. The monitoring configuration process
is just another DevOps process that can and should be automated. When you
provision a new server, a part of the job is to register this server in the
monitoring system automatically. When a server is terminated, a de-registration
process should happen automatically.

We discussed changing configurations as a result of changes, but the
assumption in that discussion was that the rules for changing the configurations
would be manually set. Some thresholds can be automatically derived from
underlying changes. Other thresholds can be automatically learned over time.



For example, the monitoring results during canary testing for a small set of
servers can be the new baseline for the full system and populated automatically.

Challenge 2: Bottom-Up vs. Top-Down and Monitoring in
the Cloud

One major goal of monitoring is to detect faults, errors, or small-scale failures as
soon as possible, so you can react to them early. In order to fulfil this goal, it is
natural to monitor in a bottom-up fashion: Ideally, errors in lower layers and in
individual components can be detected early, before they propagate and affect
upper-layer application servers or applications themselves in terms of
aggregated values. There are two challenges here.

First, there is usually a lot more to be monitored at the individual component
level and other low levels. You may have a single application that is composed
of several components deployed on hundreds of servers, which are in turn
supported by networks and storage components. A single root cause may trigger
noticeable phenomena across many components. It can be very tricky to
correlate these phenomena and identify the root cause in a real-world
environment.

A second challenge is related to continuous change caused by cloud elasticity
and automation. In the cloud, lower-layer infrastructure and servers come and go
for both legitimate reasons, (e.g., termination for preventing server drifts, scaling
out/in, and rolling upgrades) as well as illegitimate reasons (e.g., instance
failures or resource sharing uncertainty). It is a nontrivial task to discern the
illegitimate reasons from the legitimate ones.

Adopting a more top-down approach for monitoring cloud-based and highly
complex systems is an attempt to solve these problems. You monitor the top
level or aggregated data and only dive into the lower-level data in a smart way if
you notice issues at the top level. The lower-level data must still be collected but
not systematically monitored for errors. The collection of lower-level data is
only done to the degree that performance, storage, and shipping overhead allow.
This is not a “silver bullet,” for a number of reasons. First, you are sacrificing
the opportunity to notice issues earlier, and it might already be too late to
prevent a bigger impact once you notice that something is wrong at the top level.
The second and even more problematic issue is how to dive down to the lower-
level data. The time between the moment you detected the higher-level issues
and the moment the lower-level root cause happened may be fairly long. Modern
distributed systems have built-in fault tolerance to mask faults and errors,



preventing them from manifesting at the system level and affecting end user
experience. Essentially, it may take a variable amount of time from when an
initial fault takes place until it propagates through the system to become
apparent. You cannot simply rely on the time stamp of your high-level error
detection. Also, you cannot assume the metrics and logs related to the original
problem are still there: They may have disappeared together with a dead node or
region of your network. Trying to ship all relevant data to a safer location all the
time poses a major challenge in a large-scale system with millions of external
and internal requests per second.

There is no easy solution. Bottom-up and top-down monitoring are both
important and should be combined in practice. Context information is usually
much more important than just time stamps. As already mentioned,
incorporating operations knowledge about changes into your monitoring data is
an important way of correlating events better.

Challenge 3: Monitoring a Microservice Architecture

In earlier chapters, we discussed that one consequence of DevOps on
architecture is the adoption of a microservice architecture, which enables having
an independent team for each microservice. However, this turns your system into
a fanout system or a deep-hierarchy system. Every external request may
potentially travel through a large number of internal services before an answer is
returned. If any of the services is slow to respond, the overall response time will
suffer. In a large-scale system, one part or another may experience some
slowdown at any given time, which may consequently lead to a negative impact
on an unacceptable portion of the overall requests. We described long-tail
responses in Chapter 2. Micropartitions and selective replication enable easier
migration, which can be used to move services away from problematic parts of
the network. Monitoring multiple requests for the same service and determining
that only one response is necessary becomes quite a challenge.

Another challenge that microservice architectures raise is how to identify and
fix “slow” nodes. We mentioned the difficulty of determining sporadic
performance problems earlier. In a microservice architecture with many nodes,
determining slow but still performing nodes becomes more of an issue. The
questions are: What is “slow”? How do you choose appropriate thresholds? We
discuss some solutions in the case study in Chapter 13.

Challenge 4: Dealing with Large Volumes of Distributed
(Log) Data
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In a large-scale system, monitoring everything will incur a considerable
overhead in terms of performance, transmission, and storage. A large-scale
system can easily generate millions of events, metric measurements, and log
lines per minute. Some considerations about this volume of data are

1. The performance overhead of collecting metrics at a small time interval
might be significant. Operators should use varied and changeable intervals
rather than fixed ones, depending on the current situation of the system. If
there are initial signs of an anomaly or when a sporadic operation is
starting, you may want finer-grained monitoring, and you may return to
bigger time intervals when the situation is resolved or the operation
completed.

2. You should use a modern distributed logging or messaging system for data
collection, rather than building one yourself. A distributed logging system
such as Logstash can collect all kinds of logs and conduct a lot of local
processing before shipping the data off. This type of system allows you to
reduce performance overhead, remove noise, and even identify errors
locally. LinkedIn developed Kafka, a high-performance distributed
messaging system, largely for log aggregation and monitoring data
collection. It adopts an event-oriented architecture and decouples the
incoming stream and the processing.

3. With the emergence of big data analytics, researchers are starting to use
advanced machine learning algorithms to deal with noisy, inconsistent, and
voluminous data. This is a space to watch.

7.7 Tools

There are many monitoring systems and tools available, both from the open
source community and from commercial players. Due to an overloading of the
term monitoring, it is often difficult to compare them. We list a few typical ones.

= Nagios: Nagios is probably the most widely used monitoring tool due to its
large number of plug-ins. The plug-ins are basically agents that collect
metrics you are interested in. A large and active community maintains
plug-ins for many metrics and systems. However, Nagios’ core is largely
an alerting system with limited features. Nagios also has limitations in
dealing with a cloud environment where servers come and go.

= Sensu and Icinga: There are several systems that try to improve over
Nagios. Sensu is a highly extensible and scalable system that works well in



cloud environments. Incinga is a fork of Nagios. It focuses on a more
scalable distributed monitoring architecture and easy extension. Inciga also
has a stronger internal reporting system than Nagios. Both systems can
reuse Nagios’s large plug-in pool.

= Ganglia: Ganglia was originally designed to collect cluster metrics. It is
designed to have node-level metrics replicated to nearby nodes to prevent
data loss and over-chattiness to the central repository. Many laaS providers
support Ganglia.

= Graylog2, Logstash, and Splunk: These three are distributed log
management systems, tailored for processing large amounts of text-based
logs. There are front ends for integrative exploration of logs and powerful
search features.

= CloudWatch and the like: If you are using a public cloud, the cloud
provider will usually offer some solution for monitoring. For example,
AWS offers CloudWatch, which allows hundreds of metrics to be
collected at a fixed interval.

= Kafka: As mentioned earlier, due to the significant challenges in collecting
a large amounts of logs and metrics for real-time, multiple uses by other
systems, specialized systems were designed for the collection and
dissemination part. Kafka is a publish-subscribe messaging system used
not only for monitoring but also for other purposes.

= Stream processing tools (Storm, Flume, S4): If you are collecting a large
number of logs and metrics continuously, you are effectively creating
monitoring data streams. Thus, stream processing systems can be used for
processing monitoring data, even in a real-time fashion.

Apdex (Application Performance Index) is an open standard developed by an
alliance of companies. It defines a standard method for reporting and comparing
the performance of software applications in computing. Its purpose is to convert
measurements into insights about user satisfaction, by specifying a uniform way
to analyze and report on the degree to which measured performance meets user
expectations.

7.8 Diagnosing an Anomaly from Monitoring Data—the
Case of Platformer.com

Two of the reasons we identified for monitoring are to identify performance
problems and to detect intruders in the system. In this section, we explore a



small case study with some data from Platformer.com that demonstrates three
aspects:

= Distinguishing between these two causes of an anomaly in performance
data is not always straightforward.

= Deciding whether monitoring the performance of an application is a Dev
responsibility or an Ops responsibility is not straightforward.

= Lack of coordination between different organizational entities incurs costs.

We begin by presenting the context for the data collection we are going to
discuss. We then discuss the data that was observed and how it was analyzed.
We conclude this section by reflecting on the implications of this incident on
DevOps and responsibilities.

Context

Platformer.com is an Australian Platform as a Service (PaaS) provider. It
provides a marketplace of applications, such as content management solutions,
customer relationship management, and so forth, as well as databases and other
underlying systems. Through their interface, the customer can specify when and
how the system should scale, how disaster recovery should be implemented, and
so forth. The value comes from providing services at a higher level of
abstraction than laa$S, so that customers can get similar benefits without having
to deal with all the complexity of understanding and managing IaaS services. It
also allows customers to avoid being locked into a specific cloud vendor because
the same interfaces suffice for multiple cloud providers.

Platformer.com’s customers have three options for infrastructure services:

1. Access third-party cloud providers. AWS, Microsoft Azure, Rackspace,
and OrionVM are among the third-party providers supported by
Platformer.com. Customers access the third-party cloud providers through
a Platformer.com portal.

2. Access on the customers’ private cloud. This option places Platformer.com
software on the customers’ private cloud.

3. Access on the customers’ private datacenter. This option is similar to
using the customers’ private cloud but does not require the customer to
have adopted a cloud solution.

Platformer.com provides its services using a layered architecture, as shown in
Figure 7.2. The salient portions of the architecture are the API that provides a
customer with a common view of Platformer.com services, regardless of the
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delivery mechanism, and the dashboard that is used to display monitoring
information back to the customer.

: Monitoring
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e Platformer.com
9 Cloud Engine
;rServices (Aaa$S, DaaS, IaasJ"\; s
F'Iat[nrmar.cnmé = i
services ' Services !
\ | Monitoring

Arbitrary Cloud or
Physical Datacenter

FIGURE 7.2 Platformer.com architecture [Notation: Architecture]

Infrastructure

The sample customer using Platformer.com in this discussion is called
PhotoPNP. They are a not-for-profit organization that offers online services for
the exhibition, education, and publication of photography. They rely on
Platformer.com’s services to provision the web content management solution
Joomla, integrated with an e-commerce application.

Data Collection

When providing a single API that is implemented on disparate platforms, a PaaS
provider such as Platformer.com must either provide the least common
denominator of the platforms they support (services that all of the platforms
support) or simulate services available on some platforms with services available
on others.

In the case of monitoring, Platformer.com provides measurements of CPU,
disk, memory, and networking performance. These measures serve the
Platformer.com needs of load balancing activities, the provisioning of new VMs,
if required, or the de-provisioning of existing VMs. The measurements are
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reported to Platformer.com’s customers through a dashboard.

Because of the variety of platforms supported by Platformer.com, a variety of

measurement tools are used, depending on the underlying platform. Table 7.2
provides a list of the underlying platforms and the monitoring solution used in

each platform.

Infrastructure Management Solutions Monitoring

Provisioning Solutions

Public laaS Provider

Amazon Web AWS management API AWS CloudWatch

Services

Rackspace Rackspace management API Rackspace cloud
monitoring & alerting

OrionVM OrionVM API Magios or AlienVault

Microsoft Azure Azure management API

IBM/SoftLayer SoftLayer management API
(public)

DigitalOcean DigitalOcean management API
Private laaS Provider

IBM SoftLayer SoftLayer management API
(private)

Telkomsigma (CloudSigma) VMware management API

On-Premise IT

Mon-virtualized servers are set up and
managed utilizing tools such as Puppet
and Chef

Physical servers
(Linux)

Virtualized servers are built and
managed utilizing virt-manager utilities
and/or OpenStack API

Mon-virtualized servers are set up and
managed utilizing Microsoft SMS

Physical servers
(Windows)

Virtualized servers are set up and
managed utilizing VMware API and/or
OpenStack API

Azure monitoring &
alerting

SoftLayer
comprehensive
monitoring & alerting

Magios or AlienVault

SoftLayer
comprehensive
monitoring & alerting

Magios, AlienVault

Magios or AlienVault

Magios, AlientVault
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TABLE 7.2 Monitoring Solutions Associated with Platforms

Detecting an Anomaly

PhotoPNP’s servers have a normal CPU utilization of about 5%, but on
September 17 and 18, it spiked to around 17%. This spike was correlated with
variations in the other resources for which metrics were collected. A spike in
CPU load is one symptom of an intruder in the system—in this case, in one of
PhotoPNP’s servers. Platformer.com became concerned and investigated why
the spike occurred. It subsequently turned out that PhotoPNP had an opening
night to introduce the system to potential users and this caused the spike. This
observation was confirmed by subsequently having PhotoPnNP check Google
Analytics for user-level metrics over the period in question.

Reflections

This example leads to a number of different conclusions.

= One question within the DevOps community is who the first responder
should be in the event of some anomaly in observed data. In this example,
we see that the platform provider does not have sufficient insight to
attribute the anomaly to a normal application-level demand. Consequently,
if the development team had been the first responder, then the confusion
would not have happened. On the other hand, if the spike in CPU usage
had actually been caused by an intruder, having the application developers
be the first responders would have delayed an adequate response.
Furthermore, requiring the application developers to be able to detect an
intruder is asking them to have a level of expertise far beyond their
application.

= The suggestion that an intruder might have penetrated PhotoPNP’s servers
came from an examination of the CPU utilization, but the attribution of the
load required application-level metrics rather than just system-level
metrics.

Earlier we discussed using log management systems to correlate logs or
metrics taken from diverse sources. In the case of Platformer.com, the
application-level metrics were not available because their visibility was
limited to basic system-level metrics.

= If PhotoPNP had informed Platformer.com that they were planning an
event that would generate additional load, then the suspicion of a potential
intruder would not have occurred. In the Platformer.com case, the
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business-level entity was in another organization—but this type of local
communication could just as easily have happened within the same
organization, so this could easily become an example of the lack of
coordination between business and IT entities.

7.9 Summary

Monitoring is done for at least five purposes: detecting failure, diagnosing
performance problems, planning capacity, obtaining data for insights into user
interactions, and detecting intrusion. Each of these purposes requires different
data and different means of interpreting that data.

Many monitoring systems exist, and a common structure allows one to take
advantage of both time- and event-based collection. A common structure also
caters to applications that are monitoring-aware and those that are not. The
monitoring pipeline typically results in monitoring data being in a central
repository where it can be queried and used to generate alarms, alerts, and
visualizations. Correlating data from multiple sources is important in performing
analysis.

Continuous deployment practices increase the frequency of change—to
applications and to underlying infrastructure. There is less time for observing
and adjusting your monitoring solution to these changes. This suggests
automating the monitoring configuration process itself, including automated
smart, dynamic adjustments to alarm thresholds. The cloud environment makes
some parts of the system more opaque and introduces constant changes at the
infrastructure level. Monitoring tools need to be designed for such an
environment.

Systems are increasing in complexity, degree of distribution, and size. The
sheer volumes of the metrics and logs demand new generations of infrastructure
to support the collection, transfer, and storage for monitoring data. And once you
have collected a lot of monitoring data, big data analytics has the potential for
enabling insight from it. These insights are no longer just about system health
and performance, but about your business and customers.

7.10 For Further Reading

The book Effective Monitoring and Alerting [Ligus 13] goes into the details of
many of the topics we discussed in this chapter.

Ganglia is one of the monitoring tools we mentioned and is the subject of the
book Monitoring with Ganglia [Massie 12].



The microservice architectural style is described in Building Microservices:
Designing Fine-Grained Systems [Newman 15].

The idea of the log as a unifying mechanism comes from a LinkedIn page
[Kreps 13].

The research into the impact of delaying a response to a Google query comes
from a Google research blog [Brutlag 09].

Damon Edwards provides the types of monitoring of DevOps processes in
[Edwards 14].

As always, we rely on Wikipedia for many descriptions:
= Real user monitoring: http://en.wikipedia.org/wiki/Real_user_monitoring
= Synthetic monitoring: http://en.wikipedia.org/wiki/Synthetic_monitoring
= Apdex: http://en.wikipedia.org/wiki/Apdex

The tools that we mentioned can be found at the following links:
= RRDtool: http://oss.oetiker.ch/rrdtool/

= Application Response Measurement:
https://collaboration.opengroup.org/tech/management/arm/

= Logstash: http://logstash.net/
= Nagios: http://www.nagios.org/
= Sensu: http://sensuapp.org/

= [cinga: https://www.icinga.org/

= Graylog: http://graylog?2.org/

= Splunk: http://www.splunk.com/

= CloudWatch: http://aws.amazon.com/cloudwatch/
= Kafka: http://kafka.apache.org

= Storm: http://storm.incubator.apache.org/

= Flume: http://flume.apache.org/

= S4: http://incubator.apache.org/s4/
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8. Security and Security Audits

To err is human; to really screw up you need the root password.
—Anonymous

An initial reaction to discussing security in a DevOps context is to assume that
security practices are not agile and can actually hinder improving the time
between a code commit and acceptance into normal production. We believe that
this reaction is totally backward. Discussing adoption of DevOps practices
without considering security makes the security team a critic of these practices
and dooms the adoption of these practices in many enterprises. In our case study
in Chapter 12, we see an approach that advocates integrating the security team
into the adoption process. Other DevOps activities that are candidates for the
discussion of security are

= Security audits. When a security audit is imminent, coordination between
Dev and Ops becomes quite important.

= Securing the deployment pipeline. The deployment pipeline itself is an
attractive target for malicious attackers.

= Microservice architectures. The adoption of a microservice architecture
introduces new security challenges.

Security audits are a fact of life for financial organizations, organizations
dealing with health records or other private information, or organizations that
have internal controls over financial transactions (i.e., almost all organizations).
Security audits examine all aspects of an organization, from its policies to its
implementation. One of the catchphrases in DevOps is “infrastructure-as-code,
which means treating scripts and DevOps process specifications as code, and
applying the same quality control practices as you do with code. Security
policies, governance rules, and configurations can be naturally embedded in the
infrastructure code and automation for easier auditing. The automation can also
help generate audit outputs and detect noncompliance. We return to this idea
when we discuss specific aspects of security.

»

A security audit verifies that a set of requirements on the organization has
been met. These requirements provide an umbrella over all of the policies and

practices of the organization, both the IT and non-IT sides. This means that
whatever nractices a develonment osronn follows these nractices mnst conform
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to these requirements.

We organize this chapter by first discussing what is meant by security, then
we discuss threats to security. At that point, we present the organizational roles
to determine who is supposed to be doing what to counter those threats. We
discuss techniques to counter the threats and explain what happens during a
security audit. We then cover the security issues from an application
development perspective, and we close by discussing the security of the
deployment pipeline.

8.1 What Is Security?

Security is easily remembered by the acronym CIA, which stands for
confidentiality, integrity, and availability. Confidentiality means that no
unauthorized people are able to access information; integrity means that no
unauthorized people are able to modify information; and availability means that
authorized people are able to access information.

Authorization is an essential part of these definitions. The most secure system
has no users but also no utility. It is difficult to allow access by authorized
people and deny access by unauthorized people. Authorization has two elements
that answer the following questions: Who is trying to access or modify
information and do they have the right to perform the operation they requested?
Both of these elements are supported by a variety of techniques. In a DevOps
context, the information and operation here refer to the application and, equally
important, to the deployment pipeline (e.g., source code, build servers, and
specific pipeline operations). Furthermore, these techniques have been
incorporated into widely available software packages. One of the strong
recommendations from security experts is “Do not roll your own.” The errors
that may creep in can be subtle. You may not detect subtle errors, but they could
provide an avenue for an attacker to compromise your system.

One of the assumptions that security professionals make is that any single
means of protection can be circumvented. Consequently, security professionals
advocate “defense in depth,” which means that an attacker must circumvent
numerous different defenses to compromise your system. Consider the case of
how sensitive information on paper is protected in a typical spy story: There is a
fence around an isolated estate, guard dogs inside the fence, a security system at
the house, locked doors inside of the house, and a safe inside that contains the
sensitive paper. This analogy points out that the amount of security you need is a
result of a cost/benefit analysis. How much your organization is willing to spend



on security will depend on how big the loss can be if your system is
compromised. Equivalently, how much an attacker is willing to spend on
compromising your system will depend on the benefit achieved from the
compromise.

Defense in depth also raises the idea that your system can be compromised. In
this case, you will need mechanisms to detect what has happened and to give
you the ability to recover. Thus, associated with CIA is also a property of
nonrepudiation: Individuals cannot deny the operations they performed on the
data in your system. This is important for auditing.

Another concept is that of the life cycle of an attack. Attacks can be
prevented, detected while they are occurring, or detected after they have
succeeded. In the security world, measures to minimize security risks are called
“security controls.” Controls can be preventive, detective, or corrective
depending on their use within the life cycle of an attack.

Finally, controls can be additionally categorized by who is responsible for
their implementation. Technical controls such as encryption are implemented
within the application or the infrastructure. Organizational controls such as
applying security patches within 24 hours of their release by the vendor are
implemented through policies and procedures developed by the organization.
These two types of controls can be complementary, and an action may require
both types. For example, not only should security patches be installed promptly
(organizational), but the system should be able to respond to queries about its
patch level (technical).

8.2 Threats

The point of view of an attacker provides one perspective for you to take when
designing your system or subsystem. Microsoft has introduced the acronym
STRIDE for a threat model. See Figure 8.1. STRIDE stands for

Spoofing identity
Tampering with data
Repudiation
Information disclosure
Denial of service
Elevation of privilege



FIGURE 8.1 The STRIDE model

= Spoofing identity. An example of identity spoofing is illegally accessing
and then using another user’s authentication information, such as username
and password.

= Tampering with data. Data tampering involves the malicious modification
of data.

= Repudiation. Repudiation threats are associated with users who deny
performing an action without other parties having a way to prove
otherwise.

= Information disclosure. Information disclosure threats involve the
exposure of information to individuals who are not supposed to have
access to it.

= Denial of service. Denial of service (DoS) attacks target the service
availability to valid users—for example, by making a web server
temporarily unavailable or unusable.

= Elevation of privilege. In this type of threat, an unprivileged user gains
privileged access and thereby has sufficient access to compromise or
destroy the entire system.

Notice how these threats relate to the CIA definitions. Spoofing circumvents

authentication; tampering violates the integrity of data; repudiation is an explicit
statement of what should happen in the event of a breach or attempted breaking
of the rules; information disclosure is the negative of confidentiality; denial of
service compromises availability; and elevation of privilege is a technique to
allow compromise of any of the CIA properties.

During an audit, you should be prepared to demonstrate how the controls in

your system, in conjunction with other organizational and platform controls,
reduce the likelihood of any of these threats succeeding.

Insiders pose one source of threats that should be mentioned here. The

Software Engineering Institute (SEI) defines an insider as “a current or former
employee, contractor, or business partner who has or had authorized access to an
organization’s network, system or data.” An attack by an insider means that the
insider has misused that access to intentionally violate one of the CIA properties.

Verizon reports that approximately 15% of data breaches are from insiders.

Thus, insider attacks are significant and should be considered in an
organization’s security analysis.

1

Both Verizon and the SEI loosely characterize the motives behind an attack as



being

= Financial. Financially motivated attacks involve the theft of money or of
items that can be sold. Markets exist for items such as credit card numbers,
and tracking those markets can enable you to gain some understanding of
the extent of the breaches that have occurred.

= Intellectual property. Many attacks attempt to gain intellectual property
such as trade secrets from commercial organizations or classified
information from government organizations.

= Sabotage. This category of attacks includes denial-of-service attacks and
modifying customer-facing information such as websites as well as out-
and-out destruction of sensitive data by disgruntled employees.

Finally, it is important to note that many problems can be caused by security-
related mistakes rather than intentional attacks, as we highlighted in the chapter
quotation—"“To err is human; to really screw up you need the root password.”

8.3 Resources to Be Protected

Of the elements of security, C and I refer to “information.” Information is one of
the key resources to be protected. Information can be at rest, in use, or in transit.
This includes information related to DevOps activities such as source code, test
data, logs, updates, and who placed a version into production.

= Information at rest is stored on persistent storage. It can be accessed either
through the software systems under the control of one of the actors or
through physical possession of the persistent storage. As an example of the
former, a legitimate user logs in and receives credentials allowing him or
her to access certain data. The software that can be accessed understands
the credentials and knows how to retrieve, display, and modify the data. As
an example of the latter, a copy of sensitive data is kept on a laptop that is
stolen from the trunk of your car. In the DevOps context, in addition to
protecting persistent application-related data, you should consider whether
the information you put inside plain-text log lines is sensitive, whether
your test data (which could be an early snapshot of sensitive production
databases) is well protected, and whether the security around your source
code is enough. The tradeoff is between protecting everything through
encryption and subsequent decryption and the resulting performance costs
of this encryption and decryption. As we will see, the smallness of
microservices may make it easier to enforce service-specific security
policies.



= Information in use is being used by an information system. It may be
displayed to the user, it may be stored in a cache for performance or
reliability reasons, or it may be stored in a virtual machine (VM), also for
performance or reliability reasons. This data is available to users who can
access the portion of the information system where it currently exists. In
the DevOps context, many advocate a much shorter server life span (as a
result of using phoenix or ephemeral servers, where any change means
replacing the old set of VMs through a set of new VMs) for reliability
reasons and to prevent server drift. This practice also adds to security in
terms of destroying any sensitive information accumulating in the server
over time. Information in use may also be internally encrypted and only
decrypted for display. This may have the effect of rendering caching
proxies less effective and usage more cumbersome.

Information in transit is being moved from one location to another. If the
movement is over a network, then the data is available through access to
the network. Network access can be through one of the endpoints of the
transit or through an intermediate point. Legitimate reasons exist for
accessing data at an intermediate point. For example, monitoring network
traffic or using a firewall to filter certain information are both legitimate
reasons and rely on network access at an intermediate point of the transfer
of information. If the data is being moved from one VM to another on the
same physical host or from one process to another through a socket, then it
is accessed by either the endpoints or the transmission mechanism. There
are many techniques to encrypt the data during movement and authenticate
both ends. This adds more complexity in certificate and key management
and incurs an additional performance penalty for both
authentication/authorization and encryption/decryption. We discuss this
later in a microservice architecture context.

Computational resources also need to be protected. This is the A in CIA.
Authorized users should be able to access the resources they need. Again, this
includes DevOps resources such as the build server. Resources can become
unavailable to an authorized user for multiple reasons, including:

= The simplest reason is that you have forgotten your password or misplaced
your keys. We all use multiple systems with different keys and
requirements for password length and composition. We also are exhorted
not to reuse passwords and have specific keys for specific purposes. In
such a situation, forgetting a particular password or mismanaging a key is
not uncommon. Systems should provide a means to recover or revoke a



password or key.

= Your password, key, or certificate could also have been maliciously reset
or compromised. If an attacker succeeds in compromising your certificate,
the attacker may pretend to be you and act maliciously. Systems should
have a means to verify and alert users when a change has happened and
provide corrective means quickly. Managing, monitoring, and replacing
compromised certificates are complicated processes that take a significant
amount of time, often amid downtime.

= The system you are attempting to access may be the subject of a denial-of-
service attack. Such an attack is an orchestrated series of requests to a
system to consume resources responding to these requests and keep the
resources unavailable for authorized users. Installing gateway filters based
on IP addresses is one method for preventing a denial-of-service attack
from being successful. An application programming interface (API) key is
another popular method for limiting access rate and user abuse, whether
intentional or not.

Not every intruder will compromise one of the CIA properties. Suppose an
unauthorized student is using your system to do homework. This user’s demands
on the system are low, and so the use does not compromise availability. The
student does not access or modify information so the student’s use does not
compromise C or L. This use, however, is still illegitimate and is an indication
that your computational resources are not well protected.

A final concern about resource protection comes from the special nature of the
cloud, especially in a DevOps context. Developers have the ability to easily
create new VM images (e.g., for using a heavily baked deployment approach)
and instances of them. It is easy to lose track of both images and instances,
particularly when there is no charge for usage, such as in a private cloud. VM
image sprawl is the term used to describe the proliferation of VM images to the
point where the management systems lose track of them. The images take up
significant storage, and losing track of which image is used in what instances
also introduces additional security problems. For example, lost images or
instances are not patched as a portion of the normal patching process and,
consequently, are more vulnerable to attacks than patched systems. A recent
example of a successful attack because of VM sprawl comes from
BrowserStack: An old unutilized VM was unpatched and was compromised by
Shellshock. The unutilized VM contained some credentials that were then used
to compromise active VMs.

Lost instances may also incur additional cost. Mechanisms should be in place



to track both VM images and instances. For example, Netflix’s Simian Army
tool suite includes a Janitor Monkey that finds unused resources and removes
them. A Security/Conformity Monkey also finds security violations or
vulnerabilities. Some operating systems vendors provide specific tools, such as
Red Hat’s Spacewalk, to help you check if the latest patches have been applied
to your (virtual) machines. As said earlier, enforcing a shorter lifetime for a VM,
meaning terminating and replacing it after a fixed amount of time even when
healthy, is a technique for preventing VM sprawl. This not only prevents
configuration drifting and encourages better fault tolerance, but also improves
security in terms of reducing attack profile, helping tracking and removing
sensitive information traces.

8.4 Security Roles and Activities

We identify four different roles related to security, and we will refer to these
roles when we discuss the various activities that are involved in achieving a
secure environment. The people performing these roles may belong to the same
organization or to different organizations.

1. Security architect. A security architect is responsible for the design of an
organization’s network to achieve security for the network. The security
architect is also responsible for overseeing the implementation of the
network.

2. Solution architect. A solution architect is responsible for the design of
systems to support the organization’s business functions. Developers
implement these designs.

3. IT staff. The organization’s IT staff is responsible for monitoring and
tracing any events related to potential security attacks. The IT staff is also
responsible for the implementation of the architecture designed by the
security architect.

4. Platform provider. The platform provider is responsible for securing the
perimeter of the computing platforms used by an organization, ensuring
isolation among the customers of the platform, and ensuring that the
customers get adequate resources when they require them. The platform
provider also provides services used by the security architect.

You can see a set of dependencies among these roles. The platform provider
provides a base potentially usable by many teams and business units within
many organizations, the security architect designs security for the whole
organization using the services provided by the platform, the IT staff implements
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architect designs systems within the security architecture and the platform.

In a DevOps context, the activities performed by these roles can be embedded
in tools. As always, the use of these tools needs to be logged and kept for future
examination by the auditor. There is also a debate on the developers’ role in
implementing network- and infrastructure-related security through
infrastructure-as-code, subsuming some of the responsibilities of IT staff. With
security vendors starting to expose APIs and allowing more automation, and
with the emergence of software-defined networks (SDNs), this is becoming a
reality. The most important question is perhaps not whether Devs or Ops plays a
role in implementing a particular layer of security design, but whether these
layers are implemented, tracked, automated, and auditable.

The security community has been active in identifying and publicizing the
types of controls that an organization should adopt to manage the risks to
information security and privacy. Two different widely used lists are published
by the National Institute of Standards and Technology (NIST 800-53) and by the
International Organization for Standardization/International Electrotechnical
Commission (ISO/IEC 27001). These two organizations collaborate, and their
lists cross-reference each other, so the two lists are very similar. We will base
our discussion on NIST 800-53 because it is freely available over the Internet.

One method of organizing controls is by functionally related categories. The
categories of NIST 800-53 are: access control, awareness and training, audit and
accountability, security assessment and authorization, configuration
management, contingency planning, identification and authentication, incident
response, maintenance, media protection, physical and environmental protection,
planning, personnel security, risk assessment, system and services acquisition,
system and communication protection, system and information integrity, and
program management.

As you can see, these categories span a wide range of supporting activities by
a wide collection of actors within an organization. Enumerating all of these
controls takes over 200 pages. The controls differentiate between activities that
are performed by the organization (e.g., the organization establishes and
manages cryptographic keys for required cryptography employed within the
information system) and those performed by the information system (e.g., the
information system implements organization-defined cryptographic uses and
types of cryptography required for each use in accordance with applicable
federal laws, executive orders, directives, policies, regulations, and standards).

The controls are mainly specified in terms of outcomes, not in terms of



methods. For example, one control states, “The information system uniquely
identifies and authenticates [Assignment: organization-defined specific and/or
types of devices] before establishing a [Selection (one or more): local; remote;
network] connection.” There is no discussion of how the system identifies and
authenticates, only that these processes occur. Conformance to these controls
should be implemented, tested, and monitored. For implementation, it is a matter
of having manual or automatic means to enforce the control. You will rely on
existing security mechanisms in a platform, service, or library to realize security
features like authorization, authentication, and encryption. Some of these
mechanisms can be automated by code invoking a security product’s APIs. Then
the code becomes an important piece of evidence during auditing. For testing,
this means that security-related testing is integrated into the continuous
deployment pipeline, which may result in static analysis in an integrated
development environment (IDE) before commit or security-related test cases in
the build and test server. This continuous and integrated nature of security
testing becomes another evidence for auditing. Finally, for monitoring,
production environment security monitoring and conformance checking can be
implemented to detect and correct any security violations. Thus, DevOps
processes and tools that implement a control can be used without compromising
an organization’s ability to pass an audit and, in many cases, can improve the
organization’s ability.

From an auditor’s perspective, the method for assessing an organization’s
security controls begins with the policies adopted by the organization. An
auditor initially attempts to answer the question: Are an organization’s policies
adequate to meet the security requirements for the system or systems under
assessment? The organizational controls enumerated by NIST 800-53 or a
derivative provide a starting place for the assessment. Different domains have
used NIST 800-53 as a starting point and added their own domain-specific
requirements. These domain-specific variants have names more familiar than
NIST 800-53. Names such as HIPAA for health information, PCI for credit card
information, and security profiles for the electric grid are familiar to those in
these respective industries. The auditor then moves on to the controls chosen to
implement a particular policy and attempts to answer the questions: Are the
chosen controls adequate to implement the policy?; Are they implemented
correctly?; and Are they operating as intended? Again, the implementation
controls enumerated by NIST 800-53 or its derivatives provide a starting place
for determining whether the controls are adequate. The correct implementation
and the operation as intended are determined by the auditor based on evidence



provided by the organization.

We focus on the technical controls—those, at least partially, that the software
architect has some input or control over. Three categories exist for the technical
controls:

= “Within channels” controls. These are the controls that allow legitimate
users access to the network, authenticate users, and authorize users to
access information or resources. These controls support and should be
applied to activities involved in the application itself, in the deployment
pipeline, and in other operations. For example, modifying a script should
involve authentication and authorization and be tracked in a version
control system.

= “Outside of channels” controls. These are the controls intended to prevent
access through nonapproved channels. For example, side channel attacks
exploit timing, power consumption, and sound and electrometric leaks to
gain useful information. Information can be at rest, in use, or in transit and
should be protected in any case. Resources should not be used outside of
normal channels, and side channels should be evaluated.

= Auditing. A record should be kept of various activities within the system
such as use of resources, accesses to data, and modification of data. The
auditing controls are intended to ensure that such a record is created and
maintained. Again, in the DevOps context, this means a number of
different things: 1) the use of automated tools and infrastructure-as-code to
record security testing results; 2) the integration of security testing in the
DevOps pipeline; and 3) the security of the DevOps pipeline and other
operations themselves. All these provide good evidence in a security audit.

8.5 Identity Management

Unless an application is available to all users without restriction, identifying
users is a prerequisite to determining whether a particular use is legitimate.
Identity management refers to all tasks required to create, manage, and delete
user identities. During the lifetime of a user account this will include adding or
removing access to specific systems, resetting lost passwords/keys, and
enforcing periodic password/key changes. All activities within the identity
management task should be logged for audit purposes—not only human-initiated
activities but also activities performed by tools or scripts. Invocations among
(micro)services also need to be authenticated.

Identity management relates to the roles of platform provider and security
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of the users of the platform, and the security architect does the same for all users
of an organization’s systems. Given that the organization’s systems are
executing on a platform from the platform provider, the organization’s users are
also users of the platform. The same identity management can be used for
accessing applications, development activities, and deployment pipelines. We
return to this concept when we discuss authorization.

A wide variety of commercial identity management tools exist. Identity
management controls are categorized under the identification and authentication
category of NIST 800-53. Identity management tools as well as authentication
tools are under the control of the security architect and operated by the IT staff.

Authentication

Authentication controls are intended to verify that you are who you say you are.
That is, they protect against a spoofing attack. The “you” here also covers a
service invoking another service. We focus on authenticating an individual here
and will discuss authentication among services later.

Authenticating an individual gets complicated for a number of reasons.

= “You” may not mean you, but may mean a system operating on your
behalf.

= “You” may not be uniquely identified by the system, but instead “you”
may be a role.

= Your authentication mechanism (e.g., password or certificate) may have
been compromised.

= You may no longer be an employee or authorized user of the system.

In the security world, there are three methods of authenticating you as an
individual. These are something you know (e.g., a password), something you
have (e.g., a smart card), or something you are, (e.g., fingerprints). Some
systems require you to use two of these three categories. For example, your
ATM card has a magnetic strip (something you have) as well as requiring a PIN
(something you know). Other systems require you to know multiple things. For
example, you need to know both a password and the answer to a secret question.
The system can authenticate itself to you prior to asking for something you
know. For example, systems show a picture you have preselected to identify to
you that you have arrived at the correct location before you enter a password.
This technique is an attempt to avoid having your password compromised. A
certificate-based approach is more secure in some aspects but requires more



complicated infrastructure setup.

In the remainder of this discussion we elaborate on the different types of
authentication controls.

Controls Relating to a System Operating on Your Behalf

The considerations for hardware and software differ, and we divide the
discussion accordingly.

Hardware

A strong method for ensuring only legitimate devices can connect to your system
is to require devices to be preregistered. This prevents man-in-the-middle
attacks. A weaker form is for your system to leave state (e.g., a cookie) on an
external system that identifies that system as having previously accessed your
system. If the external system does not have such state then additional questions
may be asked.

Maintenance is one scenario where the strong method becomes important.
That is, your system has a physical component (e.g., an ATM machine), and
maintenance is performed via utilization of a specialized computer. Registering
the specialized computer prevents the use of a fraudulent maintenance computer
to compromise the system.

Software

We mentioned that your system may access resources through a platform. Your
system has users, and your system is a user of the platform. Requiring the user to
log on first to your system and second to the platform is undesirable for several
reasons:

= Users resist having to log in several times to the same system. Although
you know that, in reality, there are multiple systems, from a user’s
perspective it should appear as a single system.

= The platform resources accessed may be shared across several users, and
exposing the same password to multiple users violates authentication
controls. Requiring each user to have an account on the platform as well as
on your system becomes cumbersome. Deleting an account, for example,
requires coordination between your system and the platform that is
difficult to manage.

Two fundamental techniques exist to allow one system to access another

system with user credentials. One is single sign-on and the other is separate,
evetam-manaoced rradentiale
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= Single sign-on relies on a distinct credential providing service. Multiple
different versions of this capability have been developed, but the best
known is perhaps Kerberos. The initial sign-on generates a Kerberos
ticket-granting ticket. This ticket is used to sign on to other systems that
accept Kerberos tickets.

= System-managed credentials means that your system maintains a set of
credentials suitable for access to platforms or other systems. Your system
utilizes these credentials on behalf of your users to authenticate use of the
platform. The issue you must consider is how to protect these credentials
from unauthorized access. This is the subject of a distinct set of controls in
NIST 800-53 called “System and Communications Protection.”
Certificates also have an expiration date, and one common cause for
inability to communicate with external systems is the use of expired
certificates. One of the members of Netflix’s Simian Army is a Security
Monkey, among whose responsibilities is checking for expired certificates.

Role-Based Authentication

Role-based authentication (RBA) is a technique for assigning identifications
based on roles rather than on identity. For example, you may log in as super user
using the root password. Super user is a role you are assuming; it is not your
identity. RBA simplifies some problems since once a role is identified, the
access privileges associated with the role can be automatically assigned. The
problem with RBA is that there is no traceability. A problem may be traced to
“super user” but not to an individual. We discuss how to rectify this problem in
the next section on authorization.

Controls to Prevent Compromising Passwords
Passwords can be compromised in several different ways:

= An attacker breaks an individual’s password through various forms of
brute force attacks. Controls specify minimum password length, password
lifetime, and limits on password reuse.

= A user allows her or his password to be determined through social
engineering means. There are controls about security education for users,
but perhaps the most notorious use of social engineering to determine a
password comes from the Stuxnet worm. This worm exploited the fact that
some system passwords were hard coded in the software being attacked. In
addition, these passwords were available on the Internet. One of the



controls to prevent this type of attack is to require that default passwords
be changed before a system goes into production.

= An authorized user changes roles or leaves the organization. We defer the
discussion of role change to the next section on authorization, but when an
employee leaves the organization, a control specifies that their account
privileges are deleted within a short time frame.

= Your system is compromised, allowing determination of passwords.
Controls specify that passwords must be stored in an encrypted form using
an approved piece of cryptographic software. The data is difficult to
decrypt if it is encrypted in a sufficiently strong manner. Furthermore, the
software that provides encryption and decryption should be approved,
meaning it has been tested by an authorized testing organization.

Authorization

Once a user is identified then it becomes possible to control access to resources
based on the privileges granted to that user. The most relevant control in NIST
800-53 is “AC-3, Access Enforcement”:

Control: The information system enforces approved authorizations
for logical access to information and system resources in accordance
with applicable access control policies.

As with authentication, authorizations can be logged, whether the resources
are accessed manually, through scripts, or through tools, along with who was
responsible for the authorization.

Techniques to Control Access to Resources

There are two fundamental techniques used to control access to resources: access
control lists (ACLs) and capabilities.

=« ACLs. An ACL is a list of users or roles and allowed operations attached to
a resource such as a file system or database field. When a user asks for
access to the resource to perform a particular operation, the list is
examined to determine whether that user or role has the right to perform
that operation on the resource.

= Capability. A capability is a token that grants particular rights on a
resource. A good analogy is a key and a lock. The capability is the key; the
resource maintains the lock. When access is requested, the resource will
verify that the token provided with the access request contains sufficient
privileges for the provider of that token to be granted access.



Regardless of the technique used to control access, the least possible
privileges should be granted to a user or role to enable them to perform their
required tasks.

Role-Based Access Control

We discussed RBA and pointed out that assigning privileges to roles simplifies
managing large number of users. Now we discuss how that translates into access
control. Every user should have a unique identity as far as the system is
concerned, but users may change roles and, consequently, have different access
privileges. Consider, for example, the root password. Suppose an operator gets
promoted to a position that does not require root access. The options are: leave
the root password as is, resulting in an unauthorized individual knowing the root
password; change the root password, resulting in all of the remaining operators
having to learn a new password; or use role-based access control (RBAC).

RBAC is based on a mapping between individuals and roles. A role is allowed
certain access privileges, and the identity management system maintains a
mapping between users and roles. It also maintains a mapping between roles and
privileges. Then, when a user changes roles, the mapping between users and
roles is changed as well and the authorization system is provided with the
information appropriate to the new role. Thus, our hypothetical operator who
gets promoted will be removed from the operator role and assigned a new role,
and the identity management system will provide the appropriate new privileges
to that individual while removing root access. This transition is also logged for
auditing purposes.

In large organizations, RBAC becomes complicated because it assumes a
uniform definition of roles across the organization. Many large organizations
have similar, but different, roles in different portions of the organization.
Defining roles uniformly may involve moving responsibilities from one role to
another in certain places within the organization. Suppose, for example, one
portion of an organization has adopted continuous deployment practices and
another has not. To what role do you assign “can authorize deployment to
production?”

Let us use a deployment pipeline example to illustrate this. In the popular
Jenkins continuous integration tool, there are alternative ways of providing
authorization to a deployment pipeline. You usually want to have different
authorization to different parts of the pipeline. For example, developers may not
be authorized to trigger certain types of quality assurance (QA) jobs or deploy to
a production environment. You can use the Jenkins Role Strategy plug-in to
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derine aifferent roles that have autnorization to ditterent parts ot the pipeline.
Then you can link jobs to roles. At the moment, this is done through regular
expression on job names, which can be complicated to manage especially if you
have many jobs. An alternative approach is to use the Jenkins Matrix
Authorization plug-in where you organize all your jobs into different folders.
You can then define authorizations at the folder level by mapping them to users
or roles.

8.6 Access Control

Identity management controls are intended to prevent spoofing, tampering,
information disclosure, and elevation of privilege for those users who have gone
through authentication and authorization channels. Tampering and information
disclosure are still threats from those who do not go through authentication and
authorization channels, and are discussed in this section. We discuss the
remaining elements of STRIDE—nonrepudiation and denial of service—in the
next section.

We begin by discussing controls intended to prevent tampering and
information disclosure. The spy analogy that we used in the beginning of this
chapter is relevant here. Prevent access and then, if that does not work, make
what the intruder finds not usable.

Preventing Access

Working from outside in, the boundary of the system or the organization’s
software system must be defined. That is, the resources to be protected must be
clearly identified. Resources may have different levels of protection, for
example, available for reading by unauthenticated users (a website open to the
Internet) or not available for reading by unauthenticated users (an internal
website).

Defining Boundaries

The organization’s network can be partitioned into subnets, each with its own
boundary. Each subnet represents a collection of resources that have the same
level of protection. Using a microservice architecture provides more flexibility
in determining the boundaries. Once the boundaries are defined, then
communication from outside of a boundary to inside of the boundary or vice
versa can be controlled. Access from the Internet is treated differently from
mobile access, which, in turn, is different from internal access. There should be
firewalls, gateways, routers, guards, malicious code analysis, and virtualization



systems or encrypted tunnels protecting each subnet. This overall structure is
within the domain of the security architect.

Tools that live outside of a subnet—such as deployment tools—must have
permissions granted so that they can deploy into the subnet. These permissions
can be inherited from the invoker of the tool. A special subnet called the
Demilitarized Zone is open to Internet access and restricted in accessing the
internal network. External-facing websites are typically placed in this subnet.
With this type of boundary protection, external access must go through a firewall
or gateway that can restrict port usage, maintain blacklisted IP addresses, and
perform other checking. An attacker that wishes to gain unauthorized access to
data or resources must first go through perimeter checking at the boundary.

Isolation

Isolation is a technique related to perimeter checking. Isolation means that
logically distinct functions are kept apart, either physically or logically. Physical
separation has historically been used—do not connect resources you wish to
protect to the Internet and restrict physical access to these resources. In the
modern world, physical separation is appropriate in very few cases, typically in a
process control context, but is not feasible when the main means of accessing
systems is over the Internet.

Isolation, in the modern context, can be interpreted as separation. You can
separate computational functions, for example, based on their security
sensitivity. Then a boundary can be established and credentials can be required
for data or a process to cross that boundary. Sensitive personal data can be
separated from other data. Then access can be allowed, with one set of
credentials, to the set of attributes, with a different set of credentials to the
personal data, and with a third set of credentials to both.

When resources are shared, such as two VMs sharing a single physical
machine, then isolation is enforced by the system software executing on the
physical machine. Memory, disk, and networks can all be shared in a cloud
environment. Isolation of memory is performed using virtual memory
techniques, isolation of disk is performed using partitioning of disks, and
isolation of network usage is performed by the network protocols used.

Encryption

In order to prevent an attacker from gaining access to data, whether at rest or in
transit, encryption is used to protect that data. Many of the controls in NIST 800-
53 describe the use of cryptographic algorithms and software. The algorithm and
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auditing process.

Data in use can only be reached by breaking the isolation of processes. Data in
use is typically not encrypted both for performance and human reasons. It takes
time to encrypt and decrypt data—this is the performance reason. Humans have
difficulty reading encrypted data—this is the human reason.

Observe how the different techniques are complementary. Isolation identifies
boundaries, boundary controls prevent unauthorized access, and encryption
means that once an attacker reaches data, it cannot be interpreted.

Other Considerations

Three other considerations are relevant in terms of preventing access. These are:
decommissioning data, patching, and change management.

1. Data that is no longer useful still might remain on the system. This data
could be available for an attacker. Some controls deal with how to
decommission data. This may involve removal from all of the locations
where it has been stored, but it can also involve keeping copies of the data
for auditing purposes.

2. Systems have vulnerabilities. Vendors repair vulnerabilities through
patches. These patches must be applied. Controls specify that patches must
be applied promptly and that systems must be able to report their patch
level upon request.

3. Tracking the versions and patch levels of all of the software on your
system is important, not only when performing root cause analysis but also
from a security perspective. Which potential vulnerabilities in your system
have been patched is something that is important to know. Not only the
versions of the software but also the versions of the configuration
specifications and the deployment specifications are important to track for
the purposes of being able to prove that your system can withstand
particular types of attacks. The existence of a set of configuration
management controls is of particular importance to DevOps. Not only is
changing a configuration directly without going through the normal
process bad practice, it also may violate security controls and cause a
problem during a security audit.

Let us use a service authentication example to illustrate all this. The
communication between different services or between services and browsers
may need to be authenticated and also encrypted to prevent eavesdropping or
man-in-the-middle attacks. One way of doing this is the use of HTTPS to



encrypt the traffic. With it, the client service also gains a strong guarantee on the
server-side service being who it claims to be. A problem with this is that the
organization needs to manage the HTTPS certification issuing and revoking
processes, the automation of which is nontrivial. If you have many microservices
and servers, this can become a significant overhead for the teams and the
deployment pipeline. There are also performance penalties due to the many
authentications among microservices and the encryption rendering reverse
proxies (e.g., Squid) unusable. You may want to have strong security at the
boundary so that you can choose not to use encryption inside your secured
network, and only use it when you communicate past the boundary.

Who Is Responsible for the Prevention Controls?

We have identified three roles that are relevant for the prevention of
unauthorized access—security architect, solution architect, and platform
provider. Border protection is the responsibility of the owner of the system just
inside the border. That is, the platform provider is responsible for protecting
access to the platform’s resources, the security architect is responsible for
protecting access to the organization’s resources, and the solution architect is
responsible for protecting access to particular systems. Defensive programming
and lack of trust in incoming messages are two of the design practices that
characterize secure development principles.

The same concept of ownership determines responsibility for the other types
of prevention controls. If it concerns a portion of the system under your control,
then you are responsible for protecting the data, ensuring auditability, and
keeping the patches up to date.

8.7 Detection, Auditing, and Denial of Service

We have discussed preventative measures, but detecting attacks while they
happen touches on a different set of controls. All of these controls involve
monitoring. Resources can be monitored for abnormal usage patterns. Messages
can be monitored for a wide variety of different characteristics, ranging from
port scans looking for an open port to repeated login attempts to velocity of page
fetching requests. All of these controls are provided by available tools and are
the responsibility of the platform provider, the IT staff, and the security
architect. The solution architect is usually not directly involved in these controls.

The R in STRIDE stands for repudiation. Both for business reasons (e.g., “I
did not order that”) and forensic reasons (e.g., “What damage did the attacker
do?”) auditing activities are important. Some of the items to be recorded include



account creation, modification, override of access control mechanisms, use of
privileged functions, creation or deletion of security attributes, connections from
both internal and external sources, and changes to software or configuration.

Once an audit trail has been created, it must be protected. It does no good to
record information if an attacker can modify that information to hide the trail.
Audit records must be encrypted, stored independently of the systems that are
being audited, and have protected access.

Do not confuse audit trails with logs. Audit trails persist for months or years,
have legal standing, and are designed for security purposes. Logs persist for
times measured in days (or less) and are designed to support operational and
development needs.

Audit records are the responsibility of all of the stakeholders we mentioned.
Stakeholders identify the significant events that can occur within their sphere of
control and are responsible for determining that these events are added to the
audit trail in a protected fashion.

The one element of STRIDE we have yet to discuss is the D—denial of
service. Denial-of-service protection is the responsibility of the platform
provider and the security architect. A variety of technologies and tools exist to
limit the effect of denial-of-service attacks. For example, boundary control
devices can filter certain types of packets and limit the ports accessed to protect
interior systems. Rate-limiting or traffic-shaping switches are also used to
protect against denial-of-service attacks.

8.8 Development

Controls exist in NIST 800-53 that specify aspects of the development process.
To once again mention infrastructure-as-code, scripts and other inputs into
DevOps tools must be developed and should be subject to the same scrutiny as
application code development. On the other hand, security testing must be
integrated with the deployment pipeline. Developers must demonstrate that they
have explicitly addressed security requirements and have performed processes
such as threat modelling and deriving quality metrics.

Five design principles for security are

1. Provide clients with the least privilege necessary to complete their task. If
temporary access is needed it should be rescinded right after use.

2. Mechanisms should be as small and simple as possible. As we stated in
Chapter 5, small modules with narrow interfaces are faster to test. The



module will execute each test more quickly because it is smaller and the
number of interface parameters to test will be smaller because the interface
IS narrow.

3. Every access to every object must be checked not only during normal use
but also during initialization, shutdown, and restart.

4. Minimize the number of mechanisms common to more than one user and
depended on by all users. Every shared mechanism is a potential
information path.

5. Utilize fail-safe defaults. Argue why a particular process or client needs to
have access, not why that process or client should not have access.

These design principles apply to both the application design and the
deployment pipeline itself. Security is more than a matter of a good design; it is
also a matter of good coding practices. Multiple lists of secure coding practices
exist, and these lists have been built into static analysis tools. One of the security
gates that a system should pass during the deployment pipeline is testing for
coding practices. Another is testing for various runtime attack methods, such as
Cross-site scripting.

8.9 Auditors

With this background, what does an auditor look for? The answer is “all of the
above.” An auditor should want to consider everything from development
practices on code and scripts to which controls are used to protect against what
kinds of attacks.

As a concrete example, consider what the auditors should be asking about
identity management—but note that they go through a similar sequence for all of
the security elements we have discussed. First, they should consider the
organization’s policies with respect to provisioning and de-provisioning
accounts. Are the roles within the organization clearly identified? What
privileges are associated with a normal account or with specialized roles? How
do the organization and their platform provider interact? Who has responsibility
for the identity management system?

These questions involve the security architect and the platform provider. The
concern is with policy, and the goal is to ensure that appropriate policies are in
place at an organization level and that interfaces between the organization and
the platform provider are well defined.

Platform providers can acquire independent certification that they are
compliant to one or more of the domain-specific standards. If this is the case,



they will not need to participate in this audit process.

Next, the auditors involve the solution architects and ask the same questions
with respect to specific systems. Again, the goal is to examine the systems
within the organization from a policy perspective. The auditors also ask
questions about the development process. Is there security awareness on the part
of the developers? Are there security tests in the deployment pipeline? Are
reviews carried out? Are the design considerations enumerated earlier utilized
and verified? Are the same practices carried out in developing scripts and using
DevOps tools? and so forth.

The auditors are then interested in seeing how the policies are implemented.
How is identity management implemented? How are passwords saved? How are
new passwords confirmed as to strength? How are credentials for the platform
managed from the organization? How is the system tested with respect to
security? and so forth. Having security test cases in code and integrated in the
pipeline or having security policy implementation automated in well-tested
scripts is good evidence to auditors.

Finally, the auditors will ask for sample evidence. Create a new account for
me, show me the privileges I get, show me the records that demonstrate how
long it takes to deactivate an account once an employee leaves the organization,
and show me how this links back into your change management system.

In many cases, multiple controls exist to solve the same problem. The
organization being audited must demonstrate that their particular combination of
organizational and technical controls will satisfy the requirements. There is no
“one size fits all” type of response. If one control is defectively implemented or
has no evidence, another control may satisfy the requirement being reviewed.

8.10 Application Design Considerations

The use of the cloud and microservice architecture leads to some special design
considerations for security.

= A few additional security considerations must be taken for the application
host, namely, the VMs in the cloud. We use AWS Cloud as an example.

= Any cloud-wide AWS administration account (just like the root account)
should not be used after initial registration and setup. Different identities
(users or roles) with least privileges (to resources) should be set up using
AWS Identity and Access Management (IAM) for different purposes.

= No EC2 key pairs should be shared among different users.



= Use server-side encryption to secure items in storage such as AWS S3.

= No VMs should have access to the Internet except through a gateway
with only the required ports. A virtual private network with appropriate
subnets should be used.

= Use AWS CloudTrail logs to monitor and audit access history.

= Ship logs from EC2 instances to outside processing and storage
components.

= Components should be able to be isolated and deployed independently
without affecting other components. This is for security and other reasons
we discussed earlier in the book.

= Components should be coded to be defensive and not to trust their invoker.
This is true not only for security reasons but also for reliability reasons.

= Components are provided with configurations (sometimes through
dynamically querying an external service) appropriate to the environment
in which they a