

About	This	eBook

ePUB	is	an	open,	industry-standard	format	for	eBooks.	However,	support	of
ePUB	and	its	many	features	varies	across	reading	devices	and	applications.	Use
your	device	or	app	settings	to	customize	the	presentation	to	your	liking.	Settings
that	you	can	customize	often	include	font,	font	size,	single	or	double	column,
landscape	or	portrait	mode,	and	figures	that	you	can	click	or	tap	to	enlarge.	For
additional	information	about	the	settings	and	features	on	your	reading	device	or
app,	visit	the	device	manufacturer’s	Web	site.
Many	titles	include	programming	code	or	configuration	examples.	To

optimize	the	presentation	of	these	elements,	view	the	eBook	in	single-column,
landscape	mode	and	adjust	the	font	size	to	the	smallest	setting.	In	addition	to
presenting	code	and	configurations	in	the	reflowable	text	format,	we	have
included	images	of	the	code	that	mimic	the	presentation	found	in	the	print	book;
therefore,	where	the	reflowable	format	may	compromise	the	presentation	of	the
code	listing,	you	will	see	a	“Click	here	to	view	code	image”	link.	Click	the	link
to	view	the	print-fidelity	code	image.	To	return	to	the	previous	page	viewed,
click	the	Back	button	on	your	device	or	app.

DevOps

A	Software	Architect’s	Perspective

Len	Bass
Ingo	Weber
Liming	Zhu

New	York	•	Boston	•	Indianapolis	•	San	Francisco
Toronto	•	Montreal	•	London	•	Munich	•	Paris	•	Madrid
Capetown	•	Sydney	•	Tokyo	•	Singapore	•	Mexico	City

	Software	Engineering	Institute	|	Carnegie	Mellon
The	SEI	Series	in	Software	Engineering

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their
products	are	claimed	as	trademarks.	Where	those	designations	appear	in	this
book,	and	the	publisher	was	aware	of	a	trademark	claim,	the	designations	have
been	printed	with	initial	capital	letters	or	in	all	capitals.

CMM,	CMMI,	Capability	Maturity	Model,	Capability	Maturity	Modeling,
Carnegie	Mellon,	CERT,	and	CERT	Coordination	Center	are	registered	in	the
U.S.	Patent	and	Trademark	Office	by	Carnegie	Mellon	University.

ATAM;	Architecture	Tradeoff	Analysis	Method;	CMM	Integration;	COTS
Usage-Risk	Evaluation;	CURE;	EPIC;	Evolutionary	Process	for	Integrating
COTS	Based	Systems;	Framework	for	Software	Product	Line	Practice;	IDEAL;
Interim	Profile;	OAR;	OCTAVE;	Operationally	Critical	Threat,	Asset,	and
Vulnerability	Evaluation;	Options	Analysis	for	Reengineering;	Personal
Software	Process;	PLTP;	Product	Line	Technical	Probe;	PSP;	SCAMPI;
SCAMPI	Lead	Appraiser;	SCAMPI	Lead	Assessor;	SCE;	SEI;	SEPG;	Team
Software	Process;	and	TSP	are	service	marks	of	Carnegie	Mellon	University.

The	authors	and	publisher	have	taken	care	in	the	preparation	of	this	book,	but
make	no	expressed	or	implied	warranty	of	any	kind	and	assume	no	responsibility
for	errors	or	omissions.	No	liability	is	assumed	for	incidental	or	consequential
damages	in	connection	with	or	arising	out	of	the	use	of	the	information	or
programs	contained	herein.

For	information	about	buying	this	title	in	bulk	quantities,	or	for	special	sales
opportunities	(which	may	include	electronic	versions;	custom	cover	designs;	and
content	particular	to	your	business,	training	goals,	marketing	focus,	or	branding
interests),	please	contact	our	corporate	sales	department	at
corpsales@pearsoned.com	or	(800)	382-3419.

For	government	sales	inquiries,	please	contact
governmentsales@pearsoned.com.

For	questions	about	sales	outside	the	U.S.,	please	contact
international@pearsoned.com.

Visit	us	on	the	Web:	informit.com/aw

Library	of	Congress	Cataloging-in-Publication	Data

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com
http://informit.com/aw

Bass,	Len.
			DevOps	:	a	software	architect’s	perspective	/	Len	Bass,	Ingo	Weber,	Liming
Zhu.—First	[edition].
							pages	cm.—(The	SEI	series	in	software	engineering)
			Includes	bibliographical	references	and	index.
			ISBN	978-0-13-404984-7	(hardcover	:	alk.	paper)
			1.	Software	architecture.	2.	Computer	software—Development.
3.	Operating	systems	(Computers)	I.	Weber,	Ingo	M.	II.	Zhu,	Liming,	1975-	III.
Title.
			QA76.76.D47B377	2015
			005.1′2—dc23

2015007093

Copyright	©	2015	Pearson	Education,	Inc.

All	rights	reserved.	Printed	in	the	United	States	of	America.	This	publication	is
protected	by	copyright,	and	permission	must	be	obtained	from	the	publisher
prior	to	any	prohibited	reproduction,	storage	in	a	retrieval	system,	or
transmission	in	any	form	or	by	any	means,	electronic,	mechanical,
photocopying,	recording,	or	likewise.	To	obtain	permission	to	use	material	from
this	work,	please	submit	a	written	request	to	Pearson	Education,	Inc.,
Permissions	Department,	200	Old	Tappan	Road,	Old	Tappan,	New	Jersey
07675,	or	you	may	fax	your	request	to	(201)	236-3290.

ISBN-13:	978-0-13-404984-7

ISBN-10:	0-13-404984-5

Text	printed	in	the	United	States	on	recycled	paper	at	Courier	in	Westford,
Massachusetts.

First	printing,	May	2015

Contents

Preface

Previewing	the	Book

Acknowledgments

Legend

PART	ONE	BACKGROUND

CHAPTER	1	What	Is	DevOps?
1.1	Introduction
1.2	Why	DevOps?
1.3	DevOps	Perspective
1.4	DevOps	and	Agile
1.5	Team	Structure
1.6	Coordination
1.7	Barriers
1.8	Summary
1.9	For	Further	Reading

CHAPTER	2	The	Cloud	as	a	Platform
2.1	Introduction
2.2	Features	of	the	Cloud
2.3	DevOps	Consequences	of	the	Unique	Cloud	Features
2.4	Summary
2.5	For	Further	Reading

CHAPTER	3	Operations
3.1	Introduction
3.2	Operations	Services
3.3	Service	Operation	Functions
3.4	Continual	Service	Improvement

3.5	Operations	and	DevOps
3.6	Summary
3.7	For	Further	Reading

PART	TWO	THE	DEPLOYMENT	PIPELINE

CHAPTER	4	Overall	Architecture
4.1	Do	DevOps	Practices	Require	Architectural	Change?
4.2	Overall	Architecture	Structure
4.3	Quality	Discussion	of	Microservice	Architecture
4.4	Amazon’s	Rules	for	Teams
4.5	Microservice	Adoption	for	Existing	Systems
4.6	Summary
4.7	For	Further	Reading

CHAPTER	5	Building	and	Testing
5.1	Introduction
5.2	Moving	a	System	Through	the	Deployment	Pipeline
5.3	Crosscutting	Aspects
5.4	Development	and	Pre-commit	Testing
5.5	Build	and	Integration	Testing
5.6	UAT/Staging/Performance	Testing
5.7	Production
5.8	Incidents
5.9	Summary
5.10	For	Further	Reading

CHAPTER	6	Deployment
6.1	Introduction
6.2	Strategies	for	Managing	a	Deployment
6.3	Logical	Consistency
6.4	Packaging
6.5	Deploying	to	Multiple	Environments

6.6	Partial	Deployment
6.7	Rollback
6.8	Tools
6.9	Summary
6.10	For	Further	Reading

PART	THREE	CROSSCUTTING	CONCERNS

CHAPTER	7	Monitoring
7.1	Introduction
7.2	What	to	Monitor
7.3	How	to	Monitor
7.4	When	to	Change	the	Monitoring	Configuration
7.5	Interpreting	Monitoring	Data
7.6	Challenges
7.7	Tools
7.8	Diagnosing	an	Anomaly	from	Monitoring	Data—the	Case	of
Platformer.com
7.9	Summary
7.10	For	Further	Reading

CHAPTER	8	Security	and	Security	Audits
8.1	What	Is	Security?
8.2	Threats
8.3	Resources	to	Be	Protected
8.4	Security	Roles	and	Activities
8.5	Identity	Management
8.6	Access	Control
8.7	Detection,	Auditing,	and	Denial	of	Service
8.8	Development
8.9	Auditors
8.10	Application	Design	Considerations
8.11	Deployment	Pipeline	Design	Considerations

8.12	Summary
8.13	For	Further	Reading

CHAPTER	9	Other	Ilities
9.1	Introduction
9.2	Repeatability
9.3	Performance
9.4	Reliability
9.5	Recoverability
9.6	Interoperability
9.7	Testability
9.8	Modifiability
9.9	Summary
9.10	For	Further	Reading

CHAPTER	10	Business	Considerations
10.1	Introduction
10.2	Business	Case
10.3	Measurements	and	Compliance	to	DevOps	Practices
10.4	Points	of	Interaction	Between	Dev	and	Ops
10.5	Summary
10.6	For	Further	Reading

PART	FOUR	CASE	STUDIES

CHAPTER	11	Supporting	Multiple	Datacenters
11.1	Introduction
11.2	Current	State
11.3	Business	Logic	and	Web	Tiers
11.4	Database	Tier
11.5	Other	Infrastructure	Tools
11.6	Datacenter	Switch
11.7	Testing

11.8	Summary
11.9	For	Further	Reading

CHAPTER	12	Implementing	a	Continuous	Deployment	Pipeline	for
Enterprises

12.1	Introduction
12.2	Organizational	Context
12.3	The	Continuous	Deployment	Pipeline
12.4	Baking	Security	into	the	Foundations	of	the	CD	Pipeline
12.5	Advanced	Concepts
12.6	Summary
12.7	For	Further	Reading

CHAPTER	13	Migrating	to	Microservices
13.1	Introduction	to	Atlassian
13.2	Building	a	Platform	for	Deploying	Microservices
13.3	BlobStore:	A	Microservice	Example
13.4	Development	Process
13.5	Evolving	BlobStore
13.6	Summary
13.7	For	Further	Reading

PART	FIVE	MOVING	INTO	THE	FUTURE

CHAPTER	14	Operations	as	a	Process
14.1	Introduction
14.2	Motivation	and	Overview
14.3	Offline	Activities
14.4	Online	Activities
14.5	Error	Diagnosis
14.6	Monitoring
14.7	Summary
14.8	For	Further	Reading

CHAPTER	15	The	Future	of	DevOps
15.1	Introduction
15.2	Organizational	Issues
15.3	Process	Issues
15.4	Technology	Issues
15.5	What	About	Error	Reporting	and	Repair?
15.6	Final	Words
15.7	For	Further	Reading

References

About	the	Authors

Index

Preface

We	have	been	investigating	problems	in	operations	for	several	years	and	have,
naturally,	been	tracking	the	DevOps	movement.	It	is	moving	up	the	Gartner
Hype	Curve	and	has	a	solid	business	reason	for	existing.	We	were	able	to	find
treatments	from	the	IT	manager’s	perspective	(e.g.,	the	novel	The	Phoenix
Project:	A	Novel	about	IT,	DevOps,	and	Helping	Your	Business	Win)	and	from
the	project	manager’s	perspective	(e.g.,	Continuous	Delivery:	Reliable	Software
Releases	Through	Build,	Test,	and	Deployment	Automation).	In	addition,	there	is
a	raft	of	material	about	cultural	change	and	what	it	means	to	tear	down	barriers
between	organizational	units.
What	frustrated	us	is	that	there	is	very	little	material	from	the	software

architect’s	perspective.	Treating	operations	personnel	as	first-class	stakeholders
and	listening	to	their	requirements	is	certainly	important.	Using	tools	to	support
operations	and	project	management	is	also	important.	Yet,	we	had	the	strong
feeling	that	there	was	more	to	it	than	stakeholder	management	and	the	use	of
tools.
Indeed	there	is,	and	that	is	the	gap	that	this	book	intends	to	fill.	DevOps

presents	a	fascinating	interplay	between	design,	process,	tooling,	and
organizational	structure.	We	try	to	answer	two	primary	questions:	What
technical	decisions	do	I,	as	a	software	architect,	have	to	make	to	achieve	the
DevOps	goals?	What	impact	do	the	other	actors	in	the	DevOps	space	have	on
me?
The	answers	are	that	achieving	DevOps	goals	can	involve	fundamental

changes	in	the	architecture	of	your	systems	and	in	the	roles	and	responsibilities
required	to	get	your	systems	into	production	and	support	them	once	they	are
there.
Just	as	software	architects	must	understand	the	business	context	and	goals	for

the	systems	they	design	and	construct,	understanding	DevOps	requires
understanding	organizational	and	business	contexts,	as	well	as	technical	and
operational	contexts.	We	explore	all	of	these.
The	primary	audience	for	this	book	is	practicing	software	architects	who	have

been	or	expect	to	be	asked,	“Should	this	project	or	organization	adopt	DevOps
practices?”	Instead	of	being	asked,	the	architect	may	be	told.	As	with	all	books,
we	expect	additional	categories	of	readers.	Students	who	are	interested	in
learning	more	about	the	practice	of	software	architecture	should	find	interesting

material	here.	Researchers	who	wish	to	investigate	DevOps	topics	can	find
important	background	material.	Our	primary	focus,	however,	is	on	practicing
architects.

Previewing	the	Book

We	begin	the	book	by	discussing	the	background	for	DevOps.	Part	One	begins
by	delving	into	the	goals	of	DevOps	and	the	problems	it	is	intended	to	solve.	We
touch	on	organizational	and	cultural	issues,	as	well	as	the	relationship	of
DevOps	practices	to	agile	methodologies.
In	Chapter	2,	we	explore	the	cloud.	DevOps	practices	have	grown	in	tandem

with	the	growth	of	the	cloud	as	a	platform.	The	two,	in	theory,	are	separable,	but
in	practice	virtualization	and	the	cloud	are	important	enablers	for	DevOps
practices.
In	our	final	background	chapter,	Chapter	3,	we	explore	operations	through	the

prism	of	the	Information	Technology	Infrastructure	Library	(ITIL).	ITIL	is	a
system	of	organization	of	the	most	important	functions	of	an	operations	group.
Not	all	of	operations	are	included	in	DevOps	practices	but	understanding
something	of	the	responsibilities	of	an	operations	group	provides	important
context,	especially	when	it	comes	to	understanding	roles	and	responsibilities.
Part	Two	describes	the	deployment	pipeline.	We	begin	this	part	by	exploring

the	microservice	architectural	style	in	Chapter	4.	It	is	not	mandatory	that	systems
be	architected	in	this	style	in	order	to	apply	DevOps	practices	but	the
microservice	architectural	style	is	designed	to	solve	many	of	the	problems	that
motivated	DevOps.
In	Chapter	5,	we	hurry	through	the	building	and	testing	processes	and	tool

chains.	It	is	important	to	understand	these	but	they	are	not	our	focus.	We	touch
on	the	different	environments	used	to	get	a	system	into	production	and	the
different	sorts	of	tests	run	on	these	environments.	Since	many	of	the	tools	used
in	DevOps	are	used	in	the	building	and	testing	processes,	we	provide	context	for
understanding	these	tools	and	how	to	control	them.
We	conclude	Part	Two	by	discussing	deployment.	One	of	the	goals	of

DevOps	is	to	speed	up	deployments.	A	technique	used	to	achieve	this	goal	is	to
allow	each	development	team	to	independently	deploy	their	code	when	it	is
ready.	Independent	deployment	introduces	many	issues	of	consistency.	We
discuss	different	deployment	models,	managing	distinct	versions	of	a	system	that
are	simultaneously	in	production,	rolling	back	in	the	case	of	errors,	and	other
topics	having	to	do	with	actually	placing	your	system	in	production.
Part	Two	presents	a	functional	perspective	on	deployment	practices.	Yet,	just

as	with	any	other	system,	it	is	frequently	the	quality	perspectives	that	control	the

design	and	the	acceptance	of	the	system.	In	Part	Three,	we	focus	on	crosscutting
concerns.	This	begins	with	our	discussion	of	monitoring	and	live	testing	in
Chapter	7.	Modern	software	testing	practices	do	not	end	when	a	system	is	placed
into	production.	First,	systems	are	monitored	extensively	to	detect	problems,	and
secondly,	testing	continues	in	a	variety	of	forms	after	a	system	has	been	placed
into	production.
Another	crosscutting	concern	is	security,	which	we	cover	in	Chapter	8.	We

present	the	different	types	of	security	controls	that	exist	in	an	environment,
spanning	those	that	are	organization	wide	and	those	that	are	specific	system
wide.	We	discuss	the	different	roles	associated	with	achieving	security	and	how
these	roles	are	evaluated	in	the	case	of	a	security	audit.
Security	is	not	the	only	quality	of	interest,	and	in	Chapter	9	we	discuss	other

qualities	that	are	relevant	to	the	practices	associated	with	DevOps.	We	cover
topics	such	as	performance,	reliability,	and	modifiability	of	the	deployment
pipeline.
Finally,	in	Part	Three	we	discuss	business	considerations	in	Chapter	10.

Practices	as	broad	as	DevOps	cannot	be	adopted	without	buy-in	from
management.	A	business	plan	is	a	typical	means	of	acquiring	this	buy-in;	thus,
we	present	the	elements	of	a	business	plan	for	DevOps	adoption	and	discuss	how
the	argument,	rollout,	and	measurement	should	proceed.
In	Part	Four	we	present	three	case	studies.	Organizations	that	have

implemented	DevOps	practices	tell	us	some	of	their	tricks.	Chapter	11	discusses
how	to	maintain	two	datacenters	for	the	purpose	of	business	continuity;	Chapter
12	presents	the	specifics	of	a	continuous	deployment	pipeline;	and	Chapter	13
describes	how	one	organization	is	migrating	to	a	microservice	architecture.
We	close	by	speculating	about	the	future	in	Part	Five.	Chapter	14	describes

our	research	and	how	it	is	based	on	viewing	operations	as	a	series	of	processes,
and	Chapter	15	gives	our	prediction	for	how	the	next	three	to	five	years	are
going	to	evolve	in	terms	of	DevOps.

Acknowledgments

Books	like	this	require	a	lot	of	assistance.	We	would	like	to	thank	Chris
Williams,	John	Painter,	Daniel	Hand,	and	Sidney	Shek	for	their	contributions	to
the	case	studies,	as	well	as	Adnene	Guabtni,	Kanchana	Wickremasinghe,	Min
Fu,	and	Xiwei	Xu	for	helping	us	with	some	of	the	chapters.
Manuel	Pais	helped	us	arrange	case	studies.	Philippe	Kruchten,	Eoin	Woods,

Gregory	Hartman,	Sidney	Shek,	Michael	Lorant,	Wouter	Geurts,	and	Eltjo	Poort
commented	on	or	contributed	to	various	aspects	of	the	book.
We	would	like	to	thank	Jean-Michel	Lemieux,	Greg	Warden,	Robin

Fernandes,	Jerome	Touffe-Blin,	Felipe	Cuozzo,	Pramod	Korathota,	Nick	Wright,
Vitaly	Osipov,	Brad	Baker,	and	Jim	Watts	for	their	comments	on	Chapter	13.
Addison-Wesley	did	their	usual	professional	and	efficient	job	in	the

production	process,	and	this	book	has	benefited	from	their	expertise.
Finally,	we	would	like	to	thank	NICTA	and	NICTA	management.	NICTA	is

funded	by	the	Australian	government	through	the	Department	of
Communications	and	the	Australian	Research	Council	through	the	ICT	Centre	of
Excellence	Program.	Without	their	generous	support,	this	book	would	not	have
been	written.

Legend

We	use	four	distinct	legends	for	the	figures.	We	have	an	architectural	notation
that	identifies	the	key	architectural	concepts	that	we	use;	we	use	Business
Process	Model	and	Notation	(BPMN)	to	describe	some	processes,	Porter’s	Value
Notation	to	describe	a	few	others,	and	UML	sequence	diagrams	for	interleaving
sequences	of	activities.	We	do	not	show	the	UML	sequence	diagram	notation
here	but	the	notation	that	we	use	from	these	other	sources	is:

Architecture

FIGURE	P.1	People,	both	individual	and	groups

FIGURE	P.2	Components	(runtime	entities),	modules	(code-time	collections
of	entities),	and	data	flow

FIGURE	P.3	Specialized	entities

FIGURE	P.4	Collections	of	entities

BPMN
We	use	Business	Process	Model	and	Notation	(BPMN)	for	describing	events	and
activities	[OMG	11].

FIGURE	P.5	Event	indications

FIGURE	P.6	Activities	and	sequences	of	activities

Porter’s	Value	Chain
This	notation	is	used	to	describe	processes	(which,	in	turn,	have	activities
modelled	in	BPMN).

FIGURE	P.7	Entry	in	a	value	chain

Part	One:	Background
This	part	provides	the	necessary	background	for	the	remainder	of	the	book.
DevOps	is	a	movement	that	envisions	no	friction	between	the	development
groups	and	the	operations	groups.	In	addition,	the	emergence	of	DevOps
coincides	with	the	growth	of	the	cloud	as	a	basic	platform	for	organizations,
large	and	small.	Part	One	has	three	chapters.
In	Chapter	1,	we	define	DevOps	and	discuss	its	various	motivations.	DevOps

is	a	catchall	term	that	can	cover	several	meanings,	including:	having
development	and	operations	speak	to	each	other;	allowing	development	teams	to
deploy	to	production	automatically;	and	having	development	teams	be	the	first
responders	when	an	error	is	discovered	in	production.	In	this	chapter,	we	sort	out
these	various	considerations	and	develop	a	coherent	description	of	what	DevOps
is,	what	its	motivations	and	goals	are,	and	how	it	is	going	about	achieving	those
goals.
In	order	to	understand	how	certain	DevOps	practices	work,	it	is	necessary	to

know	how	the	cloud	works,	which	we	discuss	in	Chapter	2.	In	particular,	you
should	know	how	virtual	machines	work,	how	IP	addresses	are	used,	the	role	of
and	how	to	manipulate	Domain	Name	System	(DNS)	servers,	and	how	load
balancers	and	monitors	interact	to	provide	on-demand	scaling.
DevOps	involves	the	modifications	of	both	Dev	and	Ops	practices.	In	Chapter

3,	we	discuss	Ops	in	its	totality.	It	describes	the	services	that	Ops	provides	to	the
organization	and	introduces	Ops	responsibilities,	from	supporting	deployed
applications	to	enforcing	organization-wide	security	rules.

1.	What	Is	DevOps?

Someone	told	me	that	each	equation	I	included	in	the	book	would	halve	the
sales.	I	therefore	resolved	not	to	have	any	equations	at	all.

—Stephen	Hawking

1.1	Introduction
The	question	this	book	attempts	to	answer	is	“Why	should	I	care	about	DevOps,
and	what	impact	does	it	have	on	me?”	The	long	answer	will	be	found	by	reading
the	book,	but	the	short	answer	is	that	if	you	are	involved	in	building	software
systems	and	your	organization	is	interested	in	reducing	the	time	to	market	for
new	features,	then	you	should	care.	This	is	the	motivation	for	DevOps,	and
DevOps	practices	will	influence	the	way	that	you	organize	teams,	build	systems,
and	even	the	structure	of	the	systems	that	you	build.	If	you	are	a	software
engineering	student	or	researcher	then	you	should	care	how	the	adoption	of
DevOps	practices	could	influence	the	problems	that	you	choose	to	work	on.	If
you	are	an	educator	you	should	care	because	incorporating	DevOps	material	into
your	curriculum	will	help	educate	your	students	about	modern	development
practices.
We	begin	by	defining	DevOps	and	providing	a	short	example.	Then	we

present	the	motivation	for	the	movement,	the	DevOps	perspective,	and	barriers
to	the	success	of	DevOps.	Much	of	the	writing	on	DevOps	discusses	various
organizational	and	cultural	issues.	In	this	first	chapter,	we	summarize	these
topics,	which	frame	the	remainder	of	the	book.

Defining	DevOps
DevOps	has	been	classified	as	“on	the	rise”	with	respect	to	the	Gartner	Hype
Cycle	for	Application	Development	in	2013.	This	classification	means	that	the
term	is	becoming	a	buzz	word	and,	as	such,	is	ill	defined	and	subject	to
overblown	claims.	Our	definition	of	DevOps	focuses	on	the	goals,	rather	than
the	means.

DevOps	is	a	set	of	practices	intended	to	reduce	the	time	between
committing	a	change	to	a	system	and	the	change	being	placed	into
normal	production,	while	ensuring	high	quality.

Before	we	delve	more	deeply	into	what	set	of	practices	is	included,	let’s	look

Before	we	delve	more	deeply	into	what	set	of	practices	is	included,	let’s	look
at	some	of	the	implications	of	our	definition.

	The	quality	of	the	deployed	change	to	a	system	(usually	in	the	form	of
code)	is	important.	Quality	means	suitability	for	use	by	various
stakeholders	including	end	users,	developers,	or	system	administrators.	It
also	includes	availability,	security,	reliability,	and	other	“ilities.”	One
method	for	ensuring	quality	is	to	have	a	variety	of	automated	test	cases
that	must	be	passed	prior	to	placing	changed	code	into	production.	Another
method	is	to	test	the	change	in	production	with	a	limited	set	of	users	prior
to	opening	it	up	to	the	world.	Still	another	method	is	to	closely	monitor
newly	deployed	code	for	a	period	of	time.	We	do	not	specify	in	the
definition	how	quality	is	ensured	but	we	do	require	that	production	code	be
of	high	quality.
	The	definition	also	requires	the	delivery	mechanism	to	be	of	high	quality.
This	implies	that	reliability	and	the	repeatability	of	the	delivery	mechanism
should	be	high.	If	the	delivery	mechanism	fails	regularly,	the	time	required
increases.	If	there	are	errors	in	how	the	change	is	delivered,	the	quality	of
the	deployed	system	suffers,	for	example,	through	reduced	availability	or
reliability.
	We	identify	two	time	periods	as	being	important.	One	is	the	time	when	a
developer	commits	newly	developed	code.	This	marks	the	end	of	basic
development	and	the	beginning	of	the	deployment	path.	The	second	time	is
the	deploying	of	that	code	into	production.	As	we	will	see	in	Chapter	6,
there	is	a	period	after	code	has	been	deployed	into	production	when	the
code	is	being	tested	through	live	testing	and	is	closely	monitored	for
potential	problems.	Once	the	code	has	passed	live	testing	and	close
monitoring,	then	it	is	considered	as	a	portion	of	the	normal	production
system.	We	make	a	distinction	between	deploying	code	into	production	for
live	testing	and	close	monitoring	and	then,	after	passing	the	tests,
promoting	the	newly	developed	code	to	be	equivalent	to	previously
developed	code.
	Our	definition	is	goal	oriented.	We	do	not	specify	the	form	of	the	practices
or	whether	tools	are	used	to	implement	them.	If	a	practice	is	intended	to
reduce	the	time	between	a	commit	from	a	developer	and	deploying	into
production,	it	is	a	DevOps	practice	whether	it	involves	agile	methods,
tools,	or	forms	of	coordination.	This	is	in	contrast	to	several	other
definitions.	Wikipedia,	for	example,	stresses	communication,
collaboration,	and	integration	between	various	stakeholders	without	stating

the	goal	of	such	communication,	collaboration,	or	integration.	Timing
goals	are	implicit.	Other	definitions	stress	the	connection	between	DevOps
and	agile	methods.	Again,	there	is	no	mention	of	the	benefits	of	utilizing
agile	methods	on	either	the	time	to	develop	or	the	quality	of	the	production
system.	Still	other	definitions	stress	the	tools	being	used,	without
mentioning	the	goal	of	DevOps	practices,	the	time	involved,	or	the	quality.
	Finally,	the	goals	specified	in	the	definition	do	not	restrict	the	scope	of
DevOps	practices	to	testing	and	deployment.	In	order	to	achieve	these
goals,	it	is	important	to	include	an	Ops	perspective	in	the	collection	of
requirements—that	is,	significantly	earlier	than	committing	changes.
Analogously,	the	definition	does	not	mean	DevOps	practices	end	with
deployment	into	production;	the	goal	is	to	ensure	high	quality	of	the
deployed	system	throughout	its	life	cycle.	Thus,	monitoring	practices	that
help	achieve	the	goals	are	to	be	included	as	well.

DevOps	Practices
We	have	identified	five	different	categories	of	DevOps	practices	below.	These
are	mentioned	in	writings	about	DevOps	and	satisfy	our	definition.

	Treat	Ops	as	first-class	citizens	from	the	point	of	view	of	requirements.
These	practices	fit	in	the	high-quality	aspect	of	the	definition.	Operations
have	a	set	of	requirements	that	pertain	to	logging	and	monitoring.	For
example,	logging	messages	should	be	understandable	and	usable	by	an
operator.	Involving	operations	in	the	development	of	requirements	will
ensure	that	these	types	of	requirements	are	considered.
	Make	Dev	more	responsible	for	relevant	incident	handling.	These	practices
are	intended	to	shorten	the	time	between	the	observation	of	an	error	and
the	repair	of	that	error.	Organizations	that	utilize	these	practices	typically
have	a	period	of	time	in	which	Dev	has	primary	responsibility	for	a	new
deployment;	later	on,	Ops	has	primary	responsibility.
	Enforce	the	deployment	process	used	by	all,	including	Dev	and	Ops
personnel.	These	practices	are	intended	to	ensure	a	higher	quality	of
deployments.	This	avoids	errors	caused	by	ad	hoc	deployments	and	the
resulting	misconfiguration.	The	practices	also	refer	to	the	time	that	it	takes
to	diagnose	and	repair	an	error.	The	normal	deployment	process	should
make	it	easy	to	trace	the	history	of	a	particular	deployment	artifact	and
understand	the	components	that	were	included	in	that	artifact.
	Use	continuous	deployment.	Practices	associated	with	continuous

deployment	are	intended	to	shorten	the	time	between	a	developer
committing	code	to	a	repository	and	the	code	being	deployed.	Continuous
deployment	also	emphasizes	automated	tests	to	increase	the	quality	of	code
making	its	way	into	production.
	Develop	infrastructure	code,	such	as	deployment	scripts,	with	the	same	set
of	practices	as	application	code.	Practices	that	apply	to	the	development	of
infrastructure	code	are	intended	to	ensure	both	high	quality	in	the	deployed
applications	and	that	deployments	proceed	as	planned.	Errors	in
deployment	scripts	such	as	misconfigurations	can	cause	errors	in	the
application,	the	environment,	or	the	deployment	process.	Applying	quality
control	practices	used	in	normal	software	development	when	developing
operations	scripts	and	processes	will	help	control	the	quality	of	these
specifications.

Figure	1.1	gives	an	overview	of	DevOps	processes.	At	its	most	basic,	DevOps
advocates	treating	Operations	personnel	as	first-class	stakeholders.	Preparing	a
release	can	be	a	very	serious	and	onerous	process.	(We	describe	that	in	the
section	“Release	Process.”)	As	such,	operations	personnel	may	need	to	be
trained	in	the	types	of	runtime	errors	that	can	occur	in	a	system	under
development;	they	may	have	suggestions	as	to	the	type	and	structure	of	log	files,
and	they	may	provide	other	types	of	input	into	the	requirements	process.	At	its
most	extreme,	DevOps	practices	make	developers	responsible	for	monitoring	the
progress	and	errors	that	occur	during	deployment	and	execution,	so	theirs	would
be	the	voices	suggesting	requirements.	In	between	are	practices	that	cover	team
practices,	build	processes,	testing	processes,	and	deployment	processes.	We
discuss	the	continuous	deployment	pipeline	in	Chapters	5	and	6.	We	also	cover
monitoring,	security,	and	audits	in	subsequent	chapters.

FIGURE	1.1	DevOps	life	cycle	processes	[Notation:	Porter’s	Value	Chain]

You	may	have	some	questions	about	terminology	with	the	terms	IT
professional,	operator,	and	operations	personnel.	Another	related	term	is	system
administrator.	The	IT	professional	subsumes	the	mentioned	roles	and	others,
such	as	help	desk	support.	The	distinction	in	terminology	between	operators	and
system	administrators	has	historical	roots	but	is	much	less	true	today.

Historically,	operators	had	hands-on	access	to	the	hardware—installing	and
configuring	hardware,	managing	backups,	and	maintaining	printers—while
system	administrators	were	responsible	for	uptime,	performance,	resources,	and
security	of	computer	systems.	Today	it	is	the	rare	operator	who	does	not	take	on
some	duties	formerly	assigned	to	a	system	administrator.	We	will	use	the	term
operator	to	refer	to	anyone	who	performs	computer	operator	or	system
administration	tasks	(or	both).

Example	of	Continuous	Deployment:	IMVU
IMVU,	Inc.	is	a	social	entertainment	company	whose	product	allows	users	to
connect	through	3D	avatar-based	experiences.	This	section	is	adapted	from	a
blog	written	by	an	IMVU	engineer.

IMVU	does	continuous	integration.	The	developers	commit	early
and	often.	A	commit	triggers	an	execution	of	a	test	suite.	IMVU	has
a	thousand	test	files,	distributed	across	30–40	machines,	and	the	test
suite	takes	about	nine	minutes	to	run.	Once	a	commit	has	passed	all
of	its	tests,	it	is	automatically	sent	to	deployment.	This	takes	about
six	minutes.	The	code	is	moved	to	the	hundreds	of	machines	in	the
cluster,	but	at	first	the	code	is	only	made	live	on	a	small	number	of
machines	(canaries).	A	sampling	program	examines	the	results	of	the
canaries	and	if	there	has	been	a	statistically	significant	regression,
then	the	revision	is	automatically	rolled	back.	Otherwise	the
remainder	of	the	cluster	is	made	active.	IMVU	deploys	new	code	50
times	a	day,	on	average.

The	essence	of	the	process	is	in	the	test	suite.	Every	time	a	commit	gets
through	the	test	suite	and	is	rolled	back,	a	new	test	is	generated	that	would	have
caught	the	erroneous	deployment,	and	it	is	added	to	the	test	suite.
Note	that	a	full	test	suite	(with	the	confidence	of	production	deployment)	that

only	takes	nine	minutes	to	run	is	uncommon	for	large-scale	systems.	In	many
organizations,	the	full	test	suite	that	provides	production	deployment	confidence
can	take	hours	to	run,	which	is	often	done	overnight.	A	common	challenge	is	to
reduce	the	size	of	the	test	suite	judiciously	and	remove	“flaky”	tests.

1.2	Why	DevOps?
DevOps,	in	many	ways,	is	a	response	to	the	problem	of	slow	releases.	The
longer	it	takes	a	release	to	get	to	market,	the	less	advantage	will	accrue	from
whatever	features	or	quality	improvements	led	to	the	release.	Ideally,	we	want	to

release	in	a	continuous	manner.	This	is	often	termed	continuous	delivery	or
continuous	deployment.	We	discuss	the	subtle	difference	between	the	two	terms
in	Chapters	5	and	6.	In	this	book,	we	use	the	term	continuous	deployment	or	just
deployment.	We	begin	by	describing	a	formal	release	process,	and	then	we	delve
more	deeply	into	some	of	the	reasons	for	slow	releases.

Release	Process
Releasing	a	new	system	or	version	of	an	existing	system	to	customers	is	one	of
the	most	sensitive	steps	in	the	software	development	cycle.	This	is	true	whether
the	system	or	version	is	for	external	distribution,	is	used	directly	by	consumers,
or	is	strictly	for	internal	use.	As	long	as	the	system	is	used	by	more	than	one
person,	releasing	a	new	version	opens	the	possibility	of	incompatibilities	or
failures,	with	subsequent	unhappiness	on	the	part	of	the	customers.
Consequently,	organizations	pay	a	great	deal	of	attention	to	the	process	of

defining	a	release	plan.	The	following	release	planning	steps	are	adapted	from
Wikipedia.	Traditionally,	most	of	the	steps	are	done	manually.

1.	Define	and	agree	on	release	and	deployment	plans	with
customers/stakeholders.	This	could	be	done	at	the	team	or	organizational
level.	The	release	and	deployment	plans	will	include	those	features	to	be
included	in	the	new	release	as	well	as	ensure	that	operations	personnel
(including	help	desk	and	support	personnel)	are	aware	of	schedules,
resource	requirements	are	met,	and	any	additional	training	that	might	be
required	is	scheduled.

2.	Ensure	that	each	release	package	consists	of	a	set	of	related	assets	and
service	components	that	are	compatible	with	each	other.	Everything
changes	over	time,	including	libraries,	platforms,	and	dependent	services.
Changes	may	introduce	incompatibilities.	This	step	is	intended	to	prevent
incompatibilities	from	becoming	apparent	only	after	deployment.	In
Chapter	5,	we	discuss	the	ways	of	ensuring	all	of	these	compatibilities.
Managing	dependencies	is	a	theme	that	will	surface	repeatedly	throughout
this	book.

3.	Ensure	that	the	integrity	of	a	release	package	and	its	constituent
components	is	maintained	throughout	the	transition	activities	and	recorded
accurately	in	the	configuration	management	system.	There	are	two	parts	to
this	step:	The	first	is	to	make	sure	that	old	versions	of	a	component	are	not
inadvertently	included	in	the	release,	and	the	second	is	to	make	sure	that	a
record	is	kept	of	the	components	of	this	deployment.	Knowing	the

elements	of	the	deployment	is	important	when	tracking	down	errors	found
after	deployment.	We	discuss	the	details	of	deployment	in	Chapter	6.

4.	Ensure	that	all	release	and	deployment	packages	can	be	tracked,	installed,
tested,	verified,	and/or	uninstalled	or	rolled	back,	if	appropriate.
Deployments	may	need	to	be	rolled	back	(new	version	uninstalled,	old
version	redeployed)	under	a	variety	of	circumstances,	such	as	errors	in	the
code,	inadequate	resources,	or	expired	licenses	or	certificates.

The	activities	enumerated	in	this	list	can	be	accomplished	with	differing	levels
of	automation.	If	all	of	these	activities	are	accomplished	primarily	through
human	coordination	then	these	steps	are	labor-intensive,	time-consuming,	and
error-prone.	Any	automation	reflects	an	agreement	on	the	release	process
whether	at	the	team	or	organization	level.	Since	tools	are	typically	used	more
than	once,	an	agreement	on	the	release	process	encoded	into	a	tool	has
persistence	beyond	a	single	release.
In	case	you	are	tempted	to	downplay	the	seriousness	of	getting	the

deployment	correct,	you	may	want	to	consider	recent	media	reports	with
substantial	financial	costs.

	On	August	1,	2012,	Knight	Capital	had	an	upgrade	failure	that	ended	up
costing	(US)	$440	million.
	On	August	20,	2013,	Goldman	Sachs	had	an	upgrade	failure	that,
potentially,	could	cost	millions	of	dollars.

These	are	just	two	of	the	many	examples	that	have	resulted	in	downtime	or
errors	because	of	upgrade	failure.	Deploying	an	upgrade	correctly	is	a	significant
and	important	activity	for	an	organization	and,	yet,	one	that	should	be	done	in	a
timely	fashion	with	minimal	opportunity	for	error.	Several	organizations	have
done	surveys	to	document	the	extent	of	deployment	problems.	We	report	on	two
of	them.

	XebiaLabs	is	an	organization	that	markets	a	deployment	tool	and	a
continuous	integration	tool.	They	did	a	survey	in	2013	with	over	130
responses.	34%	of	the	respondents	were	from	IT	services	companies	with
approximately	10%	each	from	health	care,	financial	services,	and
telecommunications	companies.	7.5%	of	the	respondents	reported	their
deployment	process	was	“not	reliable,”	and	57.5%	reported	their
deployment	process	“needs	improvement.”	49%	reported	their	biggest
challenge	in	the	deployment	process	was	“too	much	inconsistency	across
environments	and	applications.”	32.5%	reported	“too	many	errors.”	29.2%
reported	their	deployments	relied	on	custom	scripting,	and	35.8%	reported

their	deployments	were	partially	scripted	and	partially	manual.
	CA	Technologies	provides	IT	management	solutions	to	their	customers.
They	commissioned	a	survey	in	2013	that	had	1,300	respondents	from
companies	with	more	than	(US)	$100	million	revenue.	Of	those	who
reported	seeing	benefits	from	the	adoption	of	DevOps,	53%	said	they	were
already	seeing	an	increased	frequency	of	deployment	of	their	software	or
services	and	41%	said	they	were	anticipating	seeing	an	increased
frequency	of	deployment.	42%	responded	that	they	had	seen	improved
quality	of	deployed	applications,	and	49%	responded	they	anticipated
seeing	improved	quality.

Although	both	surveys	are	sponsored	by	organizations	with	a	vested	interest
in	promoting	deployment	automation,	they	also	clearly	indicate	that	the	speed
and	quality	of	deployments	are	a	concern	to	many	companies	in	a	variety	of
different	markets.

Reasons	for	Poor	Coordination
Consider	what	happens	after	a	developer	group	has	completed	all	of	the	coding
and	testing	for	a	system.	The	system	needs	to	be	placed	into	an	environment
where:

	Only	the	appropriate	people	have	access	to	it.
	It	is	compatible	with	all	of	the	other	systems	with	which	it	interacts	in	the
environment.
	It	has	sufficient	resources	on	which	to	operate.
	The	data	that	it	uses	to	operate	is	up	to	date.
	The	data	that	it	generates	is	usable	by	other	systems	in	the	environment.

Furthermore,	help	desk	personnel	need	to	be	trained	in	features	of	the	new
system	and	operations	personnel	need	to	be	trained	in	troubleshooting	any
problems	that	might	occur	while	the	system	is	operating.	The	timing	of	the
release	may	also	be	of	significance	because	it	should	not	coincide	with	the
absence	of	any	key	member	of	the	operations	staff	or	with	a	new	sales	promotion
that	will	stress	the	existing	resources.
None	of	this	happens	by	accident	but	each	of	these	items	requires	coordination

between	the	developers	and	the	operations	personnel.	It	is	easy	to	imagine	a
scenario	where	one	or	more	of	these	items	are	not	communicated	by	the
development	personnel	to	the	operations	personnel.	A	common	attitude	among
developers	is	“I	finished	the	development,	now	go	and	run	it.”	We	explore	the
reasons	for	this	attitude	when	we	discuss	the	cultural	barrier	to	adoption	of

reasons	for	this	attitude	when	we	discuss	the	cultural	barrier	to	adoption	of
DevOps.
One	reason	that	organizations	have	processes	to	ensure	smooth	releases	is	that

coordination	does	not	always	happen	in	an	appropriate	manner.	This	is	one	of
the	complaints	that	motivated	the	DevOps	movement.

Limited	Capacity	of	Operations	Staff
Operations	staff	perform	a	variety	of	functions	but	there	are	limits	as	to	what
they	can	accomplish	or	who	on	the	staff	is	knowledgeable	in	what	system.
Consider	the	responsibilities	of	a	modern	operations	person	as	detailed	in
Wikipedia.

	Analyzing	system	logs	and	identifying	potential	issues	with	computer
systems
	Introducing	and	integrating	new	technologies	into	existing	datacenter
environments
	Performing	routine	audits	of	systems	and	software
	Performing	backups
	Applying	operating	system	updates,	patches,	and	configuration	changes
	Installing	and	configuring	new	hardware	and	software
	Adding,	removing,	or	updating	user	account	information;	resetting
passwords,	etc.
	Answering	technical	queries	and	assisting	users
	Ensuring	security
	Documenting	the	configuration	of	the	system
	Troubleshooting	any	reported	problems
	Optimizing	system	performance
	Ensuring	that	the	network	infrastructure	is	up	and	running
	Configuring,	adding,	and	deleting	file	systems
	Maintaining	knowledge	of	volume	management	tools	like	Veritas	(now
Symantec),	Solaris	ZFS,	LVM

Each	of	these	items	requires	a	deep	level	of	understanding.	Is	it	any	wonder
that	when	we	asked	the	IT	director	of	an	Internet-based	company	what	his
largest	problem	was,	he	replied	“finding	and	keeping	qualified	personnel.”
The	DevOps	movement	is	taking	a	different	approach.	Their	approach	is	to

reduce	the	need	for	dedicated	operations	personnel	through	automating	many	of
the	tasks	formerly	done	by	operations	and	having	developers	assume	a	portion	of

the	tasks	formerly	done	by	operations	and	having	developers	assume	a	portion	of
the	remainder.

1.3	DevOps	Perspective
Given	the	problems	we	have	discussed	and	their	long-standing	nature,	it	is	no
surprise	that	there	is	a	significant	appeal	for	a	movement	that	promises	to	reduce
the	time	to	market	for	new	features	and	reduce	errors	occurring	in	deployment.
DevOps	comes	in	multiple	flavors	and	with	different	degrees	of	variation	from
current	practice,	but	two	themes	run	consistently	through	the	different	flavors:
automation	and	the	responsibilities	of	the	development	team.

Automation
Figure	1.1	shows	the	various	life	cycle	processes.	The	steps	from	build	and
testing	through	execution	can	all	be	automated	to	some	degree.	We	will	discuss
the	tools	used	in	each	one	of	these	steps	in	the	appropriate	chapters,	but	here	we
highlight	the	virtues	of	automation.	Some	of	the	problems	with	relying	on
automation	are	discussed	in	Section	1.7.
Tools	can	perform	the	actions	required	in	each	step	of	the	process,	check	the

validity	of	actions	against	the	production	environment	or	against	some	external
specification,	inform	appropriate	personnel	of	errors	occurring	in	the	process,
and	maintain	a	history	of	actions	for	quality	control,	reporting,	and	auditing
purposes.
Tools	and	scripts	also	can	enforce	organization-wide	policies.	Suppose	the

organization	has	a	policy	that	every	change	has	to	have	a	rationale	associated
with	the	change.	Then	prior	to	committing	a	change,	a	tool	or	script	can	require	a
rationale	to	be	provided	by	the	individual	making	the	change.	Certainly,	this
requirement	can	be	circumvented,	but	having	the	tool	ask	for	a	rationale	will
increase	the	compliance	level	for	this	policy.
Once	tools	become	central	to	a	set	of	processes,	then	the	use	of	these	tools

must	also	be	managed.	Tools	are	invoked,	for	example,	from	scripts,
configuration	changes,	or	the	operator’s	console.	Where	console	commands	are
complicated,	it	is	advisable	to	script	their	usage,	even	if	there	is	only	a	handful
of	commands	being	used.	Tools	may	be	controlled	through	specification	files,
such	as	Chef	cookbooks	or	Amazon	CloudFormation—more	on	these	later.	The
scripts,	configuration	files,	and	specification	files	must	be	subject	to	the	same
quality	control	as	the	application	code	itself.	The	scripts	and	files	should	also	be
under	version	control	and	subject	to	examination	for	corrections.	This	is	often

termed	“infrastructure-as-code.”

Development	Team	Responsibilities
Automation	will	reduce	the	incidence	of	errors	and	will	shorten	the	time	to
deployment.	To	further	shorten	the	time	to	deployment,	consider	the
responsibilities	of	operations	personnel	as	detailed	earlier.	If	the	development
team	accepts	DevOps	responsibilities,	that	is,	it	delivers,	supports,	and	maintains
the	service,	then	there	is	less	need	to	transfer	knowledge	to	the	operations	and
support	staff	since	all	of	the	necessary	knowledge	is	resident	in	the	development
team.	Not	having	to	transfer	knowledge	removes	a	significant	coordination	step
from	the	deployment	process.

1.4	DevOps	and	Agile
One	of	the	characterizations	of	DevOps	emphasizes	the	relationship	of	DevOps
practices	to	agile	practices.	In	this	section,	we	overlay	the	DevOps	practices	on
IBM’s	Disciplined	Agile	Delivery.	Our	focus	is	on	what	is	added	by	DevOps,
not	an	explanation	of	Disciplined	Agile	Delivery.	For	that,	see	Disciplined	Agile
Delivery:	A	Practitioner’s	Approach.	As	shown	in	Figure	1.2,	Disciplined	Agile
Delivery	has	three	phases—inception,	construction,	and	transition.	In	the
DevOps	context,	we	interpret	transition	as	deployment.

FIGURE	1.2	Disciplined	Agile	Delivery	phases	for	each	release.	(Adapted
from	Disciplined	Agile	Delivery:	A	Practitioner’s	Guide	by	Ambler	and

Lines)	[Notation:	Porter’s	Value	Chain]

DevOps	practices	impact	all	three	phases.
1.	Inception	phase.	During	the	inception	phase,	release	planning	and	initial
requirements	specification	are	done.
a.	Considerations	of	Ops	will	add	some	requirements	for	the	developers.
We	will	see	these	in	more	detail	later	in	this	book,	but	maintaining
backward	compatibility	between	releases	and	having	features	be

software	switchable	are	two	of	these	requirements.	The	form	and
content	of	operational	log	messages	impacts	the	ability	of	Ops	to
troubleshoot	a	problem.

b.	Release	planning	includes	feature	prioritization	but	it	also	includes
coordination	with	operations	personnel	about	the	scheduling	of	the
release	and	determining	what	training	the	operations	personnel	require
to	support	the	new	release.	Release	planning	also	includes	ensuring
compatibility	with	other	packages	in	the	environment	and	a	recovery
plan	if	the	release	fails.	DevOps	practices	make	incorporation	of	many
of	the	coordination-related	topics	in	release	planning	unnecessary,
whereas	other	aspects	become	highly	automated.

2.	Construction	phase.	During	the	construction	phase,	key	elements	of	the
DevOps	practices	are	the	management	of	the	code	branches,	the	use	of
continuous	integration	and	continuous	deployment,	and	incorporation	of
test	cases	for	automated	testing.	These	are	also	agile	practices	but	form	an
important	portion	of	the	ability	to	automate	the	deployment	pipeline.	A
new	element	is	the	integrated	and	automated	connection	between
construction	and	transition	activities.

3.	Transition	phase.	In	the	transition	phase,	the	solution	is	deployed	and	the
development	team	is	responsible	for	the	deployment,	monitoring	the
process	of	the	deployment,	deciding	whether	to	roll	back	and	when,	and
monitoring	the	execution	after	deployment.	The	development	team	has	a
role	of	“reliability	engineer,”	who	is	responsible	for	monitoring	and
troubleshooting	problems	during	deployment	and	subsequent	execution.

1.5	Team	Structure
In	this	section,	the	usual	size	of	and	roles	within	a	development	team	with
DevOps	responsibilities	are	discussed.

Team	Size
Although	the	exact	team	size	recommendation	differs	from	one	methodology	to
another,	all	agree	that	the	size	of	the	team	should	be	relatively	small.	Amazon
has	a	“two	pizza	rule.”	That	is,	no	team	should	be	larger	than	can	be	fed	from
two	pizzas.	Although	there	is	a	fair	bit	of	ambiguity	in	this	rule—how	big	the
pizzas	are,	how	hungry	the	members	of	the	team	are—the	intent	is	clear.
The	advantages	of	small	teams	are:
	They	can	make	decisions	quickly.	In	every	meeting,	attendees	wish	to

express	their	opinions.	The	smaller	the	number	of	attendees	at	the	meeting,
the	fewer	the	number	of	opinions	expressed	and	the	less	time	spent	hearing
differing	opinions.	Consequently,	the	opinions	can	be	expressed	and	a
consensus	arrived	at	faster	than	with	a	large	team.
	It	is	easier	to	fashion	a	small	number	of	people	into	a	coherent	unit	than	a
large	number.	A	coherent	unit	is	one	in	which	everyone	understands	and
subscribes	to	a	common	set	of	goals	for	the	team.
	It	is	easier	for	individuals	to	express	an	opinion	or	idea	in	front	of	a	small
group	than	in	front	of	a	large	one.

The	disadvantage	of	a	small	team	is	that	some	tasks	are	larger	than	can	be
accomplished	by	a	small	number	of	individuals.	In	this	case	the	task	has	to	be
broken	up	into	smaller	pieces,	each	given	to	a	different	team,	and	the	different
pieces	need	to	work	together	sufficiently	well	to	accomplish	the	larger	task.	To
achieve	this,	the	teams	need	to	coordinate.
The	team	size	becomes	a	major	driver	of	the	overall	architecture.	A	small

team,	by	necessity,	works	on	a	small	amount	of	code.	We	will	see	that	an
architecture	constructed	around	a	collection	of	microservices	is	a	good	means	to
package	these	small	tasks	and	reduce	the	need	for	explicit	coordination—so	we
will	call	the	output	of	a	development	team	a	“service.”	We	discuss	the	ways	and
challenges	of	migrating	to	a	microservice	architecture	driven	by	small	teams	in
Chapter	4	and	the	case	study	in	Chapter	13	from	Atlassian.

Team	Roles
We	lift	two	of	the	roles	in	the	team	from	Scott	Ambler’s	description	of	roles	in
an	agile	team.

Team	lead.	This	role,	called	“Scrum	Master”	in	Scrum	or	team	coach
or	project	lead	in	other	methods,	is	responsible	for	facilitating	the
team,	obtaining	resources	for	it,	and	protecting	it	from	problems.
This	role	encompasses	the	soft	skills	of	project	management	but	not
the	technical	ones	such	as	planning	and	scheduling,	activities	which
are	better	left	to	the	team	as	a	whole.
Team	member.	This	role,	sometimes	referred	to	as	developer	or
programmer,	is	responsible	for	the	creation	and	delivery	of	a	system.
This	includes	modeling,	programming,	testing,	and	release	activities,
as	well	as	others.

Additional	roles	in	a	team	executing	a	DevOps	process	consist	of	service
owner,	reliability	engineer,	gatekeeper,	and	DevOps	engineer.	An	individual	can

perform	multiple	roles,	and	roles	can	be	split	among	individuals.	The	assignment
of	roles	to	individuals	depends	on	that	individual’s	skills	and	workload	as	well
as	the	skills	and	amount	of	work	required	to	satisfy	the	role.	We	discuss	some
examples	of	team	roles	for	adopting	DevOps	and	continuous	deployment	in	the
case	study	in	Chapter	12.

Service	Owner
The	service	owner	is	the	role	on	the	team	responsible	for	outside	coordination.
The	service	owner	participates	in	system-wide	requirements	activities,	prioritizes
work	items	for	the	team,	and	provides	the	team	with	information	both	from	the
clients	of	the	team’s	service	and	about	services	provided	to	the	team.	The
requirements	gathering	and	release	planning	activities	for	the	next	iteration	can
occur	in	parallel	with	the	conception	phase	of	the	current	iteration.	Thus,
although	these	activities	require	coordination	and	time,	they	will	not	slow	down
the	time	to	delivery.
The	service	owner	maintains	and	communicates	the	vision	for	the	service.

Since	each	service	is	relatively	small,	the	vision	involves	knowledge	of	the
clients	of	the	team’s	service	and	the	services	on	which	the	team’s	service
depends.	That	is,	the	vision	involves	the	architecture	of	the	overall	system	and
the	team’s	role	in	that	architecture.
The	ability	to	communicate	both	with	other	stakeholders	and	with	other

members	of	the	team	is	a	key	requirement	for	the	service	owner.

Reliability	Engineer
The	reliability	engineer	has	several	responsibilities.	First,	the	reliability	engineer
monitors	the	service	in	the	time	period	immediately	subsequent	to	the
deployment.	This	may	involve	the	use	of	canaries	(live	testing	of	a	small	number
of	nodes)	and	a	wide	variety	of	metrics	taken	from	the	service.	We	will	discuss
both	of	those	concepts	in	more	detail	later	in	this	book.	Second,	the	reliability
engineer	is	the	point	of	contact	for	problems	with	the	service	during	its
execution.	This	means	being	on	call	for	services	that	require	high	availability.
Google	calls	this	role	“Site	Reliability	Engineer.”
Once	a	problem	occurs,	the	reliability	engineer	performs	short-term	analysis

to	diagnose,	mitigate,	and	repair	the	problem,	usually	with	the	assistance	of
automated	tools.	This	can	occur	under	very	stressful	conditions	(e.g.,	in	the
middle	of	the	night	or	a	romantic	dinner).	The	problem	may	involve	reliability
engineers	from	other	teams.	In	any	case,	the	reliability	engineer	has	to	be
excellent	at	troubleshooting	and	diagnosis.	The	reliability	engineer	also	has	to
have	a	comprehensive	grasp	of	the	internals	of	the	service	so	that	a	fix	or

have	a	comprehensive	grasp	of	the	internals	of	the	service	so	that	a	fix	or
workaround	can	be	applied.
In	addition	to	the	short-term	analysis,	the	reliability	engineer	should	discover

or	work	with	the	team	to	discover	the	root	cause	of	a	problem.	The	“5	Whys”	is
a	technique	to	determine	a	root	cause.	Keep	asking	“Why?”	until	a	process
reason	is	discovered.	For	example,	the	deployed	service	is	too	slow	and	the
immediate	cause	may	be	an	unexpected	spike	in	workload.	The	second	“why”	is
what	caused	the	unexpected	spike,	and	so	on.	Ultimately,	the	response	is	that
stress	testing	for	the	service	did	not	include	appropriate	workload
characterization.	This	process	reason	can	be	fixed	by	improving	the	workload
characterization	for	the	stress	testing.	Increasingly,	reliability	engineers	need	to
be	competent	developers,	as	they	need	to	write	high-quality	programs	to
automate	the	repetitive	part	of	the	diagnosis,	mitigation,	and	repair.

Gatekeeper
Netflix	uses	the	steps	given	in	Figure	1.3	from	local	development	to	deployment.

FIGURE	1.3	Netflix	path	to	production.	(Adapted	from
http://techblog.netflix.com/2013/11/preparing-netflix-api-for-

deployment.html)	[Notation:	BPMN]

Each	arrow	in	this	figure	represents	a	decision	to	move	to	the	next	step.	This
decision	may	be	done	automatically	(in	Netflix’s	case)	or	manually.	The	manual
role	that	decides	to	move	a	service	to	the	next	step	in	a	deployment	pipeline	is	a
gatekeeper	role.	The	gatekeeper	decides	whether	to	allow	a	version	of	a	service
or	a	portion	of	a	service	through	“the	gate”	to	the	next	step.	The	gatekeeper	may

http://techblog.netflix.com/2013/11/preparing-netflix-api-for-deployment.html

rely	on	comprehensive	testing	results	and	have	a	checklist	to	use	to	make	this
decision	and	may	consult	with	others	but,	fundamentally,	the	responsibility	for
allowing	code	or	a	service	to	move	on	through	the	deployment	pipeline	belongs
to	the	gatekeeper.	In	some	cases,	the	original	developer	is	the	gatekeeper	before
deployment	to	production,	making	a	decision	informed	by	test	results	but
carrying	the	full	responsibility.	Human	gatekeepers	(not	the	original	developer)
may	be	required	by	regulators	in	some	industries	such	as	the	financial	industry.
Mozilla	has	a	role	called	a	release	coordinator	(sometimes	called	release

manager).	This	individual	is	designated	to	assume	responsibility	for	coordinating
the	entire	release.	The	release	coordinator	attends	triage	meetings	where	it	is
decided	what	is	in	and	what	is	omitted	from	a	release,	understands	the
background	context	on	all	work	included	in	a	release,	referees	bug	severity
disputes,	may	approve	late-breaking	additions,	and	can	make	the	back-out
decision.	In	addition,	on	the	actual	release	day,	the	release	coordinator	is	the
point	for	all	communications	between	developers,	QA,	release	engineering,
website	developers,	PR,	and	marketing.	The	release	coordinator	is	a	gatekeeper.

DevOps	Engineer
Examine	Figure	1.2	again	with	an	eye	toward	the	use	of	tools	in	this	process.
Some	of	the	tools	used	are	code	testing	tools,	configuration	management	tools,
continuous	integration	tools,	deployment	tools,	or	post-deployment	testing	tools.
Configuration	management	applies	not	only	to	the	source	code	for	the	service

but	also	to	all	of	the	input	for	the	various	tools.	This	allows	you	to	answer
questions	such	as	“What	changed	between	the	last	deployment	and	this	one?”
and	“What	new	tests	were	added	since	the	last	build?”
Tools	evolve,	tools	require	specialized	knowledge,	and	tools	require

specialized	input.	The	DevOps	engineer	role	is	responsible	for	the	care	and
feeding	of	the	various	tools	used	in	the	DevOps	tool	chain.	This	role	can	be
filled	at	the	individual	level,	the	team	level,	or	the	organizational	level.	For
example,	the	organization	may	decide	on	a	particular	configuration	management
tool	that	all	should	use.	The	team	will	still	need	to	decide	on	its	branching
strategies,	and	individual	developers	may	further	create	branches.	Policies	for
naming	and	access	will	exist	and	possibly	be	automatically	enforced.	The	choice
of	which	release	of	the	configuration	management	tool	the	development	teams
will	use	is	a	portion	of	the	DevOps	engineer’s	role,	as	are	the	tailoring	of	the	tool
for	the	development	team	and	monitoring	its	correct	use	by	the	developers.	The
DevOps	engineering	role	is	inherent	in	automating	the	development	and
deployment	pipeline.	How	this	role	is	manifested	in	an	organizational	or	team
structure	is	a	decision	separate	from	the	recognition	that	the	role	exists	and	must

structure	is	a	decision	separate	from	the	recognition	that	the	role	exists	and	must
be	filled.

1.6	Coordination
One	goal	of	DevOps	is	to	minimize	coordination	in	order	to	reduce	the	time	to
market.	Two	of	the	reasons	to	coordinate	are,	first,	so	that	the	pieces	developed
by	the	various	teams	will	work	together	and,	second,	to	avoid	duplication	of
effort.	The	Oxford	English	Dictionary	defines	coordination	as	“the	organization
of	the	different	elements	of	a	complex	body	or	activity	so	as	to	enable	them	to
work	together	effectively.”	We	go	more	deeply	into	the	concept	of	coordination
and	its	mechanisms	in	this	section.

Forms	of	Coordination
Coordination	mechanisms	have	different	attributes.

	Direct—the	individuals	coordinating	know	each	other	(e.g.,	team
members).
	Indirect—the	coordination	mechanism	is	aimed	at	an	audience	known	only
by	its	characterization	(e.g.,	system	administrators).
	Persistent—the	coordination	artifacts	are	available	after	the	moment	of	the
coordination	(e.g.,	documents,	e-mail,	bulletin	boards).
	Ephemeral—the	coordination,	per	se,	produces	no	artifacts	(e.g.,	face	to
face	meetings,	conversations,	telephone/video	conferencing).	Ephemeral
coordination	can	be	made	persistent	through	the	use	of	human	or
mechanical	recorders.
	Synchronous—individuals	are	coordinating	in	real	time,	(e.g.,	face	to	face).
	Asynchronous—individuals	are	not	coordinating	in	real	time	(e.g.,
documents,	e-mail).

Coordination	mechanisms	are	built	into	many	of	the	tools	used	in	DevOps.
For	example,	a	version	control	system	is	a	form	of	automated	coordination	that
keeps	various	developers	from	overwriting	each	other’s	code.	A	continuous
integration	tool	is	a	form	of	coordinating	the	testing	of	the	correctness	of	a	build.
Every	form	of	coordination	has	a	cost	and	a	benefit.	Synchronous

coordination	requires	scheduling	and,	potentially,	travel.	The	time	spent	in
synchronous	coordination	is	a	cost	for	all	involved.	The	benefits	of	synchronous
coordination	include	allowing	the	people	involved	to	have	an	immediate
opportunity	to	contribute	to	the	resolution	of	any	problem.	Other	costs	and
benefits	for	synchronous	coordination	depend	on	the	bandwidth	of

benefits	for	synchronous	coordination	depend	on	the	bandwidth	of
communication,	time	zone	differences,	and	persistence	of	the	coordination.	Each
form	of	coordination	can	be	analyzed	in	terms	of	costs	and	benefits.
The	ideal	characteristics	of	a	coordination	mechanism	are	that	it	is	low	cost	in

terms	of	delay,	preparation	required,	and	people’s	time,	and	of	high	benefit	in
terms	of	visibility	of	the	coordination	to	all	relevant	stakeholders,	fast	resolution
of	any	problems,	and	effectiveness	in	communicating	the	desired	information.
The	Wikipedia	definition	of	DevOps	that	we	mentioned	earlier	stated	that

“communication,	collaboration,	and	integration”	are	hallmarks	of	a	DevOps
process.	In	light	of	our	current	discussion	of	coordination,	we	can	see	that	too
much	manual	communication	and	collaboration,	especially	synchronous,	defeats
the	DevOps	goal	of	shorter	time	to	market.

Team	Coordination
Team	coordination	mechanisms	are	of	two	types—human	processes	and
automated	processes.	The	DevOps	human	processes	are	adopted	from	agile
processes	and	are	designed	for	high-bandwidth	coordination	with	limited
persistence.	Stand-up	meetings	and	information	radiators	are	examples	of	human
process	coordination	mechanisms.
Automated	team	coordination	mechanisms	are	designed	to	protect	team

members	from	interference	of	their	and	others’	activities	(version	control	and
configuration	management	systems),	to	automate	repetitive	tasks	(continuous
integration	and	deployment),	and	to	speed	up	error	detection	and	reporting
(automated	unit,	integration,	acceptance,	and	live	production	tests).	One	goal	is
to	provide	feedback	to	the	developers	as	quickly	as	possible.

Cross-team	Coordination
Examining	the	release	process	activities	again	makes	it	clear	that	cross-team
coordination	is	the	most	time-consuming	factor.	Coordination	must	occur	with
customers,	stakeholders,	other	development	teams,	and	operations.	Therefore,
DevOps	processes	attempt	to	minimize	this	coordination	as	much	as	possible.
From	the	development	team’s	perspective,	there	are	three	types	of	cross-team
coordination:	upstream	coordination	with	stakeholders	and	customers,
downstream	coordination	with	operations,	and	cross-stream	coordination	with
other	development	teams.
The	role	of	the	service	owner	is	to	perform	upstream	coordination.

Downstream	coordination	is	accomplished	by	moving	many	operations
responsibilities	to	the	development	team.	It	is	cross-team	coordination	that	we
focus	on	now.	There	are	two	reasons	for	a	development	team	to	coordinate	with

focus	on	now.	There	are	two	reasons	for	a	development	team	to	coordinate	with
other	development	teams—to	ensure	that	the	code	developed	by	one	team	works
well	with	the	code	developed	by	another	and	to	avoid	duplication	of	effort.

1.	Making	the	code	pieces	work	together.	One	method	for	supporting	the
independent	work	of	different	development	teams	while	simplifying	the
integration	of	this	work	is	to	have	a	software	architecture.	An	architecture
for	the	system	being	developed	will	help	make	the	pieces	work	together.
Some	further	coordination	is	still	necessary,	but	the	architecture	serves	as	a
coordinating	mechanism.	An	architecture	specifies	a	number	of	the	design
decisions	to	create	an	overall	system.	Six	of	these	design	decisions	are:
a.	Allocation	of	responsibilities.	In	DevOps	processes,	general
responsibilities	are	specified	in	the	architecture	but	specific
responsibilities	are	determined	at	the	initiation	of	each	iteration.

b.	Coordination	model.	The	coordination	model	describes	how	the
components	of	an	architecture	coordinate	at	runtime.	Having	a	single
coordination	model	for	all	elements	removes	the	necessity	of
coordination	about	the	coordination	model.

c.	Data	model.	As	with	responsibilities,	the	data	model	objects	and	their
life	cycle	are	specified	in	the	architecture	but	refinements	may	occur	at
iteration	initiation.

d.	Management	of	resources.	The	resources	to	be	managed	are	determined
by	the	architecture.	The	limits	on	these	resources	(e.g.,	buffer	size	or
thread	pool	size)	may	be	determined	during	iteration	initiation	or
through	system-wide	policies	specified	in	the	architecture.

e.	Mapping	among	architectural	elements.	The	least	coordination	is
required	among	teams	if	these	mappings	are	specified	in	the	architecture
and	in	the	work	assignments	for	the	teams.	We	return	to	this	topic	when
we	discuss	the	architectural	style	we	propose	for	systems	developed
with	DevOps	processes,	in	Chapter	4.

f.	Binding	time	decisions.	These	are	specified	in	the	overall	architecture.
Many	runtime	binding	values	will	be	specified	through	configuration
parameters,	and	we	will	discuss	the	management	of	the	configuration
parameters	in	Chapter	5.

2.	Avoiding	duplication	of	effort.	Avoiding	duplication	of	effort	and
encouraging	reuse	is	another	argument	for	coordination	among
development	teams.	DevOps	practices	essentially	argue	that	duplication	of
effort	is	a	necessary	cost	for	shorter	time	to	market.	There	are	two	portions

to	this	argument.	First,	since	the	task	each	team	has	to	accomplish	is	small,
any	duplication	is	small.	Large	potential	areas	of	duplication,	such	as	each
team	creating	their	own	datastore,	are	handled	by	the	architecture.	Second,
since	each	team	is	responsible	for	its	own	service,	troubleshooting
problems	after	deployment	is	faster	with	code	written	by	the	team,	and	it
avoids	escalating	a	problem	to	a	different	team.

1.7	Barriers
If	DevOps	solves	long-standing	problems	with	development	and	has	such	clear
benefits,	why	haven’t	all	organizations	adopted	DevOps	practices?	In	this
section	we	explore	the	barriers	to	their	adoption.

Culture	and	Type	of	Organization
Culture	is	important	when	discussing	DevOps.	Both	across	organizations	and
among	different	groups	within	the	same	organization,	cultural	issues	associated
with	DevOps	affect	its	form	and	its	adoption.	Culture	depends	not	only	on	your
role	but	also	on	the	type	of	organization	to	which	you	belong.
One	of	the	goals	of	DevOps	is	to	reduce	time	to	market	of	new	features	or

products.	One	of	the	tradeoffs	that	organizations	consider	when	adopting
DevOps	practices	is	the	benefits	of	reduced	time	to	market	versus	the	risks	of
something	going	awry.	Almost	all	organizations	worry	about	risk.	The	risks	that
a	particular	organization	worries	about,	however,	depend	on	their	domain	of
activity.	For	some	organizations	the	risks	of	problems	occurring	outweigh	a
time-to-market	advantage.

	Organizations	that	operate	in	regulated	domains—financial,	health	care,	or
utility	services—have	regulations	to	which	they	must	adhere	and	face
penalties,	potentially	severe,	if	they	violate	the	regulations	under	which
they	operate.	Even	organizations	in	regulated	domains	may	have	products
that	are	unregulated.	So	a	financial	organization	may	use	DevOps
processes	for	some	products.	For	products	that	require	more	oversight,	the
practices	may	be	adaptable,	for	example,	by	introducing	additional
gatekeepers.	We	discuss	security	and	audit	issues	in	Chapter	8.
	Organizations	that	operate	in	mature	and	slow-moving	domains—
automotive	or	building	construction—have	long	lead	times,	and,	although
their	deadlines	are	real,	they	are	also	foreseeable	far	in	advance.
	Organizations	whose	customers	have	a	high	cost	of	switching	to	another
supplier,	such	as	Enterprise	Resource	Planning	systems,	are	reluctant	to

risk	the	stability	of	their	operations.	The	cost	of	downtime	for	some
systems	will	far	outweigh	the	competitive	advantage	of	introducing	a	new
feature	somewhat	more	quickly.

For	other	organizations,	nimbleness	and	fast	response	are	more	important	than
the	occasional	error	caused	by	moving	too	fast.

	Organizations	that	rely	on	business	analytics	to	shape	their	products	want
to	have	shorter	and	shorter	times	between	the	gathering	of	the	data	and
actions	inspired	by	the	data.	Any	errors	that	result	can	be	quickly	corrected
since	the	next	cycle	will	happen	quickly.
	Organizations	that	face	severe	competitive	pressure	want	to	have	their
products	and	new	features	in	the	marketplace	before	their	competitors.

Note	that	these	examples	do	not	depend	on	the	size	of	the	organization	but
rather	the	type	of	business	they	are	in.	It	is	difficult	to	be	nimble	if	you	have
regulators	who	have	oversight	and	can	dictate	your	operating	principles,	or	if
your	lead	time	for	a	product	feature	is	measured	in	years,	or	if	your	capital
equipment	has	a	40-year	estimated	lifetime.
The	point	of	this	discussion	is	that	businesses	operate	in	an	environment	and

inherit	much	of	the	culture	of	that	environment.	See	Chapter	10	for	more	details.
Some	DevOps	practices	are	disruptive,	such	as	allowing	developers	to	deploy	to
production	directly;	other	DevOps	practices	are	incremental	in	that	they	do	not
affect	the	overall	flow	of	products	or	oversight.	Treating	operations	personnel	as
first-class	citizens	should	fall	into	this	nondisruptive	category.
It	is	possible	for	a	slow-moving	organization	to	become	more	nimble	or	a

nimble	organization	to	have	oversight.	If	you	are	considering	adopting	a	DevOps
practice	then	you	need	to	be	aware	of	three	things.

1.	What	other	practices	are	implicit	in	the	practice	you	are	considering?
You	cannot	do	continuous	deployment	without	first	doing	continuous
integration.	Independent	practices	need	to	be	adopted	prior	to	adopting
dependent	practices.

2.	What	is	the	particular	practice	you	are	considering?	What	are	its
assumption,	its	costs,	and	its	benefits?

3.	What	is	the	culture	of	your	business,	and	what	are	the	ramifications	of
your	adopting	this	particular	DevOps	practice?	If	the	practice	just	affects
operations	and	development,	that	is	one	thing.	If	it	requires	modification	to
the	entire	organizational	structure	and	oversight	practices,	that	is	quite
another.	The	difficulty	of	adopting	a	practice	is	related	to	its	impact	on
other	portions	of	the	organization.	But	even	if	the	adoption	focuses	on	a

single	development	team	and	a	few	operators,	it	is	important	that	the
DevOps	culture	is	adopted	by	all	people	involved.	A	commonly	reported
way	of	failing	in	the	adoption	of	DevOps	is	to	hire	a	DevOps	engineer	and
think	you	are	done.

Type	of	Department
One	method	for	determining	the	culture	of	an	organization	is	to	look	at	what
kinds	of	results	are	incentivized.	Salespeople	who	work	on	commission	work
very	hard	to	get	sales.	CEOs	who	are	rewarded	based	on	quarterly	profits	are
focused	on	the	results	of	the	next	quarter.	This	is	human	nature.	Developers	are
incentivized	to	produce	and	release	code.	Ideally,	they	are	incentivized	to
produce	error-free	code	but	there	is	a	Dilbert	cartoon	that	shows	the	difficulty	of
this:	The	pointy-headed	boss	offers	$10	for	every	bug	found	and	fixed,	and
Wally	responds,	“Hooray,	I	am	going	to	write	me	a	new	minivan	this	afternoon.”
In	any	case,	developers	are	incentivized	to	get	their	code	into	production.
Operations	personnel,	on	the	other	hand,	are	incentivized	to	minimize

downtime.	Minimizing	downtime	means	examining	and	removing	causes	of
downtime.	Examining	anything	in	detail	takes	time.	Furthermore,	avoiding
change	removes	one	of	the	causes	of	downtime.	“If	it	ain’t	broke,	don’t	fix	it”	is
a	well-known	phrase	dating	back	over	decades.
Basically,	developers	are	incentivized	to	change	something	(release	new

code),	and	operations	personnel	are	incentivized	to	resist	change.	These	two
different	sets	of	incentives	breed	different	attitudes	and	can	be	the	cause	of
culture	clashes.

Silo	Mentality
It	is	easy	to	say	that	two	departments	in	an	organization	have	a	common	goal—
ensuring	the	organization’s	success.	It	is	much	more	difficult	to	make	this
happen	in	practice.	An	individual’s	loyalty	tends	to	be	first	to	her	or	his	team	and
secondarily	to	the	overall	organization.	If	the	development	team	is	responsible
for	defining	the	release	plan	that	will	include	what	features	get	implemented	in
what	priority,	other	portions	of	the	organization	will	see	some	of	their	power
being	usurped	and,	potentially,	their	customers	become	unhappy.	If	activities
formerly	performed	by	operations	personnel	are	now	going	to	be	performed	by
developers,	what	happens	to	the	operations	personnel	who	now	have	less	to	do?
These	are	the	normal	ebbs	and	flows	of	organizational	politics	but	that	does

not	make	them	less	meaningful	and	less	real.

Tool	Support
We	described	the	advantages	of	automating	processes	previously,	and	these
advantages	are	real.	They	do	not	come	without	a	cost,	however.

	There	must	be	expertise	in	the	installation,	configuration,	and	use	of	each
tool.	Tools	have	new	releases,	inputs,	and	idiosyncrasies.	Tool	expertise
has	to	be	integrated	into	the	organization.
	If	the	organization	uses	common	processes	across	a	wide	variety	of
development	teams,	then	there	must	be	a	means	of	defining	these	common
processes	and	ensuring	that	all	of	the	development	teams	obey	them.	Use
of	a	tool	means	subscribing	to	the	process	implicit	in	that	tool.	See	the	case
study	in	Chapter	12	for	an	example	of	the	definition	of	common	processes.

Personnel	Issues
According	to	the	Datamation	2012	IT	salary	guide,	a	software	engineer	earns
about	50%	more	than	a	systems	administrator.	So	by	moving	a	task	from	a
system	administrator	(Ops)	to	a	software	engineer	(Dev),	the	personnel
performing	the	task	cost	50%	more.	Thus,	the	time	spent	performing	the	task
must	be	cut	by	a	third	just	to	make	the	performance	of	the	task	cost	the	same
amount.	A	bigger	cut	is	necessary	to	actually	gain	time,	with	automation	being
the	prevalent	method	to	achieve	these	time	savings.	This	is	the	type	of
cost/benefit	analysis	that	an	organization	must	go	through	in	order	to	determine
which	DevOps	processes	to	adopt	and	how	to	adopt	them.
Developers	with	a	modern	skill	set	are	in	high	demand	and	short	supply,	and

they	also	have	a	heavy	workload.	Adding	more	tasks	to	their	workload	may
exacerbate	the	shortage	of	developers.

1.8	Summary
The	main	takeaway	from	this	chapter	is	that	people	have	defined	DevOps	from
different	perspectives,	such	as	operators	adopting	agile	practices	or	developers
taking	operations	responsibilities,	among	others.	But	one	common	objective	is	to
reduce	the	time	between	the	conception	of	a	feature	or	improvement	as	a
business	idea	to	its	eventual	deployment	to	users.
DevOps	faces	barriers	due	to	both	cultural	and	technical	challenges.	It	can

have	a	huge	impact	on	team	structure,	software	architecture,	and	traditional	ways
of	conducting	operations.	We	have	given	you	a	taste	of	this	impact	by	listing
some	common	practices.	We	will	cover	all	of	these	topics	in	detail	throughout
the	rest	of	the	book.

the	rest	of	the	book.
Some	of	the	tradeoffs	involved	in	DevOps	are	as	follows:
	Creation	of	a	need	to	support	DevOps	tools.	This	tool	support	is	traded	off
against	the	shortening	of	the	time	to	market	of	new	functions.
	Moving	responsibilities	from	IT	professionals	to	developers.	This	tradeoff
is	multifaceted.	The	following	are	some	of	the	facets	to	be	considered:
	The	cost	to	complete	a	task	from	the	two	groups.
	The	time	to	complete	a	task	from	the	two	groups.
	The	availability	of	personnel	within	the	two	groups.
	The	repair	time	when	an	error	is	detected	during	execution.	If	the	error	is
detected	quickly	after	deployment,	then	the	developer	may	still	have	the
context	information	necessary	to	diagnose	it	quickly,	whereas	if	the	error
is	initially	diagnosed	by	IT	personnel,	it	may	take	time	before	the	error
gets	back	to	the	developer.

	Removing	oversight	of	new	features	and	deployment.	This	tradeoff	is
between	autonomy	for	the	development	teams	and	overall	coordination.
The	efficiencies	of	having	autonomous	development	teams	must	outweigh
the	duplications	of	effort	that	will	occur	because	of	no	overall	oversight.

All	in	all,	we	believe	that	DevOps	has	the	potential	to	lead	IT	onto	exciting
new	ground,	with	high	frequency	of	innovation	and	fast	cycles	to	improve	the
user	experience.	We	hope	you	enjoy	reading	the	book	as	much	as	we	enjoyed
writing	it.

1.9	For	Further	Reading
You	can	read	about	different	takes	on	the	DevOps	definition	from	the	following
sources:

	Gartner’s	Hype	Cycle	[Gartner]	categorizes	DevOps	as	on	the	rise:
http://www.gartner.com/DisplayDocument?doc_cd=249070.
	AgileAdmins	explains	DevOps	from	an	agile	perspective:
http://theagileadmin.com/what-is-devops/.

You	can	find	many	more	responses	from	the	following	recent	surveys	and
industry	reports:

	XebiaLabs	has	a	wide	range	of	surveys	and	state	of	industry	reports	on
DevOps-related	topics	that	can	be	found	at	http://xebialabs.com/xl-
resources/whitepapers/
	CA	Technologies’	report	gives	some	insights	into	business’	different

http://www.gartner.com/DisplayDocument?doc_cd=249070
http://theagileadmin.com/what-is-devops/
http://xebialabs.com/xl-resources/whitepapers/

understanding	of	DevOps	and	can	be	found	at
http://www.ca.com/us/collateral/white-papers/na/techinsights-report-what-
smart-businesses-know-about-devops.aspx

While	some	vendors	or	communities	extended	continuous	integration	tools
toward	continuous	deployment,	many	vendors	also	released	completely	new
tools	for	continuous	delivery	and	deployment.

	The	popular	continuous	integration	tool	Jenkins	has	many	third-party	plug-
ins	including	some	workflows	extending	into	continuous	deployment.	You
can	find	some	plug-ins	from	Cloudbees	at
http://www.slideshare.net/cloudbees
	IBM	acquired	UrbanCode	recently.	UrbanCode	is	one	of	the	new	vendors
providing	a	continuous	delivery	tool	suite	[InfoQ	13].
	ThoughtWorks	also	released	its	own	continuous	deployment	pipeline	suite
called	Go,	which	can	be	found	at	http://www.go.cd/

Some	of	the	basic	conceptual	information	in	this	chapter	comes	from	the
following	Wikipedia	links:

	One	definition	of	DevOps	we	refer	to	is	found	at
http://en.wikipedia.org/wiki/System_administrator
	The	steps	in	a	release	or	deployment	plan	are	adapted	from
http://en.wikipedia.org/wiki/Deployment_Plan
	The	duties	of	an	operator	are	listed	in
http://en.wikipedia.org/wiki/DevOps.
	The	5	Whys	originated	at	Toyota	Motors	and	are	discussed	in
http://en.wikipedia.org/wiki/5_Whys

There	are	also	discussions	around	whether	or	not	continuous	deployment	is
just	a	dream	[BostInno	11].	Scott	Ambler	has	not	only	coauthored	(with	Mark
Lines)	a	book	on	disciplined	agile	delivery	[Ambler	12],	he	also	maintains	a	blog
from	which	we	adapted	the	description	of	the	roles	in	a	team	[Ambler	15].
Netflix	maintains	a	technical	blog	where	they	discuss	a	variety	of	issues

associated	with	their	platform.	Their	deployment	steps	are	discussed	in	[Netflix
13].
Mozilla’s	Release	Coordinator	role	is	discussed	in	[Mozilla].
Len	Bass,	Paul	Clements,	and	Rick	Kazman	discuss	architectural	decisions	on

page	73	and	subsequently	in	Software	Architecture	in	Practice	[Bass	13].
The	discussion	of	IMVU	is	adapted	from	a	blog	written	by	Timothy	Fitz	[Fitz

http://www.ca.com/us/collateral/white-papers/na/techinsights-report-what-smart-businesses-know-about-devops.aspx
http://www.slideshare.net/cloudbees
http://www.go.cd/
http://en.wikipedia.org/wiki/System_administrator
http://en.wikipedia.org/wiki/Deployment_Plan
http://en.wikipedia.org/wiki/DevOps
http://en.wikipedia.org/wiki/5_Whys

09].

2.	The	Cloud	as	a	Platform

We’ve	redefined	cloud	computing	to	include	everything	that	we	already	do.
…	The	computer	industry	is	the	only	industry	that	is	more	fashion-driven
than	women’s	fashion.	…	We’ll	make	cloud	computing	announcements

because	if	orange	is	the	new	pink,	we’ll	make	orange	blouses.	I’m	not	going
to	fight	this	thing.
—Larry	Ellison

2.1	Introduction
The	standard	analogy	used	to	describe	the	cloud	is	that	of	the	electric	grid.	When
you	want	to	use	electricity,	you	plug	a	device	into	a	standard	connection	and	turn
it	on.	You	are	charged	for	the	electricity	you	use.	In	most	cases,	you	can	remain
ignorant	of	the	mechanisms	the	various	electric	companies	use	to	generate	and
distribute	electricity.	The	exception	to	this	ignorance	is	if	there	is	a	power
outage.	At	that	point	you	become	aware	that	there	are	complicated	mechanisms
underlying	your	use	of	electricity	even	if	you	remain	unaware	of	the	particular
mechanisms	that	failed.
The	National	Institute	of	Standards	and	Technology	(NIST)	has	provided	a

characterization	of	the	cloud	with	the	following	elements:
	On-demand	self-service.	A	consumer	can	unilaterally	provision	computing
capabilities,	such	as	server	time	and	network	storage,	as	needed
automatically	without	requiring	human	interaction	with	each	service
provider.
	Broad	network	access.	Capabilities	are	available	over	the	network	and
accessed	through	standard	mechanisms	that	promote	use	by	heterogeneous
thin	or	thick	client	platforms	(e.g.,	mobile	phones,	tablets,	laptops,	and
workstations).
	Resource	pooling.	The	provider’s	computing	resources	are	pooled	to	serve
multiple	consumers	using	a	multi-tenant	model,	with	different	physical	and
virtual	resources	dynamically	assigned	and	reassigned	according	to
consumer	demand.	There	is	a	sense	of	location	independence	in	that	the
customer	generally	has	no	control	over	or	knowledge	of	the	exact	location
of	the	provided	resources	but	may	be	able	to	specify	location	at	a	higher

level	of	abstraction	(e.g.,	country,	state,	or	datacenter).	Examples	of
resources	include	storage,	processing,	memory,	and	network	bandwidth.
	Rapid	elasticity.	Capabilities	can	be	elastically	provisioned	and	released,	in
some	cases	automatically,	to	scale	rapidly	outward	and	inward
commensurate	with	demand.	To	the	consumer,	the	capabilities	available
for	provisioning	often	appear	to	be	unlimited	and	can	be	appropriated	in
any	quantity	at	any	time.
	Measured	service.	Cloud	systems	automatically	control	and	optimize
resource	use	by	leveraging	a	metering	capability	at	some	level	of
abstraction	appropriate	to	the	type	of	service	(e.g.,	storage,	processing,
bandwidth,	and	active	user	accounts).	Resource	usage	can	be	monitored,
controlled,	and	reported,	thereby	providing	transparency	for	both	the
provider	and	consumer	of	the	utilized	service.

From	the	perspective	of	operations	and	DevOps,	the	most	important	of	these
characteristics	are	on-demand	self-service	and	measured	(or	metered)	service.
Even	though	the	cloud	provides	what	appear	to	be	unlimited	resources	that	you
can	acquire	at	will,	you	must	still	pay	for	their	use.	As	we	will	discuss,	the	other
characteristics	are	also	important	but	not	as	dominant	as	on-demand	self-service
and	paying	for	what	you	use.
Implicit	in	the	NIST	characterization	is	the	distinction	between	the	provider

and	the	consumer	of	cloud	services.	Our	perspective	in	this	book	is	primarily
that	of	the	consumer.	If	your	organization	runs	its	own	datacenters	then	there
may	be	some	blurring	of	this	distinction,	but	even	in	such	organizations,	the
management	of	the	datacenters	is	not	usually	considered	as	falling	within	the
purview	of	DevOps.
NIST	also	characterizes	the	various	types	of	services	available	from	cloud

providers,	as	shown	in	Table	2.1.	NIST	defines	three	types	of	services,	any	one
of	which	can	be	used	in	a	DevOps	context.

TABLE	2.1	Cloud	Service	Models

	Software	as	a	Service	(SaaS).	The	consumer	is	provided	the	capability	to
use	the	provider’s	applications	running	on	a	cloud	infrastructure.	The
applications	are	accessible	from	various	client	devices	through	either	a	thin
client	interface,	such	as	a	web	browser	(e.g.,	web-based	e-mail)	or	an
application	interface.	The	consumer	does	not	manage	or	control	the
underlying	cloud	infrastructure	including	networks,	servers,	operating
systems,	storage,	or	even	individual	application	capabilities,	with	the
possible	exception	of	limited	user-specific	application	configuration
settings.
	Platform	as	a	Service	(PaaS).	The	consumer	is	provided	the	capability	to
deploy	onto	the	cloud	infrastructure	consumer-created	or	acquired
applications	created	using	programming	languages,	libraries,	services,	and
tools	supported	by	the	provider.	The	consumer	does	not	manage	or	control
the	underlying	cloud	infrastructure	including	networks,	servers,	operating
systems,	or	storage,	but	has	control	over	the	deployed	applications	and
possibly	configuration	settings	for	the	application-hosting	environment.
	Infrastructure	as	a	Service	(IaaS).	The	consumer	is	provided	the	capability
to	provision	processing,	storage,	networks,	and	other	fundamental
computing	resources	where	the	consumer	is	able	to	deploy	and	run
arbitrary	software,	which	can	include	operating	systems	and	applications.
The	consumer	does	not	manage	or	control	the	underlying	cloud
infrastructure	but	has	control	over	operating	systems,	storage,	and
deployed	applications;	and	possibly	limited	control	of	select	networking
components	(e.g.,	host	firewalls).

We	first	discuss	the	mechanisms	involved	in	the	cloud,	and	then	we	discuss
the	consequences	of	these	mechanisms	on	DevOps.

2.2	Features	of	the	Cloud
The	fundamental	enabler	of	the	cloud	is	virtualization	over	hundreds	of
thousands	of	hosts	accessible	over	the	Internet.	We	begin	by	discussing	IaaS-
centric	features,	namely,	virtualization	and	IP	management,	followed	by	some
specifics	of	PaaS	offerings.	Then	we	discuss	general	issues,	such	as	the
consequences	of	having	hundreds	of	thousands	of	hosts	and	how	elasticity	is
supported	in	the	cloud.

Virtualization
In	cloud	computing,	a	virtual	machine	(VM)	is	an	emulation	of	a	physical

machine.	A	VM	image	is	a	file	that	contains	a	bootable	operating	system	and
some	software	installed	on	it.	A	VM	image	provides	the	information	required	to
launch	a	VM	(or	more	precisely,	a	VM	instance).	In	this	book,	we	use	“VM”	and
“VM	instance”	interchangeably	to	refer	to	an	instance.	And	we	use	“VM	image”
to	refer	to	the	file	used	to	launch	a	VM	or	a	VM	instance.	For	example,	an
Amazon	Machine	Image	(AMI)	is	a	VM	image	that	can	be	used	to	launch	Elastic
Compute	Cloud	(EC2)	VM	instances.
When	using	IaaS,	a	consumer	acquires	a	VM	from	a	VM	image	by	using	an

application	programming	interface	(API)	provided	by	the	cloud	provider	for	that
purpose.	The	API	may	be	embedded	in	a	command-line	interpreter,	a	web
interface,	or	another	tool	of	some	sort.	In	any	case,	the	request	is	for	a	VM	with
some	set	of	resources—CPU,	memory,	and	network.	The	resources	granted	may
be	hosted	on	a	computer	that	is	also	hosting	other	VMs	(multi-tenancy)	but	from
the	perspective	of	the	consumer,	the	provider	produces	the	equivalent	of	a	stand-
alone	computer.

Creating	a	Virtual	Machine
In	order	to	create	a	VM,	two	distinct	activities	are	performed.

	The	user	issues	a	command	to	create	a	VM.	Typically,	the	cloud	provider
has	a	utility	that	enables	the	creation	of	the	VM.	This	utility	is	told	the
resources	required	by	the	VM,	the	account	to	which	the	charges	accrued	by
the	VM	should	be	charged,	the	software	to	be	loaded	(see	below),	and	a	set
of	configuration	parameters	specifying	security	and	the	external
connections	for	the	VM.
	The	cloud	infrastructure	decides	on	which	physical	machine	to	create	the
VM	instance.	The	operating	system	for	this	physical	machine	is	called	a
hypervisor,	and	it	allocates	resources	for	the	new	VM	and	“wires”	the	new
machine	so	that	it	can	send	and	receive	messages.	The	new	VM	is	assigned
an	IP	address	that	is	used	for	sending	and	receiving	messages.	We	have
described	the	situation	where	the	hypervisor	is	running	on	bare	metal.	It	is
also	possible	that	there	are	additional	layers	of	operating	system–type
software	involved	but	each	layer	introduces	overhead	and	so	the	most
common	situation	is	the	one	we	described.

Loading	a	Virtual	Machine
Each	VM	needs	to	be	loaded	with	a	set	of	software	in	order	to	do	meaningful
work.	The	software	can	be	loaded	partially	as	a	VM	and	partially	as	a	result	of
the	activated	VM	loading	software	after	launching.	A	VM	image	can	be	created
by	loading	and	configuring	a	machine	with	the	desired	software	and	data,	and

by	loading	and	configuring	a	machine	with	the	desired	software	and	data,	and
then	copying	the	memory	contents	(typically	in	the	form	of	the	virtual	hard	disk)
of	the	machine	to	a	persistent	file.	New	VM	instances	from	that	VM	image
(software	and	data)	can	then	be	created	at	will.
The	process	of	creating	a	VM	image	is	called	baking	the	image.	A	heavily

baked	image	contains	all	of	the	software	required	to	run	an	application	and	a
lightly	baked	image	contains	only	a	portion	of	the	software	required,	such	as	an
operating	system	and	a	middleware	container.	We	discuss	these	options	and	the
related	tradeoffs	in	Chapter	5.
Virtualization	introduces	several	types	of	uncertainty	that	you	should	be	aware

of.
	Because	a	VM	shares	resources	with	other	VMs	on	a	single	physical
machine,	there	may	be	some	performance	interference	among	the	VMs.
This	situation	may	be	particularly	difficult	for	cloud	consumers	as	they
usually	have	no	visibility	into	the	co-located	VMs	owned	by	other
consumers.
	There	are	also	time	and	dependability	uncertainties	when	loading	a	VM,
depending	on	the	underlying	physical	infrastructure	and	the	additional
software	that	needs	to	be	dynamically	loaded.	DevOps	operations	often
create	and	destroy	VMs	frequently	for	setting	up	different	environments	or
deploying	new	versions	of	software.	It	is	important	that	you	are	aware	of
these	uncertainties.

IP	and	Domain	Name	System	Management
When	a	VM	is	created,	it	is	assigned	an	IP	address.	IP	addresses	are	the	means
by	which	messages	are	routed	to	any	computer	on	the	Internet.	IP	addresses,
their	routing,	and	their	management	are	all	complicated	subjects.	A	discussion	of
the	Domain	Name	System	(DNS),	and	the	persistence	of	IP	addresses	with
respect	to	VMs	follows.

DNS
Underlying	the	World	Wide	Web	is	a	system	that	translates	part	of	URLs	into	IP
addresses.	This	function	concerns	the	domain	name	part	of	the	URL	(e.g.,
ssrg.nicta.com.au),	which	can	be	resolved	to	an	IP	address	through	the
DNS.	As	a	portion	of	normal	initiation,	a	browser,	for	example,	is	provided	with
the	address	of	a	DNS	server.	As	shown	in	Figure	2.1,	when	you	enter	a	URL	into
your	browser,	it	sends	that	URL	to	its	known	DNS	server	which,	in	association

with	a	larger	network	of	DNS	servers,	resolves	that	URL	into	an	IP	address.

FIGURE	2.1	DNS	returning	an	IP	address	[Notation:	Architecture]

The	domain	name	indicates	a	routing	path	for	the	resolution.	The	domain
name	ssrg.nicta.com.au,	for	example,	will	go	first	to	a	root	DNS	server
to	look	up	how	to	resolve	.au	names.	The	root	server	will	provide	an	IP	address
for	the	Australian	DNS	server	where	.com	names	for	Australia	are	stored.	The
.com.au	server	will	provide	the	IP	address	of	the	nicta	DNS	server,	which
in	turn	provides	an	IP	address	for	ssrg.
The	importance	of	this	hierarchy	is	that	the	lower	levels	of	the	hierarchy

—.nicta	and	.ssrg—are	under	local	control.	Thus,	the	IP	address	of	ssrg
within	the	.nicta	server	can	be	changed	relatively	easily	and	locally.
Furthermore,	each	DNS	entry	has	an	attribute	named	time	to	live	(TTL).	TTL

acts	as	an	expiration	time	for	the	entry	(i.e.,	the	mapping	of	the	domain	name
and	the	IP	address).	The	client	or	the	local	DNS	server	will	cache	the	entry,	and
that	cached	entry	will	be	valid	for	a	duration	specified	by	the	TTL.	When	a
query	arrives	prior	to	the	expiration	time,	the	client/local	DNS	server	can
retrieve	the	IP	address	from	its	cache.	When	a	query	arrives	after	the	expiration
time,	the	IP	address	has	to	be	resolved	by	an	authoritative	DNS	server.	Normally
the	TTL	is	set	to	a	large	value;	it	may	be	as	large	as	24	hours.	It	is	possible	to	set
the	TTL	to	as	low	as	1	minute.	We	will	see	in	our	case	studies,	Chapters	11–13,
how	the	combination	of	local	control	and	short	TTL	can	be	used	within	a
DevOps	context.
One	further	point	deserves	mention.	In	Figure	2.1,	we	showed	the	DNS

returning	a	single	IP	address	for	a	domain	name.	In	fact,	it	can	return	multiple
addresses.	Figure	2.2	shows	the	DNS	server	returning	two	addresses.

FIGURE	2.2	DNS	returning	two	addresses	for	a	single	URL	[Notation:
Architecture]

The	client	will	attempt	the	first	IP	address	and,	in	the	event	of	no	response,
will	try	the	second,	and	so	forth.	The	DNS	server	may	rotate	the	order	of	the
servers	in	order	to	provide	some	measure	of	load	balancing.
Multiple	sites	can	exist	for	several	reasons:
	Performance.	There	are	too	many	users	to	be	served	by	a	single	site;
consequently,	multiple	sites	exist.
	Reliability.	If	one	site	fails	to	respond	for	some	reason,	the	client	can
attempt	the	second	site.
	Testing.	The	second	site	may	provide	some	features	or	a	new	version	that
you	want	to	test	within	a	limited	production	environment.	In	this	case,
access	to	the	second	site	is	restricted	to	the	population	you	want	to	perform
the	tests	on.	More	details	on	this	method	are	given	in	Chapters	5	and	6.

Persistence	of	IP	Addresses	with	Respect	to	VMs
The	IP	address	assigned	to	a	virtual	machine	on	its	creation	persists	as	long	as
that	VM	is	active.	A	VM	becomes	inactive	when	it	is	terminated,	paused,	or
stopped.	In	these	cases,	the	IP	address	is	returned	to	the	cloud	provider’s	pool	for
reassignment.
One	consequence	of	IP	reassignment	is:	If	one	VM	within	your	application

sends	a	message	to	another	VM	within	your	application	it	must	verify	that	the	IP
address	of	the	recipient	VM	is	still	current.	Consider	the	following	sequence
where	your	application	contains	at	least	VMA	and	VMB.

1.	VMB	receives	a	message	from	VMA.

2.	VMA	fails.
3.	The	cloud	provider	reassigns	the	IP	address	of	VMA.
4.	VMB	responds	to	the	originating	IP	address.

5.	The	message	is	delivered	to	a	VM	that	is	not	a	portion	of	your	application.
In	order	to	avoid	this	sequence	either	you	must	ask	the	cloud	provider	for

persistent	IP	addresses	(often	available	at	a	premium)	or	your	application	VMs
must	verify,	prior	to	sending	a	message,	that	the	recipient	is	still	alive	and	has
the	same	IP	address.	We	discuss	a	mechanism	for	verifying	the	aliveness	of	a
VM	in	Chapter	4.

Platform	as	a	Service
Many	of	the	aspects	we	discussed	so	far	are	IaaS-specific.	When	using	PaaS
offerings,	you	can	abstract	from	many	of	these	details,	since	PaaS	services	reside
at	a	higher	level	of	the	stack	and	hide	underlying	details	to	a	degree.
As	stated	in	the	NIST	definition	earlier,	PaaS	offerings	allow	you	to	run

applications	in	predefined	environments.	For	instance,	you	can	compile	a	Java
web	application	into	a	web	application	archive	(WAR)	file	and	deploy	it	on
hosted	web	application	containers.	You	can	then	configure	the	service	to	your
specific	needs,	for	example,	in	terms	of	the	number	of	underlying	(often
standardized)	resources,	and	connect	the	application	to	hosted	database
management	systems	(SQL	or	NoSQL).	While	most	PaaS	platforms	offer	hosted
solutions,	either	on	their	own	infrastructure	or	on	an	IaaS	base,	some	platforms
are	also	available	for	on-premise	installation.
Most	PaaS	platforms	provide	a	set	of	core	services	(e.g.,	hosting	of	Java	web

apps,	Ruby	Gems,	Scala	apps,	etc.)	and	a	catalogue	of	add-ons	(e.g.,	specific
monitoring	solutions,	autoscaling	options,	log	streaming,	and	alerting,	etc.).	In	a
way,	PaaS	are	similar	to	some	of	the	services	offered	by	traditional	Ops
departments,	which	usually	took	over	the	management	of	the	infrastructure
layers	and	gave	development	teams	a	set	of	environment	options	for	hosting
their	systems	from	which	the	Dev	teams	could	pick	and	choose.	However,	using
a	provider	PaaS	with	worldwide	availability	usually	means	that	you	have	more
add-ons	and	newer	options	more	quickly	than	in	traditional	Ops	departments.

add-ons	and	newer	options	more	quickly	than	in	traditional	Ops	departments.
Similarly	to	IaaS,	if	you	are	inexperienced	with	a	particular	PaaS	offering,	you

first	have	to	learn	how	to	use	it.	This	includes	platform-specific	tools,	structures,
configuration	options,	and	logic.	While	getting	started	is	relatively	easy	in	most
PaaS	platforms,	there	are	intricate,	complex	details	in	commands	and
configurations	that	take	time	to	master.
The	additional	abstraction	of	PaaS	over	IaaS	means	that	you	can	focus	on	the

important	bits	of	your	system—the	application.	You	do	not	have	to	deal	with	the
network	configuration,	load	balancers,	operating	systems,	security	patches	on	the
lower	layers,	and	so	on.	But	it	also	means	you	give	up	visibility	into	and	control
over	the	underlying	layers.	Where	this	is	acceptable,	it	might	be	well	worthwhile
to	use	a	PaaS	solution.	However,	when	you	end	up	needing	the	additional
control	at	a	later	stage,	the	migration	might	be	increasingly	hard.

Distributed	Environment
In	this	section,	we	explore	some	of	the	implications	of	having	hundreds	of
thousands	of	servers	within	a	cloud	provider’s	environment.	These	implications
concern	the	time	involved	for	various	operations,	the	probability	of	failure,	and
the	consequences	of	these	two	aspects	on	the	consistency	of	data.

Time
Within	a	stand-alone	computer	system,	there	are	large	variations	in	the	time
required	to	read	an	item	from	main	memory	and	the	time	required	to	read	a	data
item	from	a	disk.	The	actual	numbers	change	over	time	because	of	the
improvements	in	hardware	speed,	but	just	to	give	some	idea	of	the	difference,
accessing	1MB	(roughly	one	million	bytes)	sequentially	from	main	memory
takes	on	the	order	of	12μs	(microseconds).	Accessing	an	item	from	a	spinning
disk	requires	on	the	order	of	4ms	(milliseconds)	to	move	the	disk	head	to	the
correct	location.	Then,	reading	1MB	takes	approximately	2ms.
In	a	distributed	environment	where	messages	are	the	means	of	communication

between	the	various	processes	involved	in	an	application,	a	round	trip	within	the
same	datacenter	takes	approximately	500μs	and	a	round	trip	between	California
and	the	Netherlands	takes	around	150ms.
One	consequence	of	these	numbers	is	that	determining	what	data	to	maintain

in	memory	or	on	the	disk	is	a	critical	performance	decision.	Caching	allows	for
maintaining	some	data	in	both	places	but	introduces	the	problem	of	keeping	the
data	consistent.	A	second	consequence	is	that	where	persistent	data	is	physically
located	will	also	have	a	large	impact	on	performance.	Combining	these	two
consequences	with	the	possibility	of	failure,	discussed	in	the	next	section,	leads

consequences	with	the	possibility	of	failure,	discussed	in	the	next	section,	leads
to	a	discussion	of	keeping	data	consistent	using	different	styles	of	database
management	systems.

Failure
Although	any	particular	cloud	provider	may	guarantee	high	availability,	these
guarantees	are	typically	for	large	segments	of	their	cloud	as	a	whole	and	do	not
refer	to	the	components.	Individual	component	failure	can	thus	still	impact	your
application.	The	list	below	presents	some	data	from	Google	about	the	kinds	of
failures	that	one	can	expect	within	a	datacenter.	As	you	can	see,	the	possibilities
for	individual	element	failure	are	significant.	Amazon	released	some	data	stating
that	in	a	datacenter	with	~64,000	servers	with	2	disks	each,	on	average	more
than	5	servers	and	17	disks	fail	each	day.
Below	is	a	list	of	problems	arising	in	a	datacenter	in	its	first	year	of	operation

(from	a	presentation	by	Jeff	Dean,	Google):
	~0.5	overheating	(power	down	most	machines	in	<5	minutes,	~1–2	days	to
recover)
	~1	PDU	failure	(~500–1,000	machines	suddenly	disappear,	~6	hours	to
come	back)
	~1	rack-move	(plenty	of	warning,	~500–1,000	machines	powered	down,
~6	hours)
	~1	network	rewiring	(rolling	~5%	of	machines	down	over	2-day	span)
	~20	rack	failures	(40–80	machines	instantly	disappear,	1–6	hours	to	get
back)
	~5	racks	go	wonky	(40–80	machines	see	50%	packet	loss)
	~8	network	maintenances	(4	might	cause	~30-minute	random	connectivity
losses)
	~12	router	reloads	(takes	out	DNS	for	a	couple	minutes)
	~3	router	failures	(have	to	immediately	pull	traffic	for	an	hour)
	~dozens	of	minor	30-second	blips	for	DNS
	~1,000	individual	machine	failures
	~thousands	of	hard	drive	failures
	slow	disks,	bad	memory,	misconfigured	machines,	flaky	machines,	etc.
	long-distance	links:	wild	dogs,	sharks,	dead	horses,	drunken	hunters,	etc.

What	do	these	failure	statistics	mean	from	an	application	or	operations
perspective?	First,	any	particular	VM	or	portion	of	a	network	may	fail.	This	VM

perspective?	First,	any	particular	VM	or	portion	of	a	network	may	fail.	This	VM
or	network	may	be	performing	application	or	operation	functionality.	Second,
since	the	probability	of	failure	of	serial	use	of	components	is	related	to	the
product	of	the	failure	rate	of	the	individual	components,	the	more	components
involved	in	a	request,	the	higher	the	probability	of	failure.	We	discuss	these	two
possibilities	separately.

Failure	of	a	VM
One	of	the	major	decisions	the	architect	of	a	distributed	system	makes	is	how	to
divide	state	among	the	various	pieces	of	an	application.	If	a	stateless	component
fails,	it	can	be	replaced	without	concern	for	state.	On	the	other	hand,	state	must
be	maintained	somewhere	accessible	to	the	application,	and	getting	state	and
computation	together	in	the	same	VM	will	involve	some	level	of	overhead.	We
distinguish	three	main	cases.

1.	A	stateless	component.	If	a	VM	is	stateless,	then	failure	of	a	VM	is
recovered	by	creating	another	instance	of	the	same	VM	image	and
ensuring	that	messages	are	correctly	routed	to	it.	This	is	the	most	desirable
situation	from	the	perspective	of	recovering	from	failure.

2.	Client	state.	A	session	is	a	dialogue	between	two	or	more	components	or
devices.	Typically,	each	session	is	given	an	ID	to	provide	continuity	within
the	dialogue.	For	example,	you	may	log	in	to	a	website	through	one
interaction	between	your	browser	and	a	server.	Session	state	allows	your
browser	to	inform	the	server	in	successive	messages	that	you	have	been
successfully	logged	in	and	that	you	are	who	you	purport	to	be.	Sometimes
the	client	will	add	additional	state	for	security	or	application	purposes.
Since	client	state	must	be	sent	with	a	message	to	inform	the	server	of	the
context	or	a	set	of	parameters,	it	should	be	kept	to	a	minimum.

3.	Application	state	contains	the	information	specific	to	an	application	or	a
particular	user	of	an	application.	It	may	be	extensive,	such	as	a	knowledge
base	or	the	results	of	a	web	crawler,	or	it	may	be	small,	such	as	the	current
position	of	a	user	when	watching	a	streaming	video.	We	identify	three
categories	of	application	state.
a.	Small	amounts	of	persistent	state.	The	persistent	state	must	be
maintained	across	multiple	sessions	or	across	failure	of	either	servers	or
clients.	Small	amounts	of	persistent	state	could	be	maintained	in	a	flat
file	or	other	structure	on	a	file	system.	The	application	can	maintain	this
state	either	per	user	or	for	the	whole	application.	Small	amounts	of	state
could	also	be	cached	using	a	tool	that	maintains	a	persistent	state	across
VM	instances	such	as	ZooKeeper	or	Memcached.

b.	Moderate	amounts	of	persistent	or	semi-persistent	state.	The	timing
numbers	we	saw	earlier	suggest	that	it	is	advantageous	to	cache	those
portions	of	persistent	state	that	are	used	frequently	in	computations.	It	is
also	advantageous	to	maintain	state	across	different	instances	of	a	VM
that	allows	the	sharing	of	this	state.	In	some	sense,	this	is	equivalent	to
shared	memory	at	the	hardware	level	except	that	it	is	done	across
different	VMs	across	a	network.	Tools	such	as	Memcached	are	intended
to	manage	moderate	amounts	of	shared	state	that	represent	cached
database	entries	or	generated	pages.	Memcached	automatically	presents
a	consistent	view	of	the	data	to	its	clients,	and	by	sharing	the	data	across
servers,	it	provides	resilience	in	the	case	of	failure	of	a	VM.

c.	Large	amounts	of	persistent	state.	Large	amounts	of	persistent	state	can
be	kept	in	a	database	managed	by	a	database	management	system	or	in	a
distributed	file	system	such	as	Hadoop	Distributed	File	System	(HDFS).
HDFS	acts	as	a	network-	(or	at	least	a	cluster-)	wide	file	system	and
automatically	maintains	replicas	of	data	items	to	protect	against	failure.
It	provides	high	performance	through	mechanisms	such	as	writing	data
as	64MB	blocks.	Large	block	sizes	lead	to	inefficient	writing	of	small
amounts	of	data.	Hence,	HDFS	should	be	used	for	large	amounts	of
data.	Since	an	HDFS	file	is	available	throughout	a	cluster,	any	client	that
fails	will	not	lose	any	data	that	has	been	committed	by	HDFS.

The	Long	Tail
Many	natural	phenomena	exhibit	a	normal	distribution	as	shown	in	Figure	2.3a.
Values	are	mostly	spread	around	the	mean	with	a	progressively	smaller
likelihood	of	values	toward	the	edges.	In	the	cloud,	many	phenomena	such	as
response	time	to	requests	show	a	long-tail	distribution,	like	the	one	depicted	in
Figure	2.3b.	This	result	is	often	due	to	the	increased	probability	of	failure	with
more	entities	involved,	and	the	failure	of	one	component	causes	response	time	to
be	an	order	slower	than	usual	(e.g.,	until	a	network	packet	is	routed	through	a
different	link,	after	the	main	network	link	broke	and	the	error	has	been	detected).

FIGURE	2.3	(a)	A	normal	distribution	where	values	cluster	around	the	mean,
and	the	median	and	the	mean	are	equal.	(b)	A	long-tail	distribution	where

some	values	are	exceedingly	far	from	the	median.

A	long	tail	has	been	observed	in	map-reduce	completion	times,	in	response	to
search	queries	and	in	launching	instances	in	Amazon	cloud.	In	the	latter	case,	the
median	time	to	satisfy	a	launch	instance	request	was	23	seconds,	but	4.5%	of	the
requests	took	more	than	36	seconds.
Although	this	has	not	been	proven,	our	intuition	is	that	the	skewness	of	a

distribution	(the	length	of	the	long	tail)	is	a	function	of	the	number	of	different

distribution	(the	length	of	the	long	tail)	is	a	function	of	the	number	of	different
elements	of	the	cloud	that	are	activated	in	order	to	satisfy	a	request.	In	other
words,	simple	requests	such	as	computation,	reading	a	file,	or	receiving	a	local
message	will	have	a	distribution	closer	to	normal.	Complicated	requests	such	as
extensive	map-reduce	jobs,	searches	across	a	large	database,	or	launching	virtual
instances	will	have	a	skewed	distribution	such	as	a	long	tail.
A	request	that	takes	an	exceedingly	long	time	to	respond	should	be	treated	as

a	failure.	However,	one	problem	with	such	a	request	is	that	there	is	no	way	of
knowing	whether	the	request	has	failed	altogether	or	is	going	to	eventually
complete.	One	mechanism	to	combat	the	long	tail	is	to	cancel	a	request	that
takes	too	long,	for	example,	more	than	the	95th	percentile	of	historical	requests,
and	to	reissue	that	request.

Consistency
Given	the	possibility	of	failure,	it	is	prudent	to	replicate	persistent	data.	Given
two	copies	of	a	data	item,	it	is	desirable	that	when	a	client	reads	a	data	item,	the
client	would	get	the	same	value	regardless	of	which	copy	it	read.	If	all	copies	of
a	data	item	have	the	same	value	at	a	particular	instant	they	are	said	to	be
consistent	at	that	instant.	Recall	that	it	takes	time	to	write	a	data	value	to
persistent	storage.
Consistency	is	maintained	in	a	distributed	system	by	introducing	locks	that

control	the	sequence	of	access	to	individual	data	items.	Locking	data	items
introduces	delays	in	accessing	those	data	items;	consequently,	there	are	a	variety
of	different	schemes	for	maintaining	consistency	and	reducing	the	delay	caused
by	locks.	Regardless	of	the	scheme	used,	the	availability	of	data	items	will	be
impacted	by	the	delays	caused	by	the	introduction	of	locks.
In	addition,	in	the	cloud	persistent	data	may	be	partitioned	among	different

locales	to	reduce	access	time,	especially	if	there	is	a	large	amount	of	data.	Per	a
theoretical	result	called	the	CAP	(Consistency,	Availability,	Partition	Tolerance)
theorem,	it	is	not	possible	to	simultaneously	have	fully	available,	consistent,	and
partitioned	data.	Eventual	consistency	means	that	distributed,	partitioned,	and
replicated	data	will	be	consistent	after	a	period	of	time	even	if	not	immediately
upon	a	change	to	a	data	item—the	replicas	will	become	consistent	eventually.

NoSQL	Databases
For	a	variety	of	reasons,	including	the	CAP	theorem	and	the	overhead	involved
in	setting	up	a	relational	database	system,	a	collection	of	database	systems	have
been	introduced	that	go	under	the	name	NoSQL.	Originally	the	name	literally

meant	No	SQL,	but	since	some	of	the	systems	now	support	SQL,	it	now	stands
for	Not	Only	SQL.
NoSQL	systems	use	a	different	data	model	than	relational	systems.	Relational

systems	are	based	on	presenting	data	as	tables.	NoSQL	systems	use	data	models
ranging	from	key-value	pairs	to	graphs.	The	rise	of	NoSQL	systems	has	had
several	consequences.

	NoSQL	systems	are	not	as	mature	as	relational	systems,	and	many	features
of	relational	systems	such	as	transactions,	schemas,	and	triggers	are	not
supported	by	these	systems.	The	application	programmer	must	implement
these	features	if	they	are	needed	in	the	application.
	The	application	programmer	must	decide	which	data	model(s)	are	most
appropriate	for	their	use.	Different	applications	have	different	needs	with
respect	to	their	persistent	data,	and	these	needs	must	be	understood	prior	to
choosing	a	database	system.
	Applications	may	use	multiple	database	systems	for	different	needs.	Key-
value	stores	can	deal	with	large	amounts	of	semistructured	data	efficiently.
Graph	database	systems	can	maintain	connections	among	data	items
efficiently.	The	virtue	of	using	multiple	different	database	systems	is	that
you	can	better	match	a	system	with	your	needs.	The	case	study	in	Chapter
11	gives	an	example	of	the	use	of	multiple	database	systems	for	different
purposes.	Licensing	costs	and	increased	maintenance	costs	are	the
drawbacks	of	using	multiple	different	database	systems.

Elasticity
Rapid	elasticity	and	provisioning	is	one	of	the	characteristics	of	the	cloud
identified	by	NIST.	Elasticity	means	that	the	number	of	resources	such	as	VMs
used	to	service	an	application	can	grow	and	shrink	according	to	the	load.
Monitoring	the	utilization	of	the	existing	resources	is	one	method	for	measuring
the	load.
Figure	2.4	shows	clients	accessing	VMs	through	a	load	balancer	and	a

monitor	determining	CPU	and	I/O	utilization	of	the	various	VMs,	grouped
together	in	a	scaling	group.	The	monitor	sends	its	information	to	the	scaling
controller,	which	has	a	collection	of	rules	that	determine	when	to	add	or	remove
the	server	in	the	scaling	group.	These	rules	can	be	reactive	(e.g.,	“when
utilization	has	reached	a	certain	stage,	add	an	additional	server”)	or	proactive
(e.g.,	“add	additional	servers	at	7:00	am	and	remove	them	at	6:00	pm”).	When	a
rule	to	add	a	new	server	is	triggered,	the	scaling	controller	will	create	a	new

virtual	machine	and	ensure	that	it	is	loaded	with	the	correct	software.	The	new
VM	is	then	registered	with	the	load	balancer,	and	the	load	balancer	will	now
have	an	additional	VM	to	distribute	messages	to.	It	is	also	possible	to	control
scaling	through	various	APIs.	We	see	an	example	of	this	in	Chapter	12.

FIGURE	2.4	Monitoring	used	as	input	to	scaling	[Notation:	Architecture]

2.3	DevOps	Consequences	of	the	Unique	Cloud	Features
Three	of	the	unique	aspects	of	the	cloud	that	impact	DevOps	are:	the	ability	to
create	and	switch	environments	simply,	the	ability	to	create	VMs	easily,	and	the
management	of	databases.	We	begin	by	discussing	environments.

Environments
An	environment	in	our	context	is	a	set	of	computing	resources	sufficient	to
execute	a	software	system,	including	all	of	the	supporting	software,	data	sets,
network	communications,	and	defined	external	entities	necessary	to	execute	the
software	system.
The	essence	of	this	definition	is	that	an	environment	is	self-contained	except

for	explicitly	defined	external	entities.	An	environment	is	typically	isolated	from
other	environments.	In	Chapter	5,	we	see	a	number	of	environments	such	as	the
Dev,	integration,	user	testing,	and	production	environments.	In	the	case	study	in
Chapter	12,	the	life	cycle	of	an	environment	is	explicitly	a	portion	of	their
deployment	pipeline.	Having	multiple	environments	during	the	development,
testing,	and	deployment	processes	is	not	a	unique	feature	of	the	cloud,	but
having	the	ability	to	simply	create	and	migrate	environments	is—as	is	the	ease
of	cloning	new	instances.	The	isolation	of	one	environment	from	another	is

enforced	by	having	no	modifiable	shared	resources.	Resources	that	are	read-
only,	such	as	feeds	of	one	type	or	another,	can	be	shared	without	a	problem.
Since	an	environment	communicates	with	the	outside	world	only	through
defined	external	entities,	these	entities	can	be	accessed	by	URLs	and,	hence,
managed	separately.	Writing	to	or	altering	the	state	of	these	external	entities
should	only	be	done	by	the	production	environment,	and	separate	external
entities	must	be	created	(e.g.,	as	dummies	or	test	clones)	for	all	other
environments.
One	method	of	visualizing	an	environment	is	as	a	silo.	Figure	2.5	shows	two

variants	of	two	different	environments—a	testing	environment	and	a	production
environment.	Each	contains	slightly	different	versions	of	the	same	system.	The
two	load	balancers,	responsible	for	their	respective	environments,	have	different
IP	addresses.	Testing	can	be	done	by	forking	the	input	stream	to	the	production
environment	and	sending	a	copy	to	the	testing	environment	as	shown	in	Figure
2.5a.	In	this	case,	it	is	important	that	the	test	database	be	isolated	from	the
production	database.	Figure	2.5b	shows	an	alternative	situation.	In	this	case,
some	subset	of	actual	production	messages	is	sent	to	the	test	environment	that
performs	live	testing.	We	discuss	canary	testing	and	other	methods	of	live
testing	in	Chapter	6.	Moving	between	environments	can	be	accomplished	in	a
single	script	that	can	be	tested	for	correctness	prior	to	utilizing	it.	In	Chapter	6,
we	will	see	other	techniques	for	moving	between	testing	and	production
environments.

FIGURE	2.5	(a)	Using	live	data	to	test.	(b)	Live	testing	with	a	subset	of
users.	[Notation:	Architecture]

A	consequence	of	easily	switching	production	from	one	environment	to
another	is	that	achieving	business	continuity	becomes	easier.	Business	continuity
means	that	businesses	can	continue	to	operate	in	the	event	of	a	disaster	occurring
either	in	or	to	their	main	datacenter.	In	Chapter	11,	we	see	a	case	study	about
managing	multiple	datacenters,	but	for	now	observe	that	there	is	no	requirement
that	the	two	environments	be	co-located	in	the	same	datacenter.	There	is	a
requirement	that	the	two	databases	be	synchronized	if	the	goal	is	quickly	moving
from	one	environment	to	a	backup	environment.

Creating	Virtual	Machines	Easily
One	of	the	problems	that	occurs	in	administering	the	cloud	from	a	consumer’s
perspective	arises	because	it	is	so	easy	to	allocate	new	VMs.	Virtual	machines
need	to	have	the	latest	patches	applied,	just	as	physical	machines,	and	need	to	be
accounted	for.	Unpatched	machines	constitute	a	security	risk.	In	addition,	in	a
public	cloud,	the	consumer	pays	for	the	use	of	VMs.	We	know	of	an	incident	in
a	major	U.S.	university	where	a	student	went	away	for	the	summer	without
cleaning	up	her	or	his	allocation	and	returned	to	find	a	bill	of	$80,000.
The	term	VM	sprawl	is	used	to	describe	the	complexity	in	managing	too	many

VMs.	Similarly,	the	challenges	of	having	too	many	VM	images	is	called	image
sprawl.	Tools	exist,	such	as	Janitor	Monkey,	to	scan	an	account	and	determine
which	machines	are	allocated	and	how	recently	they	have	been	used.	Developing
and	enforcing	a	policy	on	the	allocation	of	machines	and	archiving	of	VM
images	is	one	of	the	activities	necessary	when	utilizing	the	cloud	as	a	platform.

Data	Considerations
The	economic	viability	of	the	cloud	coincided	with	the	advent	of	NoSQL
database	systems.	Many	systems	utilize	multiple	different	database	systems,
both	relational	and	NoSQL.	Furthermore,	large	amounts	of	data	are	being
gathered	from	a	variety	of	sources	for	various	business	intelligence	or
operational	purposes.	Just	as	computational	resources	can	be	added	in	the	cloud
by	scaling,	storage	resources	can	also	be	added.	We	begin	by	discussing	the
HDFS	that	provides	storage	for	applications	in	a	cluster.	HDFS	provides	the	file
system	for	many	NoSQL	database	systems.	We	then	discuss	the	operational
considerations	associated	with	distributed	file	systems.

HDFS

HDFS
HDFS	provides	a	pool	of	shared	storage	resources.	An	application	accesses
HDFS	through	a	normal	file	system	interface	in	Java,	C,	or	other	popular
languages.	The	commands	available	include	open,	create,	read,	write,	close,	and
append.	Since	the	storage	provided	by	HDFS	is	shared	by	multiple	applications,
a	manager	controls	the	name	space	of	file	names	and	allocates	space	when	an
application	wishes	to	write	a	new	block.	This	manager	also	provides	information
so	that	applications	can	perform	direct	access	to	particular	blocks.	There	also	is	a
pool	of	storage	nodes.
In	HDFS	the	manager	is	called	the	NameNode,	and	each	element	of	the

storage	pool	is	called	a	DataNode.	There	is	one	NameNode	with	provision	for	a
hot	backup.	Each	DataNode	is	a	separate	physical	computer	or	VM.
Applications	are	restricted	to	write	a	fixed-size	block—typically	64MB.	When
an	application	wishes	to	write	a	new	block	to	a	file	it	contacts	the	NameNode
and	asks	for	the	DataNodes	where	this	block	will	be	stored.	Each	block	is
replicated	some	number	of	times,	typically	three.	The	NameNode	responds	to	a
request	for	a	write	with	a	list	of	the	DataNodes	where	the	block	to	be	written	will
be	stored,	and	the	application	then	writes	its	block	to	each	of	these	DataNodes.
Many	features	of	HDFS	are	designed	to	guard	against	failure	of	the	individual

DataNodes	and	to	improve	the	performance	of	HDFS.	For	our	purposes,	the
essential	element	is	that	HDFS	provides	a	pool	of	storage	sites	that	are	shared
across	applications.

Operational	Considerations
The	operational	considerations	associated	with	a	shared	file	system	such	as
HDFS	are	twofold.

1.	Who	manages	the	HDFS	installation?	HDFS	can	be	either	a	shared	system
among	multiple	applications,	or	it	can	be	instantiated	for	a	single
application.	In	case	of	a	single	application,	its	management	will	be	the
responsibility	of	the	development	team	for	that	application.	In	the	shared
case,	the	management	of	the	system	must	be	assigned	somewhere	within
the	organization.

2.	How	is	the	data	stored	within	HDFS	protected	in	the	case	of	a	disaster?
HDFS	itself	replicates	data	across	multiple	DataNodes,	but	a	general
failure	of	a	datacenter	may	cause	HDFS	to	become	unavailable	or	the	data
being	managed	by	HDFS	to	become	corrupted	or	lost.	Consequently,
business	continuity	for	those	portions	of	the	business	dependent	on	the
continued	execution	of	HDFS	and	access	to	the	data	stored	within	HDFS	is

an	issue	that	must	be	addressed.

2.4	Summary
The	cloud	has	emerged	as	a	major	trend	in	IT	during	recent	years.	Its
characteristics	include	metered	usage	(pay-per-use)	and	rapid	elasticity,	allowing
the	scaling	out	of	an	application	to	virtually	infinite	numbers	of	VMs.	If
architected	properly,	applications	can	indeed	scale	quickly,	and	thus	you	can
avoid	disappointing	users	when	your	new	app	goes	“viral”	and	your	user
numbers	double	every	couple	of	hours.	Additionally,	when	the	demand
decreases	you	are	not	stuck	with	major	hardware	investments,	but	can	simply
release	resources	that	are	no	longer	needed.
Using	the	cloud	opens	up	many	interesting	opportunities,	but	also	means	you

have	to	deal	with	many	of	the	concerns	of	distributed	computing:
	The	cloud	rests	on	a	platform	that	is	inherently	distributed	and	exploits
virtualization	to	allow	rapid	expansion	and	contraction	of	the	resources
available	to	a	given	user.
	IP	addresses	are	the	key	to	accessing	the	virtualized	resources	and	are
associated	with	URLs	through	the	DNS	entries	and	can	be	manipulated	to
allow	for	the	various	forms	of	testing	through	the	isolation	of
environments.
	Within	large	distributed	environments,	failure	of	the	individual
components	is	to	be	expected.	Failure	must	be	accommodated.	The
accommodations	involve	management	of	state	and	recognizing	and
recovering	from	requests	that	take	an	exceedingly	long	time.
	From	an	operational	perspective,	controlling	the	proliferation	of	VMs,
managing	different	database	management	systems,	and	ensuring	the
environments	meet	the	needs	of	the	development	and	operations	tasks	are
new	considerations	associated	with	the	cloud.

2.5	For	Further	Reading
NIST’s	definition	of	the	cloud	is	part	of	the	special	publication	SP	800-145
[NIST	11].
The	latency	numbers	for	different	types	of	memory	and	network	connections

are	derived	from
http://www.eecs.berkeley.edu/~rcs/research/interactive_latency.html
Jeff	Dean’s	keynote	address	lists	problems	in	a	new	datacenter	[Dean].

http://www.eecs.berkeley.edu/~rcs/research/interactive_latency.html

James	Hamilton	from	Amazon	Web	Services	gives	insights	into	failures	that
occur	at	scale	in	the	presentation	at
http://www.slideshare.net/AmazonWebServices/cpn208-failuresatscale-aws-
reinvent-2012
Memcached	system’s	website	can	be	found	at	http://memcached.org/
More	information	about	HDFS	and	its	architecture	is	available:
	http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
	http://itm-vm.shidler.hawaii.edu/HDFS/ArchDocOverview.html

The	long-tail	distribution	and	some	of	its	occurrences	are	described	in	[Dean
13].
Outliers	in	MapReduce	are	discussed	in	this	PowerPoint	presentation

[Kandula].
The	paper	“Mechanisms	and	Architectures	for	Tail-Tolerant	System

Operations	in	Cloud”	proposes	methods	and	architecture	tactics	to	tolerate	long-
tail	behavior	[Lu	15].
Netflix’s	Janitor	Monkey	helps	to	keep	VM	and	image	sprawl	under	control;

see	the	following	website:	https://github.com/Netflix/SimianArmy/wiki/Janitor-
Home
The	CAP	theorem	was	first	proposed	by	Erick	Brewer	and	proven	by	Gilbert

and	Lynch	[Gilbert	02].

http://www.slideshare.net/AmazonWebServices/cpn208-failuresatscale-aws-reinvent-2012
http://memcached.org/
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
http://itm-vm.shidler.hawaii.edu/HDFS/ArchDocOverview.html
https://github.com/Netflix/SimianArmy/wiki/Janitor-Home

3.	Operations

There	is	a	core	of	thinkers	within	the	DevOps	community	who	understand
what	IT	management	is	about	and	are	sensible	about	the	use	of	ITIL	within	a

DevOps	context;	and	there	are	others	with	a	looser	grasp	on	reality…
—Rob	England,	http://www.itskeptic.org/devops-and-itil

3.1	Introduction
Just	as	DevOps	does	not	subsume	Dev,	it	does	not	subsume	Ops.	To	understand
DevOps,	however,	it	is	important	to	be	aware	of	the	context	that	people	in	Ops
or	Dev	come	from.	In	this	chapter,	we	present	the	activities	that	an	IT	operations
group	carries	out.	How	many	of	these	activities	are	suitable	for	a	DevOps
approach	is	a	matter	for	debate,	and	we	will	comment	on	that	debate.
One	characterization	of	Ops	is	given	in	the	Information	Technology

Infrastructure	Library	(ITIL).	ITIL	acts	as	a	kind	of	coarse-grained	job
description	for	the	operations	staff.	ITIL	is	based	on	the	concept	of	“services,”
and	the	job	of	Ops	is	to	support	the	design,	implementation,	operation,	and
improvement	of	these	services	within	the	context	of	an	overall	strategy.	Figure
3.1	shows	how	ITIL	views	these	activities	interacting.

http://www.itskeptic.org/devops-and-itil

FIGURE	3.1	Service	life	cycle	(Adapted	from	ITIL)

We	first	describe	the	services	for	which	Ops	historically	has	had
responsibility.	Then	we	return	to	Figure	3.1	to	discuss	the	service	life	cycle.
Finally,	we	discuss	how	DevOps	fits	into	this	overall	picture.

3.2	Operations	Services
An	operations	service	can	be	the	provisioning	of	hardware,	the	provisioning	of
software,	or	supporting	various	IT	functions.	Services	provided	by	operations
also	include	the	specification	and	monitoring	of	service	level	agreements
(SLAs),	capacity	planning,	business	continuity,	and	information	security.

Provisioning	of	Hardware
Hardware	can	be	physical	hardware	owned	by	the	organization,	or	it	can	be
virtual	hardware	managed	by	a	third	party	or	a	cloud	provider.	It	can	also	be
used	by	individuals,	projects,	or	a	large	portion	of	an	organization.	Table	3.1
shows	these	possibilities.

TABLE	3.1	Types	of	Hardware	Used	by	Individuals,	Projects,	and
Organizations

	Physical	hardware.
	Individual	hardware.	Individual	hardware	includes	laptops,	desktops,
tablets,	and	phones	used	by	and	assigned	to	individuals.	Typically,	Ops
will	have	standard	configurations	that	they	support.	Whether	the	actual
ordering	and	configuring	of	the	hardware	is	done	by	operations	or	by	the
individuals	will	vary	from	organization	to	organization.	The	degree	of
enforcement	of	the	standardized	configurations	will	also	vary	from
organization	to	organization.	At	one	extreme,	Ops	provides	each
employee	with	some	set	of	devices	that	have	been	locked	so	that	only
approved	software	and	configuration	settings	can	be	loaded.
Compatibility	among	the	configurations	is	provided	by	the

standardization.	At	the	other	extreme,	Ops	provides	guidelines	but
individuals	can	order	whatever	hardware	they	wish	and	provision	it
however	they	wish.	Compatibility	among	the	configurations	is	the
responsibility	of	the	individuals.
	Project	hardware.	Project	hardware	typically	includes	integration
servers	and	version	control	servers,	although	these	could	be	managed	in
an	organization	context.	The	requirements	for	project	hardware	are	set
by	the	project,	and	Ops	can	be	involved	in	ordering,	configuring,	and
supporting	project	hardware	to	the	extent	dictated	by	the	organization	or
by	negotiation	between	the	project	and	Ops.
	Organization-wide	hardware.	This	hardware	is	the	responsibility	of
Ops.	Any	datacenters	or	generally	available	servers	such	as	mail	servers
are	managed	and	operated	by	Ops.

	Virtual	hardware.	Virtualized	hardware	can	also	be	personal,	project-
specific,	or	organization-wide.	It	follows	the	pattern	of	physical	hardware.
Projects	are	generally	responsible	for	the	specification	and	management	of
virtualized	project	hardware,	and	Ops	is	generally	responsible	for	the
specification	and	management	of	virtualized	organization-wide	hardware.
Ops	typically	has	responsibility	for	the	overall	usage	of	virtualized
hardware,	and	they	may	have	budgetary	input	when	a	project	considers
their	VM	requirements.	Note	that	much	of	the	physical	hardware	on	a
project	or	organization	level	could	actually	be	virtualized	on	private	or
public	cloud	resources.	Exceptions	include	network	infrastructure	for
devices,	printers,	and	datacenters.

Provisioning	of	Software
Software	is	either	being	developed	internally	(possibly	through	contractors)	or
acquired	from	a	third	party.	The	third-party	software	is	either	project-specific,	in
which	case	it	follows	the	pattern	we	laid	out	for	hardware	(the	management	and
support	of	the	software	is	the	responsibility	of	the	project);	or	it	is	organization-
specific,	in	which	case	the	management	and	support	of	the	software	is	the
responsibility	of	Ops.	Delays	in	fielding	internally	developed	software	is	one
motivation	for	DevOps,	and	we	will	return	to	the	relation	between	traditional
operations	and	DevOps	at	the	end	of	this	chapter.
Table	3.2	shows	the	responsibilities	for	the	different	types	of	software.

TABLE	3.2	Responsibilities	for	Different	Types	of	Software

IT	Functions
Ops	supports	a	variety	of	functions.	These	include:

	Service	desk	operations.	The	service	desk	staff	is	responsible	for	handling
all	incidents	and	service	requests	and	acts	as	first-level	support	for	all
problems.
	Technology	experts.	Ops	typically	has	experts	for	networks,	information
security,	storage,	databases,	internal	servers,	web	servers	and	applications,
and	telephony.
	Day-to-day	provisioning	of	IT	services.	These	include	periodic	and
repetitive	maintenance	operations,	monitoring,	backup,	and	facilities
management.

The	people	involved	in	the	Ops	side	of	DevOps	typically	come	from	the	last
two	categories.	Day-to-day	IT	services	include	the	provisioning	of	new	software
systems	or	new	versions	of	current	systems,	and	improving	this	process	is	a	main
goal	of	DevOps.	As	we	will	see	in	the	case	study	in	Chapter	12,	information
security	and	network	experts	are	also	involved	in	DevOps,	at	least	in	the	design
of	a	continuous	deployment	pipeline,	which	is	ideally	shared	across	the
organization	to	promote	standardization	and	avoid	drifting	over	time.

Service	Level	Agreements
An	organization	has	a	variety	of	SLAs	with	external	providers	of	services.	For
example,	a	cloud	provider	will	guarantee	a	certain	level	of	availability.	Ops
traditionally	is	responsible	for	monitoring	and	ensuring	that	the	SLAs	are
adhered	to.	An	organization	also	has	a	variety	of	SLAs	with	its	customers.	Ops
has	traditionally	been	responsible	for	ensuring	that	an	organization	meets	its
external	SLAs.	Similarly	to	external	SLAs,	Ops	is	usually	responsible	for
meeting	internal	SLAs,	for	example,	for	an	organization’s	own	website	or	e-mail
service.	Dev	and	DevOps	are	becoming	more	responsible	for	application	SLAs
and	external	SLAs	in	the	DevOps	movement.

and	external	SLAs	in	the	DevOps	movement.
All	of	these	functions	involve	monitoring	and	analyzing	various	types	of

performance	data	from	servers,	networks,	and	applications.	See	Chapter	7	for	an
extensive	discussion	of	monitoring	technology.	See	also	Chapter	10	for	a
discussion	of	what	to	monitor	from	the	perspective	of	business.

Capacity	Planning
Ops	is	responsible	for	ensuring	that	adequate	computational	resources	are
available	for	the	organization.	For	physical	hardware,	this	involves	ordering	and
configuring	machines.	The	lead	time	involved	in	ordering	and	configuring	the
hardware	needs	to	be	accounted	for	in	the	planning.
More	importantly,	Ops	is	responsible	for	providing	sufficient	resources	so	that

consumers	of	an	organization’s	products	can,	for	instance,	browse	offerings,
make	orders,	and	check	on	the	status	of	orders.	This	involves	predicting
workload	and	the	characteristics	of	that	workload.	Some	of	this	prediction	can	be
done	based	on	historical	data	but	Ops	also	needs	to	coordinate	with	the	business
in	case	there	are	new	products	or	promotions	being	announced.	DevOps
emphasizes	coordination	between	Ops	and	Development	but	there	are	other
stakeholders	involved	in	coordination	activities.	In	the	case	of	capacity	planning,
these	other	stakeholders	are	business	and	marketing.	With	cloud	elasticity,	the
pay-as-you-go	model,	and	the	ease	of	provisioning	new	virtual	hardware,
capacity	planning	is	becoming	more	about	runtime	monitoring	and	autoscaling
rather	than	planning	for	purchasing	hardware.

Business	Continuity	and	Security
In	the	event	a	disaster	occurs,	an	organization	needs	to	keep	vital	services
operational	so	that	both	internal	and	external	customers	can	continue	to	do	their
business.	Two	key	parameters	enable	an	organization	to	perform	a	cost/benefit
analysis	of	various	alternatives	to	maintain	business	continuity:

	Recovery	point	objective	(RPO).	When	a	disaster	occurs,	what	is	the
maximum	period	for	which	data	loss	is	tolerable?	If	backups	are	taken
every	hour	then	the	RPO	would	be	1	hour,	since	the	data	that	would	be	lost
is	that	which	accumulated	since	the	last	backup.
	Recovery	time	objective	(RTO).	When	a	disaster	occurs,	what	is	the
maximum	tolerable	period	for	service	to	be	unavailable?	For	instance,	if	a
recovery	solution	takes	10	minutes	to	access	the	backup	in	a	separate
datacenter	and	another	5	minutes	to	instantiate	new	servers	using	the

backed-up	data,	the	RTO	is	15	minutes.
The	two	values	are	independent	since	some	loss	of	data	may	be	tolerable,	but

being	without	service	is	not.	It	is	also	possible	that	being	without	service	is
tolerable	but	losing	data	is	not.
Figure	3.2	shows	three	alternative	backup	strategies	with	different	RPOs.	In

the	case	study	in	Chapter	11,	we	describe	the	alternative	used	by	one
organization.	Another	alternative	is	discussed	in	the	case	study	in	Chapter	13,
which	uses	the	services	of	the	cloud	provider	to	do	replication.

FIGURE	3.2	Database	backup	strategies.	(a)	An	independent	agent
performing	the	backup.	(b)	The	database	management	system	performing	the
backup.	(c)	The	database	management	system	performing	the	backup	and

logging	all	transactions.	[Notation:	Architecture]

1.	Figure	3.2a	shows	an	external	agent—the	backup	process—copying	the
database	periodically.	No	application	support	is	required	but	the	backup
process	should	copy	a	consistent	version	of	the	database.	That	is,	no
updates	are	currently	being	applied.	If	the	backup	process	is	external	to	the
database	management	system,	then	transactions	may	be	in	process	and	so
the	activation	of	the	backup	should	be	carefully	performed.	In	this	case,	the
RPO	is	the	period	between	two	backups.	That	is,	if	a	disaster	occurs	just
prior	to	the	backup	process	being	activated,	all	changes	in	the	period	from
the	last	backup	will	be	lost.

2.	Figure	3.2b	shows	an	alternative	without	an	external	agent.	In	this	case,
the	database	management	system	creates	a	copy	periodically.	The
difference	between	3.2a	and	3.2b	is	that	in	3.2b,	guaranteeing	consistency
is	done	by	the	database	management	system,	whereas	in	3.2a,	consistency
is	guaranteed	by	some	mechanism	that	governs	the	activation	of	the
backup	process.	As	with	3.2a,	the	RPO	is	the	period	between	taking

copies.	If	the	database	is	a	relational	database	management	system
(RDBMS)	offering	some	level	of	replication	(i.e.,	a	transaction	only
completes	a	commit	when	the	replica	database	has	executed	the	transaction
as	well),	then	transactions	lost	in	the	event	of	a	disaster	will	be	those	not
yet	committed	to	the	replicating	database.	The	cost,	however,	is	increased
overhead	per	transaction.

3.	Figure	3.2c	modifies	Figure	3.2b	by	having	the	database	management
system	log	every	write.	Then	the	data	can	be	re-created	by	beginning	with
the	backup	database	and	replaying	the	entries	in	the	log.	If	both	the	log	and
the	backup	database	are	available	during	recovery,	the	RPO	is	0	since	all
data	is	either	in	the	backup	database	or	in	the	log.	The	protocol	for
committing	a	transaction	to	the	production	database	is	that	no	transaction
is	committed	until	the	respective	log	entry	has	been	written.	It	is	possible
in	this	scheme	that	some	transactions	have	not	been	completed,	but	no	data
from	a	completed	transaction	will	be	lost.	This	scheme	is	used	by	high-
reliability	relational	database	management	systems.	It	is	also	used	by
distributed	file	systems	such	as	Hadoop	Distributed	File	System	(HDFS).

When	considering	RTO	(i.e.,	how	quickly	you	can	get	your	application	up	and
running	after	an	outage	or	disaster),	alternatives	include:	using	multiple
datacenters	as	discussed	in	the	case	study	in	Chapter	11	or	using	distinct
availability	zones	or	regions	offered	by	a	cloud	provider,	or	even	using	several
cloud	providers.
By	considering	RTO	and	RPO,	the	business	can	perform	a	cost/benefit

analysis	of	a	variety	of	different	disaster	recovery	techniques.	Some	of	these
techniques	will	involve	application	systems	architecture	such	as	replication	and
maintaining	state	consistency	in	the	different	replicas.	Other	techniques	such	as
periodic	backups	can	be	performed	with	any	application	architecture.	Using
stateless	servers	on	the	application	tier	and	different	regions	within	a	cloud
provider	results	in	a	short	RTO	but	does	not	address	RPO.
Traditionally,	Ops	is	responsible	for	the	overall	security	of	computer	systems.

Securing	the	network,	detecting	intruders,	and	patching	operating	systems	are	all
activities	performed	by	Ops.	Chapter	8	discusses	security	and	its	maintenance	in
some	depth.

Service	Strategy
We	now	return	to	the	ITIL	life	cycle	shown	in	Figure	3.1.	At	the	center	of	the
figure	are	strategies	for	each	of	the	services	that	we	have	enumerated:	hardware

provisioning,	software	provisioning,	IT	functions,	capacity	planning,	business
continuity,	and	information	security.
Developing	a	strategy	is	a	matter	of	deciding	where	you	would	like	your

organization	to	be	in	a	particular	area	within	a	particular	time	frame,	determining
where	you	currently	are,	and	deciding	on	a	path	from	the	current	state	to	the
desired	state.	The	desired	state	is	affected	by	both	internal	and	external	events.
Internal	events	such	as	personnel	attrition,	hardware	failure,	new	software
releases,	marketing,	and	business	activities	will	all	affect	the	desired	state.
External	events	such	as	acquisitions,	government	policies,	or	consumer	reaction
will	also	affect	the	desired	state.	The	events	that	might	occur	all	have	some
probability	of	occurrence,	thus,	strategic	planning	shares	some	elements	with
fortune	telling.
Understanding	future	demands	in	terms	of	resources	and	capabilities	will	help

in	strengthening	the	areas	that	are	not	covered	at	present.	If,	for	example,	you
want	to	move	some	of	your	organization’s	applications	to	the	cloud	within	the
next	year,	then	it	is	important	to	know	if	you	have	people	with	the	right	skill	set
in	your	organization.	If	not,	you	need	to	decide	whether	to	hire	new	talent	or
develop	the	skills	of	some	existing	employees,	or	a	mix	of	both.	Future	demands
may	lead	to	continual	service	improvement	initiatives.
Strategic	planning	takes	time	and	coordination	among	stakeholders.	Its	virtues

are	not	so	much	the	actual	plan	that	emerges	but	the	consideration	of	multiple
viewpoints	and	constraints	that	exist	within	an	organization.	As	such,	defining	a
service	strategy	should	be	done	infrequently	and	should	result	in	loose
guidelines	that	can	be	approached	in	shorter	time	frames.	We	discuss	the
strategy	planning	of	migrating	to	microservices	and	its	implementation	in	the
case	study	in	Chapter	13.

Service	Design
Before	a	new	or	changed	service	is	implemented,	it	must	be	designed.	As	with
any	design,	you	need	to	consider	not	only	the	functions	that	the	service	aims	to
achieve	but	also	a	variety	of	other	qualities.	Some	of	the	considerations	when
designing	a	service	are:

	What	automation	is	going	to	be	involved	as	a	portion	of	the	service?	Any
automation	should	be	designed	according	to	the	principles	of	software
design.	In	general,	these	include	the	eight	principles	that	Thomas	Erl
articulated	for	service	design:
	Standardized	contract

	Loose	coupling
	Abstraction
	Reusability
	Autonomy
	Statelessness
	Discoverability
	Composability

	What	are	the	governance	and	management	structures	for	the	service?
Services	need	to	be	managed	and	evolved.	People	responsible	for	the
performance	of	the	service	and	changes	to	the	service	should	be	identified
by	title	if	not	by	name.
	What	are	the	SLAs	for	the	service?	How	is	the	service	to	be	measured,	and
what	monitoring	structure	is	necessary	to	support	the	measurement?
	What	are	the	personnel	requirements	for	the	service?	Can	the	service	be
provided	with	current	personnel,	or	do	personnel	with	specific	skills	need
to	be	hired	or	contracted?	Alternatively,	will	the	service	be	outsourced
altogether?
	What	are	the	compliance	implications	of	the	service?	What	compliance
requirements	are	satisfied	by	the	service,	and	which	are	introduced?
	What	are	the	implications	for	capacity?	Do	additional	resources	need	to	be
acquired	and	what	is	the	time	frame	for	this	acquisition?
	What	are	the	business	continuity	implications	of	the	service?	Must	the
service	be	continued	in	the	event	of	a	disaster	and	how	will	this	be
accomplished?
	What	are	the	information	security	implications	of	the	service?	What	data	is
sensitive	and	must	be	protected,	and	who	has	responsibility	for	that	data?

The	ITIL	volume	on	service	design	discusses	all	of	these	issues	in	detail.

Service	Transition
Service	transition	subsumes	all	activities	between	service	design	and	operation,
namely,	all	that	is	required	to	successfully	get	a	new	or	changed	service	into
operation.	As	such,	much	of	the	content	of	this	book	is	related	to	service
transition	insofar	as	it	affects	the	introduction	of	new	versions	of	software.
Transition	and	planning	support	includes	aspects	of:	resources,	capacity,	and

change	planning;	scoping	and	goals	of	the	transition;	documentation

requirements;	consideration	of	applicable	rules	and	regulations;	financial
planning;	and	milestones.	In	essence,	service	transition	covers	the
implementation	and	delivery	phases	of	a	service.	DevOps	and	continuous
deployment	require	the	delivery	part	of	service	transition	to	be	highly	automated
so	it	can	deal	with	high-frequency	transition	and	provide	better	quality	control.
Many	of	these	considerations	are	discussed	in	Chapters	5	and	6.
In	addition	to	implementing	the	considerations	enumerated	in	the	section	on

service	design,	service	transition	involves	extending	the	knowledge	of	the	new
or	revised	service	to	the	users	and	the	immediate	supporters	of	that	service
within	operations.
Suppose,	for	example,	a	new	version	of	a	deployment	tool	is	to	be

implemented.	Questions	such	as	the	following	three	need	to	be	answered:
	Are	all	features	of	the	old	version	supported	in	the	new	version?	If	not,
what	is	the	transition	plan	for	supporting	users	of	the	old	version?
	Which	new	features	are	introduced?	How	will	the	scripts	for	the
deployment	tool	be	modified,	and	who	is	responsible	for	that
modification?
	Will	the	new	version	require	or	support	a	different	configuration	of
servers,	which	includes	both	testing/staging	and	production	servers?

Tools	involved	in	a	deployment	pipeline	change	just	as	other	software	does.
One	of	the	implications	of	“infrastructure-as-code”	is	that	these	changes	need	to
be	managed	in	the	same	fashion	as	changes	to	software	developed	by	customer
use.	Some	aspects	of	this	management	may	be	implicit	in	the	deployment
pipeline,	and	other	aspects	may	need	attention.	ITIL	distinguishes	three	change
models:

	Standard	changes	(e.g.,	often-occurring	and	low-risk)
	Normal	changes
	Emergency	changes

Each	of	these	types	of	change	should	be	managed	differently	and	will	require
different	levels	of	management	attention	and	oversight.	Many	more	details	are
discussed	in	the	ITIL	volume	on	service	transition.

Service	Operation
While	software	developers	and	architects	are	most	concerned	with	development,
operation	is	where	the	customer	benefits	from	good	design,	implementation,	and
transition—or	not.	Support	plays	a	major	role	here,	in	particular	for	incident	and

failure	management.	Monitoring	and	adaptation	are	other	major	concerns.	We
discuss	more	concerns	in	Chapter	9.

Service	Operation	Concepts
During	operation,	events	are	defined	by	ITIL	as	“any	detectable	or	discernible
occurrence	that	has	significance	for	the	management	of	the	IT	infrastructure	or
the	delivery	of	IT	service	and	evaluation	of	the	impact	a	deviation	might	cause	to
the	services.”	Events	are	created	by	configuration	items,	IT	services,	or
monitoring	tools.	More	concretely,	monitoring	tools	can	actively	pull	event
information	from	configuration	items	or	services,	or	they	can	(passively)	receive
them.	Events	of	interest	during	operation	include

	Status	information	from	systems	and	infrastructure
	Environmental	conditions,	such	as	smoke	detectors
	Software	license	usage
	Security	information	(e.g.,	from	intrusion	detection)
	Normal	activity,	such	as	performance	metrics	from	servers	and
applications

An	incident,	according	to	ITIL,	is	“any	event	which	disrupts,	or	which	could
disrupt,	a	service.”	They	are	raised	by	users	(e.g.,	over	the	phone	or	by	e-mail),
technical	personnel,	support	desk	staff,	or	monitoring	tools.	Incident
management	is	one	area	where	DevOps	will	have	an	impact.
Core	activities	of	incident	management	are
	Logging	the	incident
	Categorization	and	prioritization
	Initial	diagnosis
	Escalation	to	appropriately	skilled	or	authorized	staff,	if	needed
	Investigation	and	diagnosis,	including	an	analysis	of	the	impact	and	scope
of	the	incident
	Resolution	and	recovery,	either	through	the	user	under	guidance	from
support	staff,	through	the	support	staff	directly,	or	through	internal	or
external	specialists
	Incident	closure,	including	recategorization	if	appropriate,	user	satisfaction
survey,	documentation,	and	determination	if	the	incident	is	likely	to	recur

Incident	management	is	one	of	the	areas	where	DevOps	is	changing	the
traditional	operations	activities.	Incidents	that	are	related	to	the	operation	of	a

particular	software	system	are	routed	to	the	development	team.	Regardless	of
who	is	on	call	for	a	problem,	incidents	must	still	be	logged	and	their	resolution
tracked.	In	Part	Five,	we	discuss	how	we	can	automate	such	failure	detection,
diagnosis,	and	recovery	with	the	help	of	DevOps	and	a	process	view.

3.3	Service	Operation	Functions
Monitoring	is	of	central	importance	during	operations,	as	it	allows	collecting
events,	detecting	incidents,	and	measuring	to	determine	if	SLAs	are	being
fulfilled;	it	provides	the	basis	for	service	improvement.	SLAs	can	also	be
defined	and	monitored	for	operations	activities,	for	example,	for	the	time	to	react
to	incidents.
Monitoring	can	be	combined	with	some	control,	for	example,	as	done	in

autoscaling	for	cloud	resources,	where	an	average	CPU	load	among	the	pool	of
web	servers	of,	say,	70%	triggers	a	rule	to	start	another	web	server.	Control	can
be	open-loop	or	closed-loop.	Open-loop	control	(i.e.,	monitoring	feedback	is	not
taken	into	account)	can	be	used	for	regular	backups	at	predefined	times.	In
closed-loop	control,	monitoring	information	is	taken	into	account	when	deciding
on	an	action,	such	as	in	the	autoscaling	example.	Closed-loop	feedback	cycles
can	be	nested	into	more	complex	control	loops,	where	lower-level	control	reacts
to	individual	metrics	and	higher-level	control	considers	a	wider	range	of
information	and	trends	developing	over	longer	time	spans.	At	the	highest	level,
control	loops	can	link	the	different	life-cycle	activities.	Depending	on	the
measured	deviations	from	the	desired	metrics,	continual	service	improvement
can	lead	to	alterations	in	service	strategy,	design,	or	transition—all	of	which
eventually	comes	back	to	changes	in	service	operation.
The	results	of	the	monitoring	are	analyzed	and	acted	upon	by	either	the	Dev	or

Ops	group.	One	decision	that	must	be	made	when	instituting	DevOps	processes
is:	Which	group	is	responsible	for	handling	incidents?	See	Chapter	10	for	a
discussion	of	incident	handling.	One	DevOps	practice	is	to	have	the
development	group	analyze	the	monitoring	of	the	single	system	that	they
developed.	Monitoring	of	multiple	systems	including	the	infrastructure	will	be
the	responsibility	of	the	Ops	group,	which	is	also	responsible	for	the	escalation
procedure	for	any	incidents	that	require	handling	through	one	or	more
development	teams.

3.4	Continual	Service	Improvement
Every	process	undertaken	by	an	organization	should	be	considered	from	the
perspective	of:	How	well	is	the	process	working?	How	can	the	process	be

perspective	of:	How	well	is	the	process	working?	How	can	the	process	be
improved?	How	does	this	process	fit	in	the	organization’s	overall	set	of
processes?
All	of	the	Ops	services	we	discussed—the	provisioning	of	hardware	and

software,	IT	support	functions,	specification	and	monitoring	of	SLAs,	capacity
planning,	business	continuity,	and	information	security—are	organizational
processes.	They	should	be	monitored	and	evaluated	from	the	perspective	of	the
questions	we	have	identified.
Organizationally,	each	of	these	services	should	have	an	owner,	and	the	owner

of	a	service	is	the	individual	responsible	for	overseeing	its	monitoring,
evaluation,	and	improvement.
Continual	service	improvement’s	main	focus	is	to	achieve	better	alignment

between	IT	services	and	business	needs—whether	the	needs	have	changed	or	are
the	same.	If	the	needs	have	changed,	desired	changes	to	the	IT	services	can
concern	scope,	functionality,	or	SLAs.	If	the	business	needs	are	the	same,	IT
services	can	be	extended	to	better	support	them,	but	their	improvement	can	also
focus	on	increasing	the	efficiency.	DevOps	is	concerned	with	bringing	those
changes	into	practice	more	quickly	and	reliably.
Figure	3.3	depicts	the	seven-step	process	for	improvement,	as	suggested	by

ITIL.	This	data-driven	process	starts	off	with	an	identification	of	the	vision,
strategy,	and	goals	that	are	driving	the	current	improvement	cycle.	Based	on
that,	Step	1	defines	what	should	be	measured	so	as	to	gain	an	understanding	of
what	should	be	improved,	and	after	the	improvement	is	completed,	if	the	desired
goals	were	achieved.	Metrics	can	roughly	be	divided	into	the	three	categories:
technology,	process,	and	service.

FIGURE	3.3	Continual	service	improvement	process	(Adapted	from	ITIL)
[Notation:	BPMN]

The	actual	data	gathering	is	performed	in	Step	3.	Here	it	is	important	to
establish	baselines—if	they	do	not	exist	already—for	later	comparison.
Furthermore,	the	collection	of	the	data	(who	collects	it	and	how,	when,	and	how

Furthermore,	the	collection	of	the	data	(who	collects	it	and	how,	when,	and	how
frequently	it	is	collected)	needs	to	be	specified	clearly.	In	Step	4,	the	data	is
processed	(e.g.,	by	aggregating	data	from	different	sources	or	over	specified	time
intervals).	Analyzing	the	data	is	done	in	Step	5.	In	Step	6,	the	information
derived	from	the	analysis	is	presented	and	corrective	actions	are	determined.	The
chosen	corrective	actions	are	then	implemented	in	Step	7.	These	actions	can
impact	all	phases	of	the	service	life	cycle—that	is,	strategy,	design,	transition,	or
operation.

3.5	Operations	and	DevOps
After	discussing	the	core	concepts	and	phases	of	ITIL,	we	now	highlight	how
interactions	between	traditional	IT	Ops	and	DevOps	can	be	shaped	in	the	future.
Our	basic	message	is	that	ignoring	ITIL	because	it	looks	heavyweight	and	not
suited	for	the	processes	of	DevOps	is	shortsighted	and	will	require	relearning	the
lessons	incorporated	into	the	ITIL	framework.
Ops	is	responsible	for	provisioning	of	hardware	and	software;	personnel	with

specialized	skills;	specification	and	monitoring	of	SLAs;	capacity	planning;
business	continuity;	and	information	security.	Most	of	these	responsibilities	have
aspects	that	are	included	both	inside	and	outside	of	DevOps	processes.	Any
discussion	of	which	aspects	of	Ops	are	to	be	included	in	DevOps	must	take	into
consideration	all	of	the	activities	that	Ops	currently	performs	and	involves	both
functional	activities,	personnel	skills,	and	availability.	The	aspects	of	these
activities	that	impact	DevOps	are:

	Hardware	provisioning.	Virtualized	hardware	may	be	allocated	by	a
development	team	or	application	with	more	automation.
	Software	provisioning.	Internally	developed	software	will	be	deployed	by
Dev.	Other	software	is	provisioned	by	Ops.
	IT	function	provision.	To	the	extent	that	a	Dev	team	is	responsible	for
incident	management	and	deployment	tools,	it	must	have	people	with	the
expertise	to	perform	these	tasks.
	Specification	and	monitoring	of	SLAs.	For	those	SLAs	that	are	specific	to	a
particular	application,	Dev	will	be	responsible	for	monitoring,	evaluating,
and	responding	to	incidents.
	Capacity	planning.	Dev	is	responsible	for	capacity	planning	for	individual
applications,	and	Ops	is	responsible	for	overall	capacity	planning.
	Business	continuity.	Dev	is	responsible	for	those	aspects	of	business
continuity	that	involve	the	application	architecture,	and	Ops	is	responsible

for	the	remainder.	Ops	can	provide	services	and	policies	for	business
continuity,	which	in	turn	are	used	by	Dev.
	Information	security.	Dev	is	responsible	for	those	aspects	of	information
security	that	involve	a	particular	application,	and	Ops	is	responsible	for	the
remainder.

The	number	of	people	who	are	involved	in	DevOps	will	depend	on	which
processes	are	adopted	by	the	organization.	One	organization	estimates	that	20%
of	the	Ops	team	and	20%	of	the	Dev	team	are	involved	in	DevOps	processes.
Some	factors	that	impact	the	breadth	of	involvement	of	the	different	teams	are:

	The	extent	to	which	Dev	becomes	the	first	responder	in	the	event	of	an
incident
	Whether	there	is	a	separate	DevOps	group	responsible	for	the	tools	used	in
the	continuous	deployment	pipeline
	The	skill	set	and	availability	of	personnel	from	the	two	groups

One	difference	between	ITIL’s	service	transition	and	the	DevOps	approach	is
that	ITIL	assumes	fairly	large	release	packages	where	careful	planning,	change
management,	and	so	on	are	feasible—in	contrast	to	the	high-frequency	small
releases	encountered	in	typical	DevOps	scenarios.	Rob	Spencer	suggests	in	a
blog	post	to	view	DevOps	releases	as	“concurrent	streams	of	smaller
deliverables”	and	gives	the	following	example	in	Table	3.3.

TABLE	3.3	Release	Package	Examples	(Adapted	from	R.	Spencer’s	blog

post)

Most	rows	in	Table	3.3	now	contain	criteria	that	can	be	seen	as	invariants	in
the	cycles	of	the	development	process.	In	DevOps,	the	typical	frequency	of	these
invariants	is	significantly	higher	than	in	ITIL.	Yet,	the	processes	and	roles	in	the
right-hand	column	are	taken	from	ITIL,	thus	making	use	of	proven	methods	and
processes.	Notably,	the	last	row	contains	the	now-joint	stream	of	“Early	Life
Support	and	Continual	Service	Improvement.”	Given	that	releases	are	daily,	the
early	life	support	phase	is	effectively	never-ending.
While	many	startups	would	consider	such	an	approach	overkill,	larger	and

more	mature	organizations	will	find	defining	the	relation	between	DevOps	and
ITIL	useful,	and	this	approach	could	increase	the	acceptance	of	and	buy-in	to
DevOps.

3.6	Summary
ITIL	provides	general	guidance	for	the	activities	of	Ops.	These	activities	include
provisioning	of	hardware	and	software;	providing	functions	such	as	service	desk
operations	and	specialized	technology	experts;	and	day-to-day	provisioning	of
IT	services.	As	with	many	such	process	specification	standards,	ITIL	provides
general	guidance	on	how	activities	are	to	be	carried	out	rather	than	specific
guidance.	For	example,	instead	of	saying	“measure	A	with	a	goal	of	X,”	ITIL
says	something	like	“for	goal	X,	choose	the	measurements	that	will	allow	you	to
determine	X.”
Organizational	activities	should	satisfy	some	strategic	purpose	for	the

organization	and	need	to	be	designed,	implemented,	monitored,	and	improved.
DevOps	practices	with	the	goals	of	reducing	the	time	from	developer	commit	to
production	and	rapid	repair	of	discovered	errors	will	impact	some	of	the	types	of
services	provided	by	Ops	and	will	provide	mechanisms	for	monitoring	and
improving	those	services.	The	specifics	of	the	impact	of	DevOps	on	Ops	will
depend	on	the	type	of	organization	and	the	particular	DevOps	practices	that	are
adopted.
One	method	of	viewing	the	relationship	between	DevOps	and	ITIL	is	that

DevOps	provides	continuous	delivery	of	the	various	ITIL	services	rather	than
requiring	those	services	to	be	packaged	into	a	major	release.

3.7	For	Further	Reading
ITIL	is	a	standardization	effort	begun	by	the	government	of	the	United	Kingdom
in	the	1980s.	It	has	gone	through	a	series	of	revisions,	consolidations,

amendments,	and	so	forth.	The	latest	version	of	ITIL	is	from	2011.	It	is
published	in	five	volumes	[Cannon	11;	Hunnebeck	11;	Lloyd	11;	Rance	11;
Steinberg	11].
Thomas	Erl	has	written	extensively	about	design	issues	of	services	in	a

service-oriented	architecture	sense,	but	his	requirements	are	more	generally
applicable	than	just	for	software.	We	applied	them	to	the	services	provided	by
operations.	See	his	book	Service-Oriented	Architecture:	Principles	of	Service
Design,	which	describes	designing	services	[Erl	07].
Some	blogs	that	discuss	ITIL	and	its	relation	to	DevOps	are
	“DevOps	and	ITIL:	Continuous	Delivery	Doesn’t	Stop	at	Software”
[Spencer	14]
	“What	is	IT	Service?”	[Agrasala	11]
	FireScope	is	a	company	involved	in	enterprise	monitoring:	See	the	blog
“What	is	an	IT	Service?”	[FireScope	13]

Recovery	point	objective	(RPO)	is	defined	and	contrasted	with	recovery	time
objective	(RTO)	in	a	Wikipedia	article	at
http://en.wikipedia.org/wiki/Recovery_point_objective

http://en.wikipedia.org/wiki/Recovery_point_objective

Part	Two:	The	Deployment	Pipeline
In	this	part,	we	focus	on	the	methods	for	placing	code	into	production	as	quickly
as	possible,	while	maintaining	high	quality.	These	methods	are	manifested	as	a
pipeline,	where	the	code	has	to	pass	quality	gates	one	by	one	before	reaching
production.	The	deployment	pipeline	is	the	place	where	the	architectural	aspects
and	the	process	aspects	of	DevOps	intersect.	The	goals	of	minimizing	the
coordination	requirements	between	different	development	teams,	minimizing	the
time	required	to	integrate	different	development	branches,	having	a	high-quality
set	of	tests,	and	placing	the	code	into	production	with	high	speed	and	quality	are
covered	in	the	three	chapters	in	this	part.
In	Chapter	4,	we	explain	the	microservice	architecture	and	argue	why	it

satisfies	many	of	the	coordination	requirements	and,	hence,	removes	the
requirement	for	explicit	coordination	prior	to	deployment.
Requirements	for	a	continuous	deployment	pipeline	mandate	that	testing	be

efficient	and	only	a	limited	amount	of	merging	needs	to	be	done.	We	discuss
these	issues	in	Chapter	5.
Once	code	is	“production	ready”	there	are	a	number	of	options	for	actually

deploying	the	code.	Several	different	all-or-nothing	deployment	strategies	exist,
as	well	as	several	different	partial	deployment	strategies.	One	common
deployment	strategy	results	in	multiple	versions	of	a	service	being
simultaneously	active	and	this,	in	turn,	raises	questions	of	consistency.
Furthermore,	allowing	any	team	to	deploy	at	any	time	results	in	potential
inconsistency	between	clients	and	the	services	they	are	using.	We	discuss	these
and	other	issues	in	Chapter	6.

4.	Overall	Architecture

A	distributed	system	is	one	in	which	the	failure	of	a	computer	you	didn’t
even	know	existed	can	render	you	own	computer	unusable.

—Leslie	Lamport

In	this	chapter	we	begin	to	see	the	structural	implications	of	the	DevOps
practices.	These	practices	have	implications	with	respect	to	both	the	overall
structure	of	the	system	and	techniques	that	should	be	used	in	the	system’s
elements.	DevOps	achieves	its	goals	partially	by	replacing	explicit	coordination
with	implicit	and	often	less	coordination,	and	we	will	see	how	the	architecture	of
the	system	being	developed	acts	as	the	implicit	coordination	mechanism.	We
begin	by	discussing	whether	DevOps	practices	necessarily	imply	architectural
change.

4.1	Do	DevOps	Practices	Require	Architectural	Change?
You	may	have	a	large	investment	in	your	current	systems	and	your	current
architecture.	If	you	must	re-architect	your	systems	in	order	to	take	advantage	of
DevOps,	a	legitimate	question	is	“Is	it	worth	it?”	In	this	section	we	see	that	some
DevOps	practices	are	independent	of	architecture,	whereas	in	order	to	get	the
full	benefit	of	others,	architectural	refactoring	may	be	necessary.
Recall	from	Chapter	1	that	there	are	five	categories	of	DevOps	practices.
1.	Treat	Ops	as	first-class	citizens	from	the	point	of	view	of	requirements.
Adding	requirements	to	a	system	from	Ops	may	require	some	architectural
modification.	In	particular,	the	Ops	requirements	are	likely	to	be	in	the
area	of	logging,	monitoring,	and	information	to	support	incident	handling.
These	requirements	will	be	like	other	requirements	for	modifications	to	a
system:	possibly	requiring	some	minor	modifications	to	the	architecture
but,	typically,	not	drastic	modifications.

2.	Make	Dev	more	responsible	for	relevant	incident	handling.	By	itself,	this
change	is	just	a	process	change	and	should	require	no	architectural
modifications.	However,	just	as	with	the	previous	category,	once	Dev
becomes	aware	of	the	requirements	for	incident	handling,	some
architectural	modifications	may	result.

3.	Enforce	deployment	process	used	by	all,	including	Dev	and	Ops
personnel.	In	general,	when	a	process	becomes	enforced,	some	individuals
may	be	required	to	change	their	normal	operating	procedures	and,
possibly,	the	structure	of	the	systems	on	which	they	work.	One	point	where
a	deployment	process	could	be	enforced	is	in	the	initiation	phase	of	each
system.	Each	system,	when	it	is	initialized,	verifies	its	pedigree.	That	is,	it
arrived	at	execution	through	a	series	of	steps,	each	of	which	can	be
checked	to	have	occurred.	Furthermore,	the	systems	on	which	it	depends
(e.g.,	operating	systems	or	middleware)	also	have	verifiable	pedigrees.

4.	Use	continuous	deployment.	Continuous	deployment	is	the	practice	that
leads	to	the	most	far-reaching	architectural	modifications.	On	the	one
hand,	an	organization	can	introduce	continuous	deployment	practices	with
no	major	architectural	changes.	See,	for	example,	our	case	study	in
Chapter	12.	On	the	other	hand,	organizations	that	have	adopted	continuous
deployment	practices	frequently	begin	moving	to	a	microservice-based
architecture.	See,	for	example,	our	case	study	in	Chapter	13.	We	explore
the	reasons	for	the	adoption	of	a	microservice	architecture	in	the	remainder
of	this	chapter

5.	Develop	infrastructure	code	with	the	same	set	of	practices	as	application
code.	These	practices	will	not	affect	the	application	code	but	may	affect
the	architecture	of	the	infrastructure	code.

4.2	Overall	Architecture	Structure
Before	delving	into	the	details	of	the	overall	structure,	let	us	clarify	how	we	use
certain	terminology.	The	terms	module	and	component	are	frequently	overloaded
and	used	in	different	fashions	in	different	writings.	For	us,	a	module	is	a	code
unit	with	coherent	functionality.	A	component	is	an	executable	unit.	A	compiler
or	interpreter	turns	modules	into	binaries,	and	a	builder	turns	the	binaries	into
components.	The	development	team	thus	directly	develops	modules.
Components	are	results	of	the	modules	developed	by	development	teams,	and	so
it	is	possible	to	speak	of	a	team	developing	a	component,	but	it	should	be	clear
that	the	development	of	a	component	is	an	indirect	activity	of	a	development
team.
As	we	described	in	Chapter	1,	development	teams	using	DevOps	processes

are	usually	small	and	should	have	limited	inter-team	coordination.	Small	teams
imply	that	each	team	has	a	limited	scope	in	terms	of	the	components	they
develop.	When	a	team	deploys	a	component,	it	cannot	go	into	production	unless

the	component	is	compatible	with	other	components	with	which	it	interacts.	This
compatibility	can	be	ensured	explicitly	through	multi-team	coordination,	or	it
can	be	ensured	implicitly	through	the	definition	of	the	architecture.
An	organization	can	introduce	continuous	deployment	without	major

architectural	modifications.	For	example,	the	case	study	in	Chapter	12	is
fundamentally	architecture-agnostic.	Dramatically	reducing	the	time	required	to
place	a	component	into	production,	however,	requires	architectural	support:

	Deploying	without	the	necessity	of	explicit	coordination	with	other	teams
reduces	the	time	required	to	place	a	component	into	production.
	Allowing	for	different	versions	of	the	same	service	to	be	simultaneously	in
production	leads	to	different	team	members	deploying	without
coordination	with	other	members	of	their	team.
	Rolling	back	a	deployment	in	the	event	of	errors	allows	for	various	forms
of	live	testing.

Microservice	architecture	is	an	architectural	style	that	satisfies	these
requirements.	This	style	is	used	in	practice	by	organizations	that	have	adopted	or
inspired	many	DevOps	practices.	Although	project	requirements	may	cause
deviations	to	this	style,	it	remains	a	good	general	basis	for	projects	that	are
adopting	DevOps	practices.
A	microservice	architecture	consists	of	a	collection	of	services	where	each

service	provides	a	small	amount	of	functionality	and	the	total	functionality	of	the
system	is	derived	from	composing	multiple	services.	In	Chapter	6,	we	also	see
that	a	microservice	architecture,	with	some	modifications,	gives	each	team	the
ability	to	deploy	their	service	independently	from	other	teams,	to	have	multiple
versions	of	a	service	in	production	simultaneously,	and	to	roll	back	to	a	prior
version	relatively	easily.
Figure	4.1	describes	the	situation	that	results	from	using	a	microservice

architecture.	A	user	interacts	with	a	single	consumer-facing	service.	This
service,	in	turn,	utilizes	a	collection	of	other	services.	We	use	the	terminology
service	to	refer	to	a	component	that	provides	a	service	and	client	to	refer	to	a
component	that	requests	a	service.	A	single	component	can	be	a	client	in	one
interaction	and	a	service	in	another.	In	a	system	such	as	LinkedIn,	the	service
depth	may	reach	as	much	as	70	for	a	single	user	request.

FIGURE	4.1	User	interacting	with	a	single	service	that,	in	turn,	utilizes
multiple	other	services	[Notation:	Architecture]

Having	an	architecture	composed	of	small	services	is	a	response	to	having
small	teams.	Now	we	look	at	the	aspects	of	an	architecture	that	can	be	specified
globally	as	a	response	to	the	requirement	that	inter-team	coordination	be
minimized.	We	discuss	three	categories	of	design	decisions	that	can	be	made
globally	as	a	portion	of	the	architecture	design,	thus	removing	the	need	for	inter-
team	coordination	with	respect	to	these	decisions.	The	three	categories	are:	the
coordination	model,	management	of	resources,	and	mapping	among	architectural
elements.

Coordination	Model
If	two	services	interact,	the	two	development	teams	responsible	for	those
services	must	coordinate	in	some	fashion.	Two	details	of	the	coordination	model
that	can	be	included	in	the	overall	architecture	are:	how	a	client	discovers	a
service	that	it	wishes	to	use,	and	how	the	individual	services	communicate.
Figure	4.2	gives	an	overview	of	the	interaction	between	a	service	and	its

client.	The	service	registers	with	a	registry.	The	registration	includes	a	name	for
the	service	as	well	as	information	on	how	to	invoke	it,	for	example,	an	endpoint
location	as	a	URL	or	an	IP	address.	A	client	can	retrieve	the	information	about
the	service	from	the	registry	and	invoke	the	service	using	this	information.	If	the
registry	provides	IP	addresses,	it	acts	as	a	local	DNS	server—local,	because
typically,	the	registry	is	not	open	to	the	general	Internet	but	is	within	the
environment	of	the	application.	Netflix	Eureka	is	an	example	of	a	cloud	service
registry	that	acts	as	a	DNS	server.	The	registry	serves	as	a	catalogue	of	available
services,	and	can	further	be	used	to	track	aspects	such	as	versioning,	ownership,
service	level	agreements	(SLAs),	etc.,	for	the	set	of	services	in	an	organization.
We	discuss	extensions	to	the	registry	further	in	Chapter	6.

FIGURE	4.2	An	instance	of	a	service	registers	itself	with	the	registry,	the
client	queries	the	registry	for	the	address	of	the	service	and	invokes	the

service.	[Notation:	Architecture]

There	will	typically	be	multiple	instances	of	a	service,	both	to	support	a	load
too	heavy	for	a	single	instance	and	to	guard	against	failure.	The	registry	can
rotate	among	the	instances	registered	to	balance	the	load.	That	is,	the	registry
acts	as	a	load	balancer	as	well	as	a	registry.	Finally,	consider	the	possibility	that
an	instance	of	a	service	may	fail.	In	this	case,	the	registry	should	not	direct	the
client	to	the	failed	instance.	By	requiring	the	service	to	periodically	renew	its
registration	or	proactively	checking	the	health	of	the	service,	a	guard	against
failure	is	put	in	place.	If	the	service	fails	to	renew	its	registration	within	the
specified	period,	it	is	removed	from	the	registry.	Multiple	instances	of	the
service	typically	exist,	and	so	the	failure	of	one	instance	does	not	remove	the
service.	The	above-mentioned	Netflix	Eureka	is	an	example	for	a	registry
offering	load	balancing.	Eureka	supports	the	requirement	that	services
periodically	renew	their	registration.
The	protocol	used	for	communication	between	the	client	and	the	service	can

be	any	remote	communication	protocol,	for	example,	HTTP,	RPC,	SOAP,	etc.
The	service	can	provide	a	RESTful	interface	or	not.	The	remote	communication
protocol	should	be	the	only	means	for	communication	among	the	services.	The

protocol	should	be	the	only	means	for	communication	among	the	services.	The
details	of	the	interface	provided	by	the	service	still	require	cross-team
coordination.	When	we	discuss	the	example	of	Amazon	later,	we	will	see	one
method	of	providing	this	coordination.	We	will	also	see	an	explicit	requirement
for	restricting	communication	among	services	to	the	remote	communication
protocol.

Management	of	Resources
Two	types	of	resource	management	decisions	can	be	made	globally	and
incorporated	in	the	architecture—provisioning/deprovisioning	VMs	and
managing	variation	in	demand.

Provisioning	and	Deprovisioning	VMs
New	VMs	can	be	created	in	response	to	client	demand	or	to	failure.	When	the
demand	subsides,	instances	should	be	deprovisioned.	If	the	instances	are
stateless	(i.e.,	they	do	not	retain	any	information	between	requests),	a	new
instance	can	be	placed	into	service	as	soon	as	it	is	provisioned.	Similarly,	if	no
state	is	kept	in	an	instance,	deprovisioning	becomes	relatively	painless:	After	a
cool-down	period	where	the	instance	receives	no	new	requests	and	responds	to
existing	ones,	the	instance	can	be	deprovisioned.	The	cool-down	period	should
therefore	be	long	enough	for	an	instance	to	respond	to	all	requests	it	received
(i.e.,	the	backlog).	If	you	deprovision	an	instance	due	to	reduced	demand,	the
backlog	should	be	fairly	small—in	any	other	case	this	action	needs	to	be
considered	carefully.	An	additional	advantage	of	a	stateless	service	is	that
messages	can	be	routed	to	any	instance	of	that	service,	which	facilitates	load
sharing	among	the	instances.
This	leads	to	a	global	decision	to	maintain	state	external	to	a	service	instance.

As	discussed	in	Chapter	2,	large	amounts	of	application	state	can	be	maintained
in	persistent	storage,	small	amounts	of	application	state	can	be	maintained	by
tools	such	as	ZooKeeper,	and	client	state	should	not	be	maintained	on	the
provider’s	side	anyway.
Determining	which	component	controls	the	provisioning	and	deprovisioning

of	a	new	instance	for	a	service	is	another	important	aspect.	Three	possibilities
exist	for	the	controlling	component.

1.	A	service	itself	can	be	responsible	for	(de)provisioning	additional
instances.	A	service	can	know	its	own	queue	lengths	and	its	own
performance	in	response	to	requests.	It	can	compare	these	metrics	to
thresholds	and	(de)provision	an	instance	itself	if	the	threshold	is	crossed.

Assuming	that	the	distribution	of	requests	is	fair,	in	some	sense,	across	all
instances	of	the	service,	one	particular	instance	(e.g.,	the	oldest	one)	of	the
service	can	make	the	decision	when	to	provision	or	deprovision	instances.
Thus,	the	service	is	allowed	to	expand	or	shrink	capacity	to	meet	demand.

2.	A	client	or	a	component	in	the	client	chain	can	be	responsible	for
(de)provisioning	instances	of	a	service.	For	instance,	the	client,	based	on
the	demands	on	it,	may	be	aware	that	it	will	shortly	be	making	demands	on
the	service	that	exceed	a	given	threshold	and	provisions	new	instances	of
the	service.

3.	An	external	component	monitors	the	performance	of	service	instances
(e.g.,	their	CPU	load)	and	(de)provisions	an	instance	when	the	load	reaches
a	given	threshold.	Amazon’s	autoscaling	groups	provide	this	capability,	in
collaboration	with	the	CloudWatch	monitoring	system.

Managing	Demand
The	number	of	instances	of	an	individual	service	that	exist	should	reflect	the
demand	on	the	service	from	client	requests.	We	just	discussed	several	different
methods	for	provisioning	and	deprovisioning	instances,	and	these	methods	make
different	assumptions	about	how	demand	is	managed.

	One	method	for	managing	demand	is	to	monitor	performance.	Other
decisions	to	be	made	include	determining	how	to	implement	monitoring
(e.g.,	whether	done	internally	by	running	a	monitoring	agent	inside	each
service	instance	or	externally	by	a	specialized	component).	That	is,	when
demand	grows	that	needs	to	be	detected,	a	new	instance	can	be
provisioned.	It	takes	time	to	provision	a	new	instance,	so	it	is	important
that	the	indicators	are	timely	and	even	predictive	to	accommodate	for	that
time.	We	discuss	more	details	about	monitoring	in	Chapter	7.
	Another	possible	technique	is	to	use	SLAs	to	control	the	number	of
instances.	Each	instance	of	the	service	guarantees	through	its	SLAs	that	it
is	able	to	handle	a	certain	number	of	requests	with	a	specified	latency.	The
clients	of	that	service	then	know	how	many	requests	they	can	send	and	still
receive	a	response	within	the	specified	latency.	This	technique	has	several
constraints.	First,	it	is	likely	that	the	requirements	that	a	client	imposes	on
your	service	will	depend	on	the	requirements	imposed	on	the	client,	so
there	is	a	cascading	effect	up	through	the	demand	chain.	This	cascading
will	cause	uncertainty	in	both	the	specification	and	the	realization	of	the
SLAs.	A	second	constraint	of	the	SLA	technique	is	that	each	instance	of
your	service	may	know	how	many	requests	it	can	handle,	but	the	client	has

multiple	available	instances	of	your	service.	Thus,	the	provisioning
component	has	to	know	how	many	instances	currently	exist	of	your
service.

Mapping	Among	Architectural	Elements
The	final	type	of	coordination	decision	that	can	be	specified	in	the	architecture	is
the	mapping	among	architectural	elements.	We	discuss	two	different	types	of
mappings—work	assignments	and	allocation.	Both	of	these	are	decisions	that	are
made	globally.

	Work	assignments.	A	single	team	may	work	on	multiple	modules,	but
having	multiple	development	teams	work	on	the	same	module	requires	a
great	deal	of	coordination	among	those	development	teams.	Since
coordination	takes	time,	an	easier	structure	is	to	package	the	work	of	a
single	team	into	modules	and	develop	interfaces	among	the	modules	to
allow	modules	developed	by	different	teams	to	interoperate.	In	fact,	the
original	definition	of	a	module	by	David	Parnas	in	the	1970s	was	as	a	work
assignment	of	a	team.	Although	not	required,	it	is	reasonable	that	each
component	(i.e.,	microservice)	is	the	responsibility	of	a	single	development
team.	That	is,	the	set	of	modules	that,	when	linked,	constitute	a	component
are	the	output	of	a	single	development	team.	This	does	not	preclude	a
single	development	team	from	being	responsible	for	multiple	components
but	it	means	that	any	coordination	involving	a	component	is	settled	within
a	single	development	team,	and	that	any	coordination	involving	multiple
development	teams	goes	across	components.	Given	the	set	of	constraints
on	the	architecture	we	are	describing,	cross-team	coordination
requirements	are	limited.
	Allocation.	Each	component	(i.e.,	microservice)	will	exist	as	an
independent	deployable	unit.	This	allows	each	component	to	be	allocated
to	a	single	(virtual)	machine	or	container,	or	it	allows	multiple	components
to	be	allocated	to	a	single	(virtual)	machine.	The	redeployment	or	upgrade
of	one	microservice	will	not	affect	any	other	microservices.	We	explore
this	choice	in	Chapter	6.

4.3	Quality	Discussion	of	Microservice	Architecture
We	have	described	an	architectural	style—microservice	architecture—that
reduces	the	necessity	for	inter-team	coordination	by	making	global	architectural
choices.	The	style	provides	some	support	for	the	qualities	of	dependability
(stateless	services)	and	modifiability	(small	services),	but	there	are	additional

(stateless	services)	and	modifiability	(small	services),	but	there	are	additional
practices	that	a	team	should	use	to	improve	both	dependability	and	modifiability
of	their	services.

Dependability
Three	sources	for	dependability	problems	are:	the	small	amount	of	inter-team
coordination,	correctness	of	environment,	and	the	possibility	that	an	instance	of
a	service	can	fail.

Small	Amount	of	Inter-team	Coordination
The	limited	amount	of	inter-team	coordination	may	cause	misunderstandings
between	the	team	developing	a	client	and	the	team	developing	a	service	in	terms
of	the	semantics	of	an	interface.	In	particular,	unexpected	input	to	a	service	or
unexpected	output	from	a	service	can	happen.	There	are	several	options.	First,	a
team	should	practice	defensive	programming	and	not	assume	that	the	input	or
the	results	of	a	service	invocation	are	correct.	Checking	values	for
reasonableness	will	help	detect	errors	early.	Providing	a	rich	collection	of
exceptions	will	enable	faster	determination	of	the	cause	of	an	error.	Second,
integration	and	end-to-end	testing	with	all	or	most	microservices	should	be	done
judiciously.	It	can	be	expensive	to	run	these	tests	frequently	due	to	the
involvement	of	a	potentially	large	number	of	microservices	and	realistic	external
resources.	A	testing	practice	called	Consumer	Driven	Contract	(CDC)	can	be
used	to	alleviate	the	problem.	That	is,	the	test	cases	for	testing	a	microservice	are
decided	and	even	co-owned	by	all	the	consumers	of	that	microservice.	Any
changes	to	the	CDC	test	cases	need	to	be	agreed	on	by	both	the	consumers	and
the	developers	of	the	microservice.	Running	the	CDC	test	cases,	as	a	form	of
integration	testing,	is	less	expensive	than	running	end-to-end	test	cases.	If	CDC
is	practiced	properly,	confidence	in	the	microservice	can	be	high	without
running	many	end-to-end	test	cases.
CDC	serves	as	a	method	of	coordination	and	has	implications	on	how	user

stories	of	a	microservice	should	be	made	up	and	evolve	over	time.	Consumers
and	microservice	developers	collectively	make	up	and	own	the	user	stories.	CDC
definition	becomes	a	function	of	the	allocation	of	functionality	to	the
microservice,	is	managed	by	the	service	owner	as	a	portion	of	the	coordination
that	defines	the	next	iteration,	and,	consequently,	does	not	delay	the	progress	of
the	current	iteration.

Correctness	of	Environment
A	service	will	operate	in	multiple	different	environments	during	the	passage

from	unit	test	to	post-production.	Each	environment	is	provisioned	and
maintained	through	code	and	a	collection	of	configuration	parameters.	Errors	in
code	and	configuration	parameters	are	quite	common.	Inconsistent	configuration
parameters	are	also	possible.	Due	to	a	degree	of	uncertainty	in	cloud-based
infrastructure,	even	executing	the	correct	code	and	configuration	may	lead	to	an
incorrect	environment.	Thus,	the	initialization	portion	of	a	service	should	test	its
current	environment	to	determine	whether	it	is	as	expected.	It	should	also	test	the
configuration	parameters	to	detect,	as	far	as	possible,	unexpected	inconsistencies
from	different	environments.	If	the	behavior	of	the	service	depends	on	its
environment	(e.g.,	certain	actions	are	performed	during	unit	test	but	not	during
production),	then	the	initialization	should	determine	the	environment	and
provide	the	settings	for	turning	on	or	off	the	behavior.	An	important	trend	in
DevOps	is	to	manage	all	the	code	and	parameters	for	setting	up	an	environment
just	as	you	manage	your	application	code,	with	proper	version	control	and
testing.	This	is	an	example	of	“infrastructure-as-code”	as	defined	in	Chapter	1
and	discussed	in	more	detail	in	Chapter	5.	The	testing	of	infrastructure	code	is	a
particularly	challenging	issue.	We	discuss	the	issues	in	Chapters	7	and	9.

Failure	of	an	Instance
Failure	is	always	a	possibility	for	instances.	An	instance	is	deployed	onto	a
physical	machine,	either	directly	or	through	the	use	of	virtualization,	and	in	large
datacenters,	the	failure	of	a	physical	machine	is	common.	The	standard	method
through	which	a	client	detects	the	failure	of	an	instance	of	a	service	is	through
the	timeout	of	a	request.	Once	a	timeout	has	occurred,	the	client	can	issue	a
request	again	and,	depending	on	the	routing	mechanism	used,	assume	it	is	routed
to	a	different	instance	of	the	service.	In	the	case	of	multiple	timeouts,	the	service
is	assumed	to	have	failed	and	an	alternative	means	of	achieving	the	desired	goal
can	be	attempted.
Figure	4.3	shows	a	time	line	for	a	client	attempting	to	access	a	failed	service.

The	client	makes	a	request	to	the	service,	and	it	times	out.	The	client	repeats	the
request,	and	it	times	out	again.	At	this	point,	recognizing	the	failure	has	taken
twice	the	timeout	interval.	Having	a	short	timeout	interval	(failing	fast)	will
enable	a	more	rapid	response	to	the	client	of	the	client	requesting	the	service.	A
short	timeout	interval	may,	however,	introduce	false	positives	in	that	the	service
instance	may	just	be	slow	for	some	reason.	The	result	may	be	that	both	initial
requests	for	service	actually	deliver	the	service,	just	not	in	a	timely	fashion.
Another	result	may	be	that	the	alternative	action	is	performed	as	well.	Services
should	be	designed	so	that	multiple	invocations	of	the	same	service	will	not

introduce	an	error.	Idempotent	is	the	term	for	a	service	that	can	be	repeatedly
invoked	with	the	same	input	and	always	produces	the	same	output—namely,	no
error	is	generated.

FIGURE	4.3	Time	line	in	recognizing	failure	of	a	dependent	service
[Notation:	UML	Sequence	Diagram]

Another	point	highlighted	in	Figure	4.3	is	that	the	service	has	an	alternative
action.	That	is,	the	client	has	an	alternative	action	in	case	the	service	fails.	Figure
4.3	does	not	show	what	happens	if	there	is	no	alternative	action.	In	this	case,	the
service	reports	failure	to	its	client	together	with	context	information—namely,
no	response	from	the	particular	underlying	service.	We	explore	the	topic	of
reporting	errors	in	more	depth	in	Chapter	7.

Modifiability
Making	a	service	modifiable	comes	down	to	making	likely	changes	easy	and
reducing	the	ripple	effects	of	those	changes.	In	both	cases,	a	method	for	making
the	service	more	modifiable	is	to	encapsulate	either	the	affected	portions	of	a
likely	change	or	the	interactions	that	might	cause	ripple	effects	of	a	change.

Identifying	Likely	Changes
Some	likely	changes	that	come	from	the	development	process,	rather	than	the
service	being	provided,	are:

	The	environments	within	which	a	service	executes.	A	module	goes	through
unit	tests	in	one	environment,	integration	tests	in	another,	acceptance	tests
in	a	third,	and	is	in	production	in	a	fourth.

	The	state	of	other	services	with	which	your	service	interacts.	If	other
services	are	in	the	process	of	development,	then	the	interfaces	and
semantics	of	those	services	are	likely	to	change	relatively	quickly.	Since
you	may	not	know	the	state	of	the	external	service,	a	safe	practice	is	to
treat,	as	much	as	possible,	all	communication	with	external	services	as
likely	to	change.
	The	version	of	third-party	software	and	libraries	that	are	used	by	your
service.	Third-party	software	and	libraries	can	change	arbitrarily,
sometimes	in	ways	that	are	disruptive	for	your	service.	In	one	case	we
heard,	an	external	system	removed	an	essential	interface	during	the	time
the	deployment	process	was	ongoing.	Using	the	same	VM	image	in
different	environments	will	protect	against	those	changes	that	are
contained	within	the	VM	but	not	against	external	system	changes.

Reducing	Ripple	Effects
Once	likely	changes	have	been	discovered,	you	should	prevent	these	types	of
changes	from	rippling	through	your	service.	This	is	typically	done	by
introducing	modules	whose	sole	purpose	is	to	localize	and	isolate	changes	to	the
environment,	to	other	services,	or	to	third-party	software	or	libraries.	The
remainder	of	your	service	interacts	with	these	changeable	entities	through	the
newly	introduced	modules	with	stable	interfaces.
Any	interaction	with	other	services,	for	example,	is	mediated	by	the	special

module.	Changes	to	the	other	services	are	reflected	in	the	mediating	module	and
buffered	from	rippling	to	the	remainder	of	your	service.	Semantic	changes	to
other	services	may,	in	fact,	ripple,	but	the	mediating	module	can	absorb	some	of
the	impact,	thereby	reducing	this	ripple	effect.

4.4	Amazon’s	Rules	for	Teams
As	we	mentioned	in	Chapter	1,	Amazon	has	a	rule	that	no	team	should	be	larger
than	can	be	fed	with	two	pizzas;	in	the	early	years	of	this	century	they	adopted
an	internal	microservice	architecture.	Associated	with	the	adoption	was	a	list	of
rules	to	follow	about	how	to	use	the	services:

	“All	teams	will	henceforth	expose	their	data	and	functionality	through
service	interfaces.
	Teams	must	communicate	with	each	other	through	these	interfaces.
	There	will	be	no	other	form	of	inter-service/team	communication	allowed:
no	direct	linking,	no	direct	reads	of	another	team’s	datastore,	no	shared-

memory	model,	no	backdoors	whatsoever.	The	only	communication
allowed	is	via	service	interface	calls	over	the	network.
	It	doesn’t	matter	what	technology	they	[other	services]	use.
	All	service	interfaces,	without	exception,	must	be	designed	from	the
ground	up	to	be	externalizable.	That	is	to	say,	the	team	must	plan	and
design	to	be	able	to	expose	the	interface	to	developers	in	the	outside
world.”

Each	team	produces	some	number	of	services.	Every	service	is	totally
encapsulated	except	for	its	public	interface.	If	another	team	wishes	to	use	a
service,	it	must	discover	the	interface.	The	documentation	for	the	interface	must
include	enough	semantic	information	to	enable	the	user	of	a	service	to	determine
appropriate	definitions	for	items	such	as	“customer”	or	“address.”	These
concepts	can	sometimes	have	differing	meanings	within	different	portions	of	an
organization.	The	semantic	information	about	an	interface	can	be	kept	in	the
registry/load	balancer	that	we	described	earlier,	assuming	that	the	semantic
information	is	machine	interpretable.
By	making	every	service	potentially	externally	available,	whether	or	not	to

offer	a	service	globally	or	keep	it	local	becomes	a	business	decision,	not	a
technical	one.	External	services	can	be	hidden	behind	an	application
programming	interface	(API)	bound	through	a	library,	and	so	this	requirement	is
not	prejudging	the	technology	used	for	the	interface.
A	consequence	of	these	rules	is	that	Amazon	has	an	extensive	collection	of

services.	A	web	page	from	their	sales	business	makes	use	of	over	150	services.
Scalability	is	managed	by	each	service	individually	and	is	included	in	its	SLA	in
the	form	of	a	guaranteed	response	time	given	a	particular	load.	The	contract
covers	what	the	service	promises	against	certain	demand	levels.	The	SLA	binds
both	the	client	side	and	the	service	side.	If	the	client’s	demand	exceeds	the	load
promised	in	the	SLA,	then	slow	response	times	become	the	client’s	problem,	not
the	service’s.

4.5	Microservice	Adoption	for	Existing	Systems
Although	microservices	reflect	the	small,	independent	team	philosophy	of
DevOps,	most	organizations	have	large	mission-critical	systems	that	are	not
architected	that	way.	These	organizations	need	to	decide	whether	to	migrate	their
architectures	to	microservice	architectures,	and	which	ones	to	migrate.	We
discuss	this	migration	somewhat	in	Chapter	10.	Some	of	the	things	an	architect
thinking	of	adopting	a	microservice	architecture	should	ensure	are	the	following:

	Operational	concerns	are	considered	during	requirements	specification.
	The	overarching	structure	of	the	system	being	developed	should	be	a
collection	of	small,	independent	services.
	Each	service	should	be	distrustful	of	both	clients	and	other	required
services.
	Team	roles	have	been	defined	and	are	understood.
	Services	are	required	to	be	registered	with	a	local	registry/load	balancer.
	Services	must	renew	their	registration	periodically.
	Services	must	provide	SLAs	for	their	clients.
	Services	should	aim	to	be	stateless	and	be	treated	as	transient.
	If	a	service	has	to	maintain	state,	it	should	be	maintained	in	external
persistent	storage.
	Services	have	alternatives	in	case	a	service	they	depend	on	fails.
	Services	have	defensive	checks	to	intercept	erroneous	input	from	clients
and	output	from	other	services.
	Uses	of	external	services,	environmental	information,	and	third-party
software	and	libraries	are	localized	(i.e.,	they	require	passage	through	a
module	specific	to	that	external	service,	environment	information,	or
external	software	or	library).

However,	adopting	a	microservice	architecture	will	introduce	new	challenges.
When	an	application	is	composed	of	a	large	number	of	network-connected
microservices,	there	can	be	latency	and	other	performance	issues.	Authentication
and	authorization	between	services	need	to	be	carefully	designed	so	that	they	do
not	add	intolerable	overhead.	Monitoring,	debugging,	and	distributed	tracing
tools	may	need	to	be	modified	to	suit	microservices.	As	mentioned	earlier,	end-
to-end	testing	will	be	expensive.	Rarely	can	you	rebuild	your	application	from
scratch	without	legacy	components	or	existing	data.
Migrating	from	your	current	architecture	to	a	microservice	architecture

incrementally	without	data	loss	and	interruption	is	a	challenge.	You	may	need	to
build	interim	solutions	during	this	migration.	We	discuss	these	challenges	and
some	solutions	in	the	Atlassian	case	study	in	Chapter	13,	wherein	Atlassian
describes	the	initial	steps	of	their	journey	to	a	microservice	architecture.	An
architect	should	have	a	checklist	of	things	to	consider	when	performing	a
migration.

4.6	Summary

4.6	Summary
The	DevOps	goal	of	minimizing	coordination	among	various	teams	can	be
achieved	by	using	a	microservice	architectural	style	where	the	coordination
mechanism,	the	resource	management	decisions,	and	the	mapping	of
architectural	elements	are	all	specified	by	the	architecture	and	hence	require
minimal	inter-team	coordination.
A	collection	of	practices	for	development	can	be	added	to	the	microservice

architectural	style	to	achieve	dependability	and	modifiability,	such	as	identifying
and	isolating	areas	of	likely	change.
Adopting	a	microservice	architectural	style	introduces	additional	challenges	in

monitoring,	debugging,	performance	management,	and	testing.	Migrating	from
an	existing	architecture	to	a	microservice	architectural	style	requires	careful
planning	and	commitment.

4.7	For	Further	Reading
For	more	information	about	software	architecture,	we	recommend	the	following
books:

	Documenting	Software	Architectures,	2nd	Edition	[Clements	10]
	Software	Architecture	in	Practice,	3rd	Edition	[Bass	13]

Service	description,	cataloguing,	and	management	are	discussed	in	detail	in
the	Handbook	of	Service	Description	[Barros	12].	This	book	describes	services
that	are	externally	visible,	not	microservices,	but	much	of	the	discussion	is
relevant	to	microservices	as	well.
The	microservice	architectural	style	is	described	in	the	book	Building

Microservices:	Designing	Fine-Grained	Systems	[Newman	15].
Many	organizations	are	already	practicing	a	version	of	the	microservice

architectural	development	and	DevOps,	and	sharing	their	valuable	experiences.
	You	can	read	more	about	the	Amazon	example	here:
http://apievangelist.com/2012/01/12/the-secret-to-amazons-success-
internal-apis/	and	http://www.zdnet.com/blog/storage/soa-done-right-the-
amazon-strategy/152
	Netflix	points	out	some	challenges	in	using	microservice	architecture	at
scale	[Tonse	14].

The	Netflix	implementation	of	Eureka—their	open	source	internal	load
balancer/registry—can	be	found	at
https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance

http://apievangelist.com/2012/01/12/the-secret-to-amazons-success-internal-apis/
http://www.zdnet.com/blog/storage/soa-done-right-the-amazon-strategy/152
https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance

Consumer	Driven	Contracts	(CDCs)	are	discussed	in	Martin	Fowler’s	blog
“Consumer-Driven	Contracts:	A	Service	Evolution	Pattern,”	[Fowler	06].

5.	Building	and	Testing

Testing	leads	to	failure,	and	failure	leads	to	understanding.
—Burt	Rutan

5.1	Introduction
Although	architects	like	to	focus	on	design	and	implementation,	the
infrastructure	that	is	used	to	support	the	development	and	deployment	process	is
important	for	a	number	of	reasons.	This	infrastructure	should	support	the
following	requirements:

	Team	members	can	work	on	different	versions	of	the	system	concurrently.
	Code	developed	by	one	team	member	does	not	overwrite	the	code
developed	by	another	team	member	by	accident.
	Work	is	not	lost	if	a	team	member	suddenly	leaves	the	team.
	Team	members’	code	can	be	easily	tested.
	Team	members’	code	can	be	easily	integrated	with	the	code	produced	by
other	members	of	the	same	team.
	The	code	produced	by	one	team	can	be	easily	integrated	with	code
produced	by	other	teams.
	An	integrated	version	of	the	system	can	be	easily	deployed	into	various
environments	(e.g.,	testing,	staging,	and	production).
	An	integrated	version	of	the	system	can	be	easily	and	fully	tested	without
affecting	the	production	version	of	the	system.
	A	recently	deployed	new	version	of	the	system	can	be	closely	supervised.
	Older	versions	of	the	code	are	available	in	case	a	problem	develops	once
the	code	has	been	placed	into	production.
	Code	can	be	rolled	back	in	the	case	of	a	problem.

The	most	important	reason	why	practicing	architects	should	probably	be
concerned	about	the	development	and	deployment	infrastructure	is:	Either	they
or	the	project	managers	are	responsible	for	ensuring	that	the	development
infrastructure	can	meet	the	preceding	requirements.	There	is	nothing	like	being
responsible	for	an	outcome	to	focus	attention.

None	of	the	requirements	are	new,	although	the	tools	used	to	support	these
tasks	have	evolved	and	gained	sophistication	over	the	years.	We	organize	this
chapter	using	the	concept	of	deployment	pipeline.	A	deployment	pipeline,	as
shown	in	Figure	5.1,	consists	of	the	steps	that	are	taken	between	a	developer
committing	code	and	the	code	actually	being	promoted	into	normal	production,
while	ensuring	high	quality.

FIGURE	5.1	Deployment	pipeline	[Notation:	BPMN]

The	deployment	pipeline	begins	when	a	developer	commits	code	to	a	joint
versioning	system.	Prior	to	doing	this	commit,	the	developer	will	have
performed	a	series	of	pre-commit	tests	on	their	local	environment;	failure	of	the
pre-commit	tests	of	course	means	that	the	commit	does	not	take	place.	A	commit
then	triggers	an	integration	build	of	the	service	being	developed.	This	build	is
tested	by	integration	tests.	If	these	tests	are	successful,	the	build	is	promoted	to	a
quasi-production	environment—the	staging	environment—where	it	is	tested
once	more.	Then,	it	is	promoted	to	production	under	close	supervision.	After
another	period	of	close	supervision,	it	is	promoted	to	normal	production.	The
specific	tasks	may	vary	a	bit	for	different	organizations.	For	example,	a	small
company	may	not	have	a	staging	environment	or	special	supervision	for	a
recently	deployed	version.	A	larger	company	may	have	several	different
production	environments	for	different	purposes.	We	describe	some	of	these
different	production	environments	in	Chapter	6.
One	way	to	define	continuous	integration	is	to	have	automatic	triggers

between	one	phase	and	the	next,	up	to	integration	tests.	That	is,	if	the	build	is
successful	then	integration	tests	are	triggered.	If	not,	the	developer	responsible
for	the	failure	is	notified.	Continuous	delivery	is	defined	as	having	automated
triggers	as	far	as	the	staging	system.	This	is	the	box	labeled	UAT	(user
acceptance	test)/staging/performance	tests	in	Figure	5.1.	We	use	the	term	staging
for	these	various	functions.	Continuous	deployment	means	that	the	next	to	last
step	(i.e.,	deployment	into	the	production	system)	is	automated	as	well.	Once	a

service	is	deployed	into	production	it	is	closely	monitored	for	a	period	and	then
it	is	promoted	into	normal	production.	At	this	final	stage,	monitoring	and	testing
still	exist	but	the	service	is	no	different	from	other	services	in	this	regard.	In	this
chapter,	we	are	concerned	with	the	building	and	testing	aspects	of	this	pipeline.
Chapter	6	describes	deployment	practices,	and	Chapter	7	discusses	monitoring
methods.
We	use	the	deployment	pipeline	as	an	organizing	theme	for	this	chapter.	Then

we	discuss	crosscutting	concerns	of	the	different	steps,	followed	by	sections	on
the	pre-commit	stage,	build	and	integration	testing,	UAT/staging/performance
tests,	production,	and	post-production.	Before	moving	to	that	discussion,
however,	we	discuss	the	movement	of	a	system	through	the	pipeline.

5.2	Moving	a	System	Through	the	Deployment	Pipeline
Committed	code	moves	through	the	steps	shown	in	Figure	5.1,	but	the	code	does
not	move	of	its	own	volition.	Rather,	it	is	moved	by	tools.	These	tools	are
controlled	by	their	programs	(called	scripts	in	this	context)	or	by
developer/operator	commands.	Two	aspects	of	this	movement	are	of	interest	in
this	section:

1.	Traceability
2.	The	environment	associated	with	each	step	of	the	pipeline

Traceability
Traceability	means	that,	for	any	system	in	production,	it	is	possible	to	determine
exactly	how	it	came	to	be	in	production.	This	means	keeping	track	not	only	of
source	code	but	also	of	all	the	commands	to	all	the	tools	that	acted	on	the
elements	of	the	system.	Individual	commands	are	difficult	to	trace.	For	this
reason,	controlling	tools	by	scripts	is	far	better	than	controlling	tools	by
commands.	The	scripts	and	associated	configuration	parameters	should	be	kept
under	version	control,	just	as	the	application	code.	A	movement	called
Infrastructure	as	Code	uses	this	rationale.	Tests	are	also	maintained	in	version
control.	Configuration	parameters	can	be	kept	as	files	that	are	stored	in	version
control	or	handled	through	dedicated	configuration	management	systems.
Treating	infrastructure-as-code	means	that	this	code	should	be	subject	to	the

same	quality	control	as	application	source	code.	That	is,	this	code	should	be
tested,	changes	to	it	should	be	regulated	in	some	fashion,	and	its	different	parts
should	have	owners.
Keeping	everything	in	version	control	and	configuration	management	systems

allows	you	to	re-create	the	exact	environments	used	anywhere,	from	local
development	to	production.	Not	only	is	this	very	helpful	in	tracing	issues,	it	also
allows	fast	and	flexible	redeployment	of	your	application	in	a	new	environment.
A	complication	to	the	requirement	to	keep	everything	in	version	control	is	the

treatment	of	third-party	software	such	as	Java	libraries.	Such	libraries	can	be
bulky	and	can	consume	a	lot	of	storage	space.	Libraries	also	change,	so	you	must
find	a	mechanism	to	ensure	you	include	the	correct	version	of	third-party
software	in	a	build,	without	having	multiple	copies	of	the	same	version	of	the
library	on	the	servers	running	your	system.	Software	project	management	tools
like	Apache	Maven	can	go	a	long	way	to	managing	the	complexities	of	library
usage.

The	Environment
An	executing	system	can	be	viewed	as	a	collection	of	executing	code,	an
environment,	configuration,	systems	outside	of	the	environment	with	which	the
primary	system	interacts,	and	data.	Figure	5.2	shows	these	elements.

FIGURE	5.2	A	sample	environment	[Notation:	Architecture]

As	the	system	moves	through	the	deployment	pipeline,	these	items	work
together	to	generate	the	desired	behavior	or	information.

	Pre-commit.	The	code	is	the	module	of	the	system	on	which	the	developer
is	working.	Building	this	code	into	something	that	can	be	tested	requires
access	to	the	appropriate	portions	of	the	version	control	repository	that	are
being	created	by	other	developers.	In	Chapter	1,	we	discussed	reducing
coordination	among	teams.	Pre-commit	requires	coordination	within	a

team.	The	environment	is	typically	a	laptop	or	a	desktop,	the	external
systems	are	stubbed	out	or	mocked,	and	only	limited	data	is	used	for
testing.	Read-only	external	systems,	for	example,	an	RSS	feed,	can	be
accessed	during	the	pre-commit	stage.	Configuration	parameters	should
reflect	the	environment	and	also	control	the	debugging	level.
	Build	and	integration	testing.	The	environment	is	usually	a	continuous
integration	server.	The	code	is	compiled,	and	the	component	is	built	and
baked	into	a	VM	image.	The	image	can	be	either	heavily	or	lightly	baked
(see	the	later	section	on	packaging).	This	VM	image	does	not	change	in
subsequent	steps	of	the	pipeline.	During	integration	testing,	a	set	of	test
data	forms	a	test	database.	This	database	is	not	the	production	database,
rather,	it	consists	of	a	sufficient	amount	of	data	to	perform	the	automated
tests	associated	with	integration.	The	configuration	parameters	connect	the
built	system	with	an	integration	testing	environment.
	UAT/staging/performance	testing.	The	environment	is	as	close	to
production	as	possible.	Automated	acceptance	tests	are	run,	and	stress
testing	is	performed	through	the	use	of	artificially	generated	workloads.
The	database	should	have	some	subset	of	actual	production	data	in	it.	With
very	large	data	sets,	it	may	not	be	possible	to	have	a	complete	copy	of	the
actual	data,	but	the	subset	should	be	large	enough	to	enable	the	tests	to	be
run	in	a	realistic	setting.	Configuration	parameters	connect	the	tested
system	with	the	larger	test	environment.	Access	to	the	production	database
should	not	be	allowed	from	the	staging	environment.
	Production.	The	production	environment	should	access	the	live	database
and	have	sufficient	resources	to	adequately	handle	its	workload.
Configuration	parameters	connect	the	system	with	the	production
environment.

The	configuration	for	each	of	these	environments	will	be	different.	For
instance,	logging	in	the	development	environment	is	usually	done	in	a	much
more	detailed	fashion	than	in	the	production	environment.	Doing	so	helps	the
developer	find	bugs,	and	the	performance	overhead	created	does	not	matter	as
much.	Another	example	concerns	credentials:	The	credentials	for	accessing
production	resources,	such	as	the	live	customer	database,	should	not	be	made
available	to	developers.	While	some	changes	in	configuration	are	unavoidable,	it
is	important	to	keep	these	changes	to	a	minimum	to	prevent	affecting	the
behavior	of	the	system.	As	such,	testing	with	a	vastly	different	configuration
from	the	production	system	will	not	be	helpful.
Wikipedia	has	a	longer	list	of	environments	than	we	provide	here	because	it

Wikipedia	has	a	longer	list	of	environments	than	we	provide	here	because	it
enumerates	more	distinct	testing	environments.	For	the	purposes	of	this	chapter,
the	environments	we	enumerated	are	sufficient	but,	as	noted,	depending	on	the
size	of	your	organization,	the	regulatory	environment,	and	other	factors,	more
environments	may	be	necessary.	The	Wikipedia	list	is:

	Local:	Developer’s	laptop/desktop/workstation
	Development:	Development	server,	a.k.a.	sandbox
	Integration:	Continuous	integration	(CI)	build	target,	or	for	developer
testing	of	side	effects
	Test/QA:	For	functional,	performance	testing,	quality	assurance,	etc.
	UAT:	User	acceptance	testing
	Stage/Pre-production:	Mirror	of	production	environment
	Production/Live:	Serves	end-users/clients

Before	we	turn	to	the	actual	steps	of	the	deployment	pipeline	we	discuss	the
crosscutting	aspects	of	testing.

5.3	Crosscutting	Aspects
In	this	section,	we	discuss	various	crosscutting	aspects	of	a	deployment	pipeline:
test	harnesses,	negative	tests,	regression	tests,	traceability	of	errors,	the	size	of
components,	and	tearing	down	of	environments.

	Test	harnesses.	A	test	harness	is	a	collection	of	software	and	test	data
configured	to	test	a	program	unit	by	running	it	under	varying	conditions
and	monitoring	its	behavior	and	output.	Test	harnesses	are	essential	in
order	to	automate	tests.	A	critical	feature	of	a	test	harness	is	that	it
generates	a	report.	In	particular	it	should,	at	a	minimum,	identify	which
tests	failed.	Most	of	the	types	of	tests	discussed	in	this	chapter	should	be
able	to	be	automated	and	driven	by	the	test	harness.
	Negative	tests.	Most	tests	follow	the	“happy	path”	and	check	if	the	system
behaves	as	expected	when	all	assumptions	about	the	environment	hold	and
the	user	performs	actions	in	the	right	order	with	the	right	inputs.	It	is	also
important	to	test	if	the	system	behaves	in	a	defined	way	when	these
assumptions	are	not	met.	Tests	that	follow	this	purpose	are	collectively
called	negative	tests.	Examples	are	(simulated	or	actual)	users	performing
actions	in	the	wrong	order	(e.g.,	clicking	buttons,	calling	commands,
terminating	the	user	interface	(UI)/browser	at	an	unexpected	point	in	time,
etc.)	or	simulated	connectivity	issues,	such	as	external	services	becoming
unavailable,	connections	being	dropped	at	unexpected	points	in	time,	and

so	forth.	The	common	expectation	is	that	the	application	should	degrade	or
fail	gracefully	(i.e.,	only	degrade	the	functionality	as	necessitated	by	the
actual	problem),	and,	if	failure	is	unavoidable,	provide	meaningful	error
messages	and	exit	in	a	controlled	manner.
	Regression	testing	is	the	core	reason	for	maintaining	and	rerunning	tests
after	they	first	passed.	According	to	Wikipedia,	regression	testing	“…
seeks	to	uncover	new	software	bugs,	or	regressions,	in	existing	functional
and	non-functional	areas	of	a	system	after	changes	such	as	enhancements,
patches	or	configuration	changes,	have	been	made	to	them.”	Another	use
of	regression	testing	is	to	ensure	that	any	fixed	bugs	are	not	reintroduced
later	on.	When	fixing	a	bug	in	test-driven	development,	it	is	good	practice
to	amend	the	test	suite	by	adding	a	test	that	reproduces	the	bug.	In	the
current	version,	this	test	should	fail.	After	the	bug	has	been	fixed,	the	test
should	pass.	It	is	possible	to	automate	the	regression	test	creation:	Failures
detected	at	later	points	in	the	deployment	pipeline	(e.g.,	during	staging
testing)	can	be	automatically	recorded	and	added	as	new	tests	into	unit	or
integration	testing.
	Traceability	of	errors	(also	referred	to	as	lineage	or	a	form	of	provenance).
If	a	bug	occurs	in	production,	you	want	to	be	able	to	find	out	quickly
which	version	of	the	source	code	is	running,	so	that	you	can	inspect	and
reproduce	the	bug.	We	outline	two	options	to	handle	this	situation,	both	of
which	assume	that	you	have	a	single	mechanism	for	changing	a	system,	be
it	through	a	configuration	management	system	such	as	Chef,	heavily	baked
images,	and	so	forth.	Regardless	of	the	change	mechanism,	an	assumption
is	made	that	every	valid	change	uses	that	mechanism.	Deviations	from	that
practice	are	in	principle	possible,	whether	done	inadvertently	or
maliciously,	and	you	want	to	have	mechanisms	in	place	to	detect	or
prevent	them.
	The	first	option	to	enable	traceability	is	to	associate	identifying	tags	to
the	packaged	application,	such	as	the	commit	ID	of	various	pieces	of
software	and	scripts	that	specify	the	provenance.	In	Java	and	.NET
environments,	packages	can	be	enriched	with	metadata,	where	the
commit	ID	can	be	added.	Containers	or	VM	images	can	be	enriched	in	a
similar	fashion.	The	information	can	be	added	to	log	lines,	and	these	can
(selectively)	be	shipped	to	a	central	log	repository.	By	doing	so,	a	failing
VM	does	not	destroy	the	information	necessary	for	analyzing	the	failure.
	Another	option	is	to	have	an	external	configuration	management	system
that	contains	the	provenance	of	each	machine	in	production.	One

example	for	this	is	Chef,	which	keeps	track	of	all	changes	it	applies	to	a
machine.	The	virtue	of	this	approach	is	that	the	provenance	information
is	at	a	known	location	for	any	application	that	needs	to	access	that	list.
The	drawback	is	that,	when	not	using	an	existing	system	which	offers
this	functionality,	keeping	a	centralized	list	up	to	date	can	be	a	complex
undertaking.

	Small	components.	We	mentioned	in	Chapter	1	that	small	teams	mean
small	components.	In	Chapter	4,	we	discussed	microservices	as	a
manifestation	of	small	components.	It	is	also	the	case	that	small
components	are	easier	to	test	individually.	A	small	component	has	fewer
paths	through	it	and	likely	has	fewer	interfaces	and	parameters.	These
consequences	of	smallness	mean	that	small	components	are	easier	to	test,
with	fewer	test	cases	necessary.	However,	as	mentioned	in	Chapter	1,	the
smallness	also	introduces	additional	challenges	in	integration	and	requires
end-to-end	tests	due	to	the	involvement	of	more	components.
	Environment	tear	down.	Once	an	environment	is	no	longer	being	used	for
a	specific	purpose,	such	as	staging,	it	should	be	dismantled.	Freeing
resources	associated	with	the	environment	is	one	rationale	for	tearing
down	an	environment;	avoiding	unintended	interactions	with	resources	is
another.	The	case	study	in	Chapter	12	makes	tear	down	an	explicit	portion
of	the	process.	It	is	easy	to	lose	track	of	resources	after	their	purpose	has
been	achieved.	Every	VM	must	be	patched	for	security	purposes,	and
unused	and	untracked	resources	provide	a	possible	attack	surface	from	a
malicious	user.	We	discuss	an	example	of	an	exploitation	of	an	unused
VM	in	Chapter	8.

We	will	discuss	testing	in	more	detail	later	in	the	chapter.	For	now,	you
should	understand	that	different	environments	allow	for	different	kinds	of	tests,
and	the	more	tests	are	completed	successfully,	the	more	confidence	you	should
have	in	a	version’s	quality.

5.4	Development	and	Pre-commit	Testing
All	tasks	prior	to	the	commit	step	are	performed	by	individual	developers	on
their	local	machines.	Code	development	and	language	choice	is	out	of	scope
here.	We	cover	the	general	topics	of	versioning	and	branching,	feature	toggles,
configuration	parameters,	and	pre-commit	testing.

Version	Control	and	Branching

Even	small	development	projects	are	nowadays	placed	into	systems	for	version
control—also	called	revision	control	or	source	control.	Such	systems	date	from
the	1950s	as	manual	systems.	CVS	(Concurrent	Versions	System)	dates	from	the
1980s,	and	SVN	(Subversion)	dates	from	2000.	Git	(released	in	2005)	is
currently	a	popular	version	control	system.	Core	features	of	version	control	are:
the	ability	to	identify	distinct	versions	of	the	source	code,	sharing	code	revisions
between	developers,	recording	who	made	a	change	from	one	version	to	the	next,
and	recording	the	scope	of	a	change.
CVS	and	SVN	are	centralized	solutions,	where	each	developer	checks	out

code	from	a	central	server	and	commits	changes	back	to	that	server.	Git	is	a
distributed	version	control	system:	Every	developer	has	a	local	clone	(or	copy)
of	a	Git	repository	that	holds	all	contents.	Commits	are	done	to	the	local
repository.	A	set	of	changes	can	be	synchronized	against	a	central	server,	where
changes	from	the	server	are	synchronized	with	the	local	repository	(using	the
pull	command)	and	local	changes	can	be	forwarded	to	the	server	(using	the	push
command).	Push	can	only	be	executed	if	the	local	repository	is	up-to-date,	hence
a	push	is	usually	preceded	by	a	pull.	During	this	pull,	changes	to	the	same	files
(e.g.,	to	the	same	Java	class)	are	merged	automatically.	However,	this	merge	can
fail,	in	which	case	the	developer	has	to	resolve	any	conflicts	locally.	The
resulting	changes	from	an	(automatic	or	semi-manual)	merge	are	committed
locally	and	then	pushed	to	the	server.
Almost	all	version	control	systems	support	the	creation	of	new	branches.	A

branch	is	essentially	a	copy	of	a	repository	(or	a	portion)	and	allows	independent
evolution	of	two	or	more	streams	of	work.	For	example,	if	part	of	the
development	team	is	working	on	a	set	of	new	features	while	a	previous	version
is	in	production	and	a	critical	error	is	discovered	in	the	production	system,	the
version	currently	in	production	must	be	fixed.	This	can	be	done	by	creating	a
branch	for	the	fix	based	on	the	version	of	the	code	that	was	released	into
production.	After	the	error	has	been	fixed	and	the	fixed	version	has	been
released	into	production,	the	branch	with	the	fix	is	typically	merged	back	into
the	main	branch	(also	called	the	trunk,	mainline,	or	master	branch).
This	example	is	useful	in	highlighting	the	need	for	traceability	that	we

discussed	previously.	In	order	to	fix	the	error,	the	code	that	was	executing	needs
to	be	determined	(traceability	of	the	code).	The	error	may	be	due	to	a	problem
with	the	configuration	(traceability	of	the	configuration)	or	with	the	tool	suite
used	to	promote	it	into	production	(traceability	of	the	infrastructure).
Although	the	branch	structure	is	useful	and	important,	two	problems	exist	in

using	branches.

1.	You	may	have	too	many	branches	and	lose	track	of	which	branch	you
should	be	working	on	for	a	particular	task.	Figure	5.3	shows	a	branch
structure	with	many	branches.	Determining	within	this	structure	on	which
branch	a	particular	change	should	be	made	can	be	daunting.	For	this
reason,	short-lived	tasks	should	not	create	a	new	branch.

FIGURE	5.3	Git	history	of	a	short-lived	project	with	20	developers	showing
many	merges	(Adapted	from	http://blog.xebia.com/2010/09/20/git-workflow/)
[The	straight	lines	represent	distinct	branches	and	the	diagonal	lines	represent

either	forks	or	merges.]

2.	Merging	two	branches	can	be	difficult.	Different	branches	evolve
concurrently,	and	often	developers	touch	many	different	parts	of	the	code.
For	instance,	a	few	developers	might	make	changes	to	the	version
currently	in	production	in	order	to	fix	bugs,	shield	the	version	from	newly
discovered	vulnerabilities,	or	support	urgently	required	changes.	At	the
same	time,	several	groups	of	developers	might	be	working	toward	a	new

http://blog.xebia.com/2010/09/20/git-workflow/

release,	each	group	working	on	a	separate	feature	branch.	Toward	the	end
of	the	development	cycle,	you	need	to	merge	all	feature	branches	and
include	the	changes	resulting	from	maintenance	of	the	previous	release.

An	alternative	to	branching	is	to	have	all	developers	working	on	the	trunk
directly.	Instead	of	reintegrating	a	big	branch,	a	developer	deals	with	integration
issues	at	each	commit,	which	is	a	simpler	solution,	but	requires	more	frequent
action	than	using	branches.	Paul	Hammant	discussed	how	Google	uses	this
technique.	Development	at	Google	is	trunk-based	and	at	full	scale:	15,000
developers	committing	to	trunk,	with	an	average	of	5,500	submissions	per	day
and	75	million	test	cases	run	per	day.
The	problem	with	doing	all	of	the	development	on	one	trunk	is	that	a

developer	may	be	working	on	several	different	tasks	within	the	same	module
simultaneously.	When	one	task	is	finished,	the	module	cannot	be	committed
until	the	other	tasks	are	completed.	To	do	so	would	introduce	incomplete	and
untested	code	for	the	new	feature	into	the	deployment	pipeline.	Solving	this
problem	is	the	rationale	for	feature	toggles.

Feature	Toggles
A	feature	toggle	(also	called	a	feature	flag	or	a	feature	switch)	is	an	“if”
statement	around	immature	code.	Listing	5.1	shows	an	example.	A	new	feature
that	is	not	ready	for	testing	or	production	is	disabled	in	the	source	code	itself,	for
example,	by	setting	a	global	Boolean	variable.	Once	the	feature	is	ready,	the
toggle	is	flipped	and	the	respective	code	is	enabled.	Common	practice	places	the
switches	for	features	into	configuration,	which	is	the	subject	of	the	next	section.
Feature	toggling	allows	you	to	continuously	deliver	new	releases,	which	may
include	unfinished	new	features—but	these	do	not	impact	the	application,	since
they	are	still	switched	off.	The	switch	is	toggled	in	production	(i.e.,	the	feature	is
turned	on)	only	once	the	feature	is	ready	to	be	released	and	has	successfully
passed	all	necessary	tests.

LISTING	5.1	Pseudo-code	sample	use	of	feature	toggle

If	(Feature_Toggle)	then

									new	code

					else

									old	code

					end;

We	will	discuss	another	use	for	feature	toggles	in	Chapter	6.
There	are,	however,	certain	dangers	in	feature	toggles.	Recall	the	case	of

Knight	Industries	discussed	in	Chapter	1.	The	issue	that	led	to	a	loss	of	more
than	(US)	$440	million	in	about	45	minutes	included	wrong	treatment	of	a
feature	toggle:	The	name	of	a	toggle	from	years	earlier	was	reused	in	the	latest
version,	but	it	meant	something	else	in	the	previous	version.	Since	one	of	the
production	servers	was	still	running	the	old	version	when	the	toggle	was
switched	on,	(US)	$440	million	was	lost.	Lesson	1:	Do	not	reuse	toggle	names.
Lesson	2:	Integrate	the	feature	and	get	rid	of	the	toggle	tests	as	soon	as	is	timely.
When	there	are	many	feature	toggles,	managing	them	becomes	complicated.	It

would	be	useful	to	have	a	specialized	tool	or	library	that	knows	about	all	of	the
feature	toggles	in	the	system,	is	aware	of	their	current	state,	can	change	their
state,	and	can	eventually	remove	the	feature	toggle	from	your	code	base.

Configuration	Parameters
A	configuration	parameter	is	an	externally	settable	variable	that	changes	the
behavior	of	a	system.	A	configuration	setting	may	be:	the	language	you	wish	to
expose	to	the	user,	the	location	of	a	data	file,	the	thread	pool	size,	the	color	of
the	background	on	the	screen,	or	the	feature	toggle	settings.	As	you	can	see,	the
list	of	potential	configuration	parameters	is	endless.
For	the	purposes	of	this	book,	we	are	interested	in	configuration	settings	that

either	control	the	relation	of	the	system	to	its	environment	or	control	behavior
related	to	the	stage	in	the	deployment	pipeline	in	which	the	system	is	currently
run.
The	number	of	configuration	parameters	should	be	kept	at	a	manageable	level.

More	configuration	parameters	usually	result	in	complex	connections	between
them,	and	the	set	of	compatible	settings	to	several	parameters	will	only	be
known	to	experts	in	the	configuration	of	the	software.	While	flexibility	is	an
admirable	goal,	a	configuration	that	is	too	complex	means	you	are	essentially
creating	a	specialized	programming	language.	For	instance,	the	SAP	Business
Suite	had	tens	of	thousands	of	configuration	parameters	at	one	point.	While	that
flexibility	allows	many	companies	to	use	the	software	in	their	environments,	it
also	implies	that	only	a	team	of	experts	can	make	the	right	settings.
Nowadays	there	are	good	libraries	for	most	programming	languages	to

provide	relatively	robust	configuration	handling.	The	actions	of	these	libraries
include:	checking	that	values	have	been	specified	(or	default	values	are
available)	and	are	in	the	right	format	and	range,	ensuring	that	URLs	are	valid,
and	even	checking	whether	settings	are	compatible	with	multiple	configuration

and	even	checking	whether	settings	are	compatible	with	multiple	configuration
options.
You	can	split	configuration	parameters	into	groups	according	to	usage	time,

for	example,	whether	they	are	considered	at	build	time,	deployment,	startup,	or
runtime.	Any	important	option	should	be	checked	before	its	usage.	URLs	and
other	references	to	external	services	should	be	rechecked	during	startup	to	make
sure	they	are	reachable	from	the	current	environment.
One	decision	to	make	about	configuration	parameters	is	whether	the	values

should	be	the	same	in	the	different	steps	of	the	deployment	pipeline.	If	the
production	system’s	values	are	different,	you	must	also	decide	whether	they
must	be	kept	confidential.	These	decisions	yield	three	categories.

1.	Values	are	the	same	in	multiple	environments.	Feature	toggles	and
performance-related	values	(e.g.,	database	connection	pool	size)	should	be
the	same	in	performance	testing/UAT/staging	and	production,	but	may	be
different	on	local	developer	machines.

2.	Values	are	different	depending	on	the	environment.	The	number	of	virtual
machines	(VMs)	running	in	production	is	likely	bigger	than	that	number
for	the	testing	environments.

3.	Values	must	be	kept	confidential.	The	credentials	for	accessing	the
production	database	or	changing	the	production	infrastructure	must	be	kept
confidential	and	only	shared	with	those	who	need	access	to	them—no
sizeable	organization	can	take	the	risk	that	a	development	intern	walks
away	with	the	customer	data.

Keeping	values	of	configuration	parameters	confidential	introduces	some
complications	to	the	deployment	pipeline.	The	overall	goal	is	to	make	these
values	be	the	current	ones	in	production	but	keep	them	confidential.	One
technique	is	to	give	meta-rights	to	the	deployment	pipeline	and	restrict	access	to
the	pipeline.	When,	for	instance,	a	new	VM	is	deployed	into	production,	the
deployment	pipeline	can	give	it	rights	to	access	a	key	store	with	the	credentials
required	to	operate	in	production.	Another	technique	is	for	the	deployment
pipeline	to	set	the	network	configuration	in	a	virtual	environment	for	a	machine
such	that	it	gets	to	access	the	production	database	servers,	the	production
configuration	server,	and	so	forth,	if	the	machine	is	to	be	part	of	the	production
environment.	In	this	case,	only	the	deployment	pipeline	should	have	the	right	to
create	machines	in	the	production	portion	of	the	network.

Testing	During	Development	and	Pre-commit	Tests
Two	types	of	testing	processes	occur	during	development.	The	first	is	a	design

Two	types	of	testing	processes	occur	during	development.	The	first	is	a	design
philosophy—test-driven	development—and	the	second	is	unit	testing.

	Test-driven	development.	When	following	this	philosophy,	before	writing
the	actual	code	for	a	piece	of	functionality,	you	develop	an	automated	test
for	it.	Then	the	functionality	is	developed,	with	the	goal	of	fulfilling	the
test.	Once	the	test	passes,	the	code	can	be	refactored	to	meet	higher-quality
standards.	A	virtue	of	this	practice	is	that	happy	or	sunny	day	path	tests	are
created	for	all	of	the	code.
	Unit	tests.	Unit	tests	are	code-level	tests,	each	of	which	is	testing
individual	classes	and	methods.	The	unit	test	suite	should	have	exhaustive
coverage	and	run	very	fast.	Typical	unit	tests	check	functionality	that	relies
solely	on	the	code	in	one	class	and	should	not	involve	interactions	with	the
file	system	or	the	database.	A	common	practice	is	to	write	the	code	in	a
way	that	complicated	but	required	artifacts	(such	as	database	connections)
form	an	input	to	a	class—unit	tests	can	provide	mock	versions	of	these
artifacts,	which	require	less	overhead	and	run	faster.

While	these	tests	can	be	run	by	the	developer	at	any	point,	a	modern	practice
is	to	enforce	pre-commit	tests.	These	tests	are	run	automatically	before	a	commit
is	executed.	Typically	they	include	a	relevant	set	of	unit	tests,	as	well	as	a	few
smoke	tests.	Smoke	tests	are	specific	tests	that	check	in	a	fast	(and	incomplete)
manner	that	the	overall	functionality	of	the	service	can	still	be	performed.	The
goal	is	that	any	bugs	that	pass	unit	tests	but	break	the	overall	system	can	be
found	long	before	integration	testing.	Once	the	pre-commit	tests	succeed,	the
commit	is	executed.

5.5	Build	and	Integration	Testing
Build	is	the	process	of	creating	an	executable	artifact	from	input	such	as	source
code	and	configuration.	As	such,	it	primarily	consists	of	compiling	source	code
(if	you	are	working	with	compiled	languages)	and	packaging	all	files	that	are
required	for	execution	(e.g.,	the	executables	from	the	code,	interpretable	files
like	HTML,	JavaScript,	etc.).	Once	the	build	is	complete,	a	set	of	automated
tests	are	executed	that	test	whether	the	integration	with	other	parts	of	the	system
uncovers	any	errors.	The	unit	tests	can	be	repeated	here	to	generate	a	history
available	more	broadly	than	to	a	single	developer.

Build	Scripts
The	build	and	integration	tests	are	performed	by	a	continuous	integration	(CI)
server.	The	input	to	this	server	should	be	scripts	that	can	be	invoked	by	a	single

command.	In	other	words,	the	only	input	from	an	operator	or	the	CI	server	to
create	a	build	is	the	command	“build”;	the	rest	of	the	action	of	the	continuous
integration	server	is	controlled	by	the	scripts.	This	practice	ensures	that	the	build
is	repeatable	and	traceable.	Repeatability	is	achieved	because	the	scripts	can	be
rerun,	and	traceability	is	achieved	because	the	scripts	can	be	examined	to
determine	the	origin	of	the	various	pieces	that	were	integrated	together.

Packaging
The	goal	of	building	is	to	create	something	suitable	for	deployment.	There	are
several	standard	methods	of	packaging	the	elements	of	a	system	for	deployment.
The	appropriate	method	of	packaging	will	depend	on	the	production
environment.	Some	packaging	options	are:

	Runtime-specific	packages,	such	as	Java	archives,	web	application
archives,	and	federal	acquisition	regulation	archives	in	Java,	or	.NET
assemblies.
	Operating	system	packages.	If	the	application	is	packaged	into	software
packages	of	the	target	OS	(such	as	the	Debian	or	Red	Hat	package	system),
a	variety	of	well-proven	tools	can	be	used	for	deployment.
	VM	images	can	be	created	from	a	template	image,	to	include	the	changes
from	the	latest	revision.	Alternatively,	a	new	build	can	be	distributed	to
existing	VMs.	These	options	are	discussed	next.	At	any	rate,	VM	images
can	be	instantiated	for	the	various	environments	as	needed.	One	downside
of	their	use	is	that	they	require	a	compatible	hypervisor:	VMware	images
require	a	VMware	hypervisor;	Amazon	Web	Services	can	only	run
Amazon	Machine	Images;	and	so	forth.	This	implies	that	the	test
environments	must	use	the	same	cloud	service.	If	not,	the	deployment
needs	to	be	adapted	accordingly,	which	means	that	the	deployment	to	test
environments	does	not	necessarily	test	the	deployment	scripts	for
production.
	Lightweight	containers	are	a	new	phenomenon.	Like	VM	images,
lightweight	containers	can	contain	all	libraries	and	other	pieces	of	software
necessary	to	run	the	application,	while	retaining	isolation	of	processes,
rights,	files,	and	so	forth.	In	contrast	to	VM	images,	lightweight	containers
do	not	require	a	hypervisor	on	the	host	machine,	nor	do	they	contain	the
whole	operating	system,	which	reduces	overhead,	load,	and	size.
Lightweight	containers	can	run	on	local	developer	machines,	on	test
servers	owned	by	the	organization,	and	on	public	cloud	resources—but

they	require	a	compatible	operating	system.	Ideally	the	same	version	of	the
same	operating	system	should	be	used,	because	otherwise,	as	before,	the
test	environments	do	not	fully	reflect	the	production	environment.

There	are	two	dominant	strategies	for	applying	changes	in	an	application
when	using	VM	images	or	lightweight	containers:	heavily	baked	versus	lightly
baked	images,	with	a	spectrum	between	the	extreme	ends.	Baking	here	refers	to
the	creation	of	the	image.	Heavily	baked	images	cannot	be	changed	at	runtime.
This	concept	is	also	termed	immutable	servers:	Once	a	VM	has	been	started,	no
changes	(other	than	configuration	values)	are	applied	to	it.	If	the	baking
automatically	takes	place	during	the	build	phase,	then	the	same	server	image	is
used	in	all	subsequent	test	phases	and	at	production.	An	image	that	has	passed
all	tests	gives	a	strong	guarantee:	Minus	some	configuration	values,	the	servers
spun	off	this	image	will	face	the	same	conditions	in	production	as	in	testing.
Heavily	baked	images	do	not	only	encapsulate	changes	to	the	application,	but
also	to	the	installed	packages.	Whenever	changes	to	the	packages	are	required,	a
new	image	is	baked	and	tested.	This	increases	trust	in	the	image	and	removes
uncertainty	and	delay	during	launch/runtime	of	new	VMs,	since	no	software
updates	get	in	the	way	of	either.	Chapter	6	discusses	how	to	roll	out	new
revisions	based	on	heavily	baked	images.
Lightly	baked	images	are	fairly	similar	to	heavily	baked	images,	with	the

exception	that	certain	changes	to	the	instances	are	allowed	at	runtime.	For
example,	it	might	be	overkill	to	bake	a	new	image,	launch	new	VMs	based	on	it,
and	retire	all	existing	VMs	every	time	a	PHP-based	application	changes.	In	this
case	it	should	be	sufficient	to	stop	the	web	application	server,	check	out	the	new
PHP	code	from	version	control,	and	restart	the	web	application	server.	While
doing	so	may	inspire	less	confidence	than	heavily	baked	images,	it	can	be	more
efficient	in	terms	of	time	and	money.
The	artifact	resulting	from	the	build	(e.g.,	a	binary	executable),	which	is	tested

(and	found	to	be	of	acceptable	quality)	should	be	the	one	that	is	deployed	into
production.	In	other	words:	if	your	executable	code	is	in	a	language	that	needs	to
be	compiled,	like	Java,	C,	etc.,	do	not	recompile	after	the	build	phase.	We	have
seen	a	bug	that	depended	on	the	version	of	the	compiler	being	used.	The	bug
existed	in	one	version	of	a	compiler	and	was	repaired	in	the	next	version.
Recompiling	during	passage	through	the	deployment	pipeline	introduces	the
possibility	of	changing	the	behavior	of	the	application	as	a	result	of	a	compiler
bug.
Whatever	packaging	mechanism	is	used,	the	build	step	in	the	deployment

pipeline	should	consist	of	compiling,	packaging	or	baking	an	image,	and
archiving	the	build	in	a	build	repository.

archiving	the	build	in	a	build	repository.

Continuous	Integration	and	Build	Status
Once	building	is	set	up	as	a	script	callable	as	a	single	command,	continuous
integration	can	be	done	as	follows:

	The	CI	server	gets	notified	of	new	commits	or	checks	periodically	for
them.
	When	a	new	commit	is	detected,	the	CI	server	retrieves	it.
	The	CI	server	runs	the	build	scripts.
	If	the	build	is	successful,	the	CI	server	runs	the	automated	tests—as
described	previously	and	in	the	next	section.
	The	CI	server	provides	results	from	its	activities	to	the	development	team
(e.g.,	via	an	internal	web	page	or	e-mail).

An	important	concept	in	CI	is	called	breaking	the	build.	A	commit	is	said	to
break	the	build	if	the	compilation/build	procedure	fails,	or	if	the	automatic	tests
that	are	triggered	by	it	violate	a	defined	range	of	acceptable	values	for	some
metrics.	For	instance,	forgetting	to	add	a	new	file	in	a	commit	but	changing	other
files	that	assume	the	presence	of	a	new	file	will	break	the	build.	Tests	can	be
roughly	categorized	into	critical	(a	single	failure	of	a	test	would	result	in
breaking	the	build)	and	less	critical	(only	a	percentage	of	failed	tests	larger	than
a	set	threshold	would	result	in	breaking	the	build).
All	metrics	can	be	summarized	into	a	binary	result:	Is	your	build	good

(enough)?	(i.e.,	a	nonbroken	or	green	build);	or	is	your	build	not	good	(enough)?
(i.e.,	a	broken	or	red	build).
Breaking	the	build	means	that	other	team	members	on	the	same	branch	can

also	not	build.	Thus,	continuous	integration	testing	is	effectively	shut	down	for
much	of	the	team.	Fixing	the	build	becomes	a	high-priority	item.	Some	teams
have	an	“I	broke	the	build”	hat	that	a	team	member	must	wear	until	the	build	is
fixed	as	a	means	of	emphasizing	the	importance	of	not	breaking	the	build.
Test	status	can	be	shown	in	a	variety	of	ways.	Some	teams	use	electronic

widgets	(such	as	lava	lamps),	or	have	big,	visible	monitors	showing	red/green
lights	for	each	component.	Other	teams	use	desktop	notifications,	particularly
when	they	are	located	at	a	client’s	site,	where	the	client	might	get	nervous	if	a
big	red	light	shows	up.
Finally,	if	your	project	is	split	into	multiple	components,	these	components

can	be	built	separately.	In	version	control,	they	may	be	kept	as	one	source	code

project	or	as	several.	In	either	case,	the	components	can	be	built	separately	into
distinct	executables	(e.g.,	separate	JARs	in	Java).	If	that	is	the	case,	it	makes
sense	to	have	a	dedicated	build	step	that	combines	all	components	into	one
package.	This	adds	flexibility	in	the	deployment	pipeline	(e.g.,	in	how	to
distribute	the	components).	It	also	enables	decentralized	building:	The	CI	server
can	distribute	build	jobs	to	several	machines,	such	as	idle	developer	machines.
However,	one	challenge	of	building	components	separately	is	to	ensure	that	only
compatible	versions	of	the	components	are	deployed.	These	and	related
considerations	will	be	discussed	in	Chapter	6.

Integration	Testing
Integration	testing	is	the	step	in	which	the	built	executable	artifact	is	tested.	The
environment	includes	connections	to	external	services,	such	as	a	surrogate
database.	Including	other	services	requires	mechanisms	to	distinguish	between
production	and	test	requests,	so	that	running	a	test	does	not	trigger	any	actual
transactions,	such	as	production,	shipment,	or	payment.	This	distinction	can	be
achieved	by	providing	mock	services,	by	using	a	test	version	provided	by	the
owner	of	the	service,	or—if	dealing	with	test-aware	components—by	marking
test	messages	as	such	by	using	mechanisms	built	into	the	protocol	used	to
communicate	with	that	service.	If	mock	versions	of	services	are	used,	it	is	good
practice	to	separate	the	test	network	from	the	real	services	(e.g.,	by	firewall
rules)	to	make	absolutely	sure	no	actual	requests	are	sent	by	running	the	tests.
Much	worse	than	breaking	the	build	is	affecting	the	production	database	during
test.	We	return	to	this	topic	when	we	discuss	incidents	in	Section	5.8.
As	with	all	of	the	tests	we	discussed,	integration	tests	are	executed	by	a	test

harness,	and	the	results	of	the	tests	are	recorded	and	reported.

5.6	UAT/Staging/Performance	Testing
Staging	is	the	last	step	of	the	deployment	pipeline	prior	to	deploying	the	system
into	production.	The	staging	environment	mirrors,	as	much	as	possible,	the
production	environment.	The	types	of	tests	that	occur	at	this	step	are	the
following:

	User	acceptance	tests	(UATs)	are	tests	where	prospective	users	work	with
a	current	revision	of	the	system	through	its	UI	and	test	it,	either	according
to	a	test	script	or	in	an	exploratory	fashion.	This	is	done	in	the	UAT
environment,	which	closely	mirrors	production	but	still	uses	test	or	mock
versions	of	external	services.	Furthermore,	some	confidential	data	may	be

removed	or	replaced	in	the	UAT	environment,	where	test	users	or	UAT
operators	do	not	have	sufficient	levels	of	authorization.	UATs	are	valuable
for	aspects	that	are	hard	or	impossible	to	automate,	such	as	consistent	look
and	feel,	usability,	or	exploratory	testing.
	Automated	acceptance	tests	are	the	automated	version	of	repetitive	UATs.
Such	tests	control	the	application	through	the	UI,	trying	to	closely	mirror
what	a	human	user	would	do.	Automation	takes	some	load	off	the	UATs,
while	ensuring	that	the	interaction	is	done	in	exactly	the	same	way	each
time.	As	such,	automated	acceptance	tests	enable	a	higher	rate	of	repetition
than	is	possible	with	relatively	expensive	human	testers,	at	odd	times	of
the	day	or	night.	Due	to	the	relatively	high	effort	to	automate	acceptance
tests,	they	are	often	done	only	for	the	most	important	checks,	which	need
to	be	executed	repetitively	and	are	unlikely	to	require	a	lot	of	maintenance.
Typically	these	tests	are	specified	in	and	executed	by	specialized	test
suites,	which	should	not	trip	over	minor	changes	in	the	UI,	such	as	moving
a	button	a	few	pixels	to	the	right.	Automated	acceptance	tests	are	relatively
slow	to	execute	and	require	proper	setup.
	Smoke	tests,	mentioned	earlier,	are	a	subset	of	the	automated	acceptance
tests	that	are	used	to	quickly	analyze	if	a	new	commit	breaks	some	of	the
core	functions	of	the	application.	The	name	is	believed	to	have	originated
in	plumbing:	A	closed	system	of	pipes	is	filled	with	smoke,	and	if	there	are
any	leaks,	it	is	easy	to	detect	them.	One	rule	of	thumb	is	to	have	a	smoke
test	for	every	user	story,	following	the	happy	path	in	it.	Smoke	tests	should
be	implemented	to	run	relatively	fast,	so	that	they	can	be	run	even	as	part
of	the	pre-commit	tests.
	Nonfunctional	tests	test	aspects	such	as	performance,	security,	capacity,
and	availability.	Proper	performance	testing	requires	a	suitable	setup,	using
resources	comparable	to	production	and	very	similar	every	time	the	tests
are	run.	This	ensures	that	changes	from	the	application,	not	background
noise,	are	measured.	As	with	the	setup	of	other	environments,
virtualization	and	cloud	technology	make	things	easier.	However,
especially	when	it	comes	to	public	cloud	resources,	one	needs	to	be	careful
in	that	regard	because	public	clouds	often	exhibit	performance	variability.

5.7	Production
Deploying	a	system	to	production	does	not	mean	that	observing	its	behavior	or
running	tests	is	completed.	We	discuss	early	release	testing,	error	detection,	and
live	testing.

live	testing.

Early	Release	Testing
There	are	several	forms	of	early	release	testing.	Chapter	6	discusses	how	to
release	the	application	to	achieve	early	release	testing;	here	we	focus	on	the
testing	method.

	The	most	traditional	approach	is	a	beta	release:	A	selected	few	users,	often
subscribed	to	a	beta	program,	are	given	access	to	a	prerelease	(beta)
version	of	the	application.	Beta	testing	is	primarily	used	for	on-premises
use	of	software.
	Canary	testing	is	a	method	of	deploying	the	new	version	to	a	few	servers
first,	to	see	how	they	perform.	It	is	the	cloud	equivalent	of	beta	testing.
Analogous	to	using	canary	birds	in	underground	coal	mining,	where
distress	signals	from	the	birds	indicated	the	presence	of	toxic	gases,	these
first	few	servers	are	monitored	closely	to	detect	undesired	effects	from	the
upgrade.	One	(or	a	few)	of	the	application	servers	are	upgraded	from	the
current	version	to	a	stable	and	well-tested	release	candidate	version	of	the
application.	Load	balancers	direct	a	small	portion	of	the	user	requests	to
the	candidate	version,	while	monitoring	is	ongoing.	If	the	candidate	servers
are	acceptable	in	terms	of	some	metrics	(e.g.,	performance,	scalability,
number	of	errors,	etc.)	the	candidate	version	is	rolled	out	to	all	servers.
	A/B	testing	is	similar	to	canary	testing,	except	that	the	tests	are	intended	to
determine	which	version	performs	better	in	terms	of	certain	business-level
key	performance	indicators.	For	example,	a	new	algorithm	for
recommending	products	may	increase	revenue,	or	UI	changes	may	lead	to
more	click-throughs.

Error	Detection
Even	systems	that	have	passed	all	of	their	tests	may	still	have	errors.	These
errors	can	be	either	functional	or	nonfunctional.	Techniques	used	to	determine
nonfunctional	errors	include	monitoring	of	the	system	for	indications	of	poor
behavior.	This	can	consist	of	monitoring	the	timing	of	the	response	to	user
requests,	the	queue	lengths,	and	so	forth.	Netflix	reports	they	have	95	different
metrics	that	they	monitor	and	compare	with	historical	data.	Deviations	from	the
historical	data	trigger	alerts	to	the	operator,	the	developers,	or	both.
Once	an	alert	has	been	raised,	tracking	and	finding	its	source	can	be	quite

difficult.	Logs	produced	by	the	system	are	important	in	enabling	this	tracking.
We	discuss	this	in	Chapter	7,	but	for	the	purposes	of	this	chapter,	it	is	important

that	the	provenance	of	the	software	causing	the	alert	and	the	user	requests	that
triggered	the	alert	all	can	be	easily	obtained.	Enabling	the	diagnosis	of	errors	is
one	of	the	reasons	for	the	emphasis	on	using	automated	tools	that	maintain
histories	of	their	activities.
In	any	case,	once	the	error	is	diagnosed	and	repaired,	the	cause	of	the	error

can	be	made	one	of	the	regression	tests	for	future	releases.

Live	Testing
Monitoring	is	a	passive	form	of	testing.	That	is,	the	systems	run	in	their	normal
fashion	and	data	is	gathered	about	their	behavior	and	performance.	Another	form
of	testing	after	the	system	has	been	placed	in	production	is	to	actually	perturb	the
running	system.	This	form	is	called	live	testing.	Netflix	has	a	set	of	test	tools
called	the	Simian	Army.	The	elements	of	the	Simian	Army	are	both	passive	and
active.	The	passive	elements	examine	running	instances	to	determine	unused
resources,	expired	certificates,	health	checks	on	instances,	and	adherence	to	best
practices.
The	active	elements	of	the	Simian	Army	inject	particular	types	of	errors	into

the	production	system.	For	example,	the	Chaos	Monkey	kills	active	VMs	at
random.	Recall	in	Chapter	2	that	we	discussed	the	fact	that	failure	is	common	in
the	cloud.	If	a	physical	server	fails	then	all	of	the	VMs	hosted	on	that	machine
abruptly	terminate.	Consequently,	applications	should	be	resilient	to	that	type	of
failure.	The	Chaos	Monkey	simulates	that	type	of	failure.	An	instance	is	killed,
and	overall	metrics	such	as	response	time	are	monitored	to	ensure	that	the
system	is	not	affected	by	that	failure.	Of	course,	you	would	not	want	to	kill	too
many	instances	at	once.
Another	active	element	of	the	Simian	Army	is	the	Latency	Monkey.	The

Latency	Monkey	injects	delays	into	messages.	Networks	become	busy	and	are
unexpectedly	slow.	The	Latency	Monkey	simulates	slow	networks	by	artificially
delaying	messages	from	one	service	to	another.	As	with	the	Chaos	Monkey,	this
testing	is	done	carefully	to	avoid	impacting	customers.

5.8	Incidents
No	matter	how	well	you	test	or	organize	a	deployment,	errors	will	exist	once	a
system	gets	into	production.	Understanding	potential	causes	of	post-deployment
errors	helps	to	more	quickly	diagnose	problems.	We	do	not	have	a	taxonomy	or
relative	frequency	of	various	types	of	post-deployment	errors.	What	we	have
instead	are	several	anecdotes	we	have	heard	from	IT	professionals.

	A	developer	connected	test	code	to	a	production	database.	We	have	heard
this	example	multiple	times.	One	time	it	was	an	inexperienced	developer,
and	another	time	it	was	a	developer	who	opened	an	SSH	through	a	tunnel
into	the	production	environment.
	Version	dependencies	existing	among	the	components.	When
dependencies	exist	among	components,	the	order	of	deployment	becomes
important	and	it	is	possible	if	the	order	is	incorrect	that	errors	will	result.
In	Chapter	6,	we	discuss	the	use	of	feature	toggles	to	avoid	this	problem.
	A	change	in	a	dependent	system	coincided	with	a	deployment.	For
instance,	a	dependent	system	removed	a	service	on	which	an	application
depended,	and	this	removal	happened	after	all	of	the	staging	tests	had	been
passed.	The	discussion	about	“baking”	in	this	chapter	relates	to	this
problem.	If	the	dependent	system	had	been	baked	into	an	image	then
subsequent	changes	to	it	would	not	have	been	incorporated.	If	the
dependent	system	is	external	to	the	image	then	the	characteristics	of
building	an	executable	image	will	not	affect	the	occurrence	of	this	error.
	Parameters	for	dependent	systems	were	set	incorrectly.	That	is,	queues
overflowed	or	resources	were	exhausted	in	dependent	systems.	Adjusting
the	configurations	for	the	dependent	systems	and	adding	monitoring	rules
were	the	fixes	adopted	by	the	affected	organization.

5.9	Summary
Having	an	appropriate	deployment	pipeline	is	essential	for	rapidly	creating	and
deploying	systems.	The	pipeline	has	at	least	five	major	steps—pre-commit,	build
and	integration	testing,	UAT/staging/performance	tests,	production,	and
promoting	to	normal	production.
Each	step	operates	within	a	different	environment	and	with	a	set	of	different

configuration	parameter	values—although	this	set	should	be	limited	in	size	as
much	as	possible.	As	the	system	moves	through	the	pipeline,	you	can	have
progressively	more	confidence	in	its	correctness.	Even	systems	promoted	to
normal	production,	however,	can	have	errors	and	can	be	improved	from	the
perspective	of	performance	or	reliability.	Live	testing	is	a	mechanism	to
continue	to	test	even	after	placing	a	system	in	production	or	promoting	it	to
normal	production.
Feature	toggles	are	used	to	make	code	inaccessible	during	production.	They

allow	incomplete	code	to	be	contained	in	a	committed	module.	They	should	be
removed	when	no	longer	necessary	because	otherwise	they	clutter	the	code	base;

also,	repurposed	feature	toggles	can	cause	errors.
Tests	should	be	automated,	run	by	a	test	harness,	and	report	results	back	to	the

development	team	and	other	interested	parties.	Many	incidents	after	placing	a
system	in	production	are	caused	by	either	developer	or	configuration	errors.
An	architect	involved	in	a	DevOps	project	should	ensure	the	following:
	The	various	tools	and	environments	are	set	up	to	enable	their	activities	to
be	traceable	and	repeatable.
	Configuration	parameters	should	be	organized	based	on	whether	they	will
change	for	different	environments	and	on	their	confidentiality.
	Each	step	in	the	deployment	pipeline	has	a	collection	of	automated	tests
with	an	appropriate	test	harness.
	Feature	toggles	are	removed	when	the	code	they	toggle	has	been	placed
into	production	and	been	judged	to	be	successfully	deployed.

5.10	For	Further	Reading
For	a	more	detailed	discussion	of	many	of	the	issues	covered	in	the	chapter,	see
the	book:	Continuous	Delivery:	Reliable	Software	Releases	through	Build,	Test,
and	Deployment	Automation	[Humble	10].
Carl	Caum	discusses	the	difference	between	continuous	delivery	and

continuous	deployment	in	his	blog	[Puppet	Labs	13].
Much	of	the	basic	conceptual	information	in	this	chapter	comes	from

Wikipedia.
	Revision	control	systems	are	discussed	in	general	at
http://en.wikipedia.org/wiki/Revision_control.	Specific	systems	such	as
Git	have	their	own	entries.
	Test	harnesses	are	discussed	in	http://en.wikipedia.org/wiki/Test_harness
	Regression	testing	is	discussed	in
http://en.wikipedia.org/wiki/Regression_testing
	Different	types	of	types	of	environments	(or	server	tiers)	are	listed	in
http://en.wikipedia.org/wiki/Development_environment

Paul	Hammant	discusses	branch	versus	trunk-based	approaches	in	[DZone
13].
The	argument	between	heavily	baked	and	lightly	baked	images	can	be

sampled	at	[Gillard-Moss	13]
The	topic	of	performance	variation	in	public	clouds	has	been	investigated	in

http://en.wikipedia.org/wiki/Revision_control
http://en.wikipedia.org/wiki/Test_harness
http://en.wikipedia.org/wiki/Regression_testing
http://en.wikipedia.org/wiki/Development_environment

several	scientific	publications,	such	as	“Runtime	Measurements	in	the	Cloud:
Observing,	Analyzing,	and	Reducing	Variance”	[Schad	10].
The	Simian	Army	is	defined	and	discussed	in	[Netflix	15].

6.	Deployment

Error	Code	725:	It	works	on	my	machine.
—RFC	for	HTTP	Status	Code	7XX:	Developer	Errors

6.1	Introduction
Deployment	is	the	process	of	placing	a	version	of	a	service	into	production.	The
initial	deployment	of	a	service	can	be	viewed	as	going	from	no	version	of	the
service	to	the	initial	version	of	the	service.	Because	an	initial	deployment
happens	only	once	for	most	systems	and	new	versions	happen	frequently,	we
discuss	upgrading	a	service	in	this	chapter.	If	it	is	the	initial	version	then	some	of
the	issues	we	discuss	(such	as	downtime	of	the	currently	deployed	version)	are
not	relevant.	The	overall	goal	of	a	deployment	is	to	place	an	upgraded	version	of
the	service	into	production	with	minimal	impact	to	the	users	of	the	system,	be	it
through	failures	or	downtime.
There	are	three	reasons	for	changing	a	service—to	fix	an	error,	to	improve

some	quality	of	the	service,	or	to	add	a	new	feature.	For	simplicity	in	our	initial
discussion,	we	assume	that	deployment	is	an	all-or-nothing	process—at	the	end
of	the	deployment	either	all	of	the	virtual	machines	(VMs)	running	a	service
have	had	the	upgraded	version	deployed	or	none	of	them	have.	Later	in	this
chapter,	we	see	that	there	are	places	for	partial	deployments,	but	we	defer	this
discussion	for	now.
Figure	6.1	shows	the	situation	with	which	we	are	concerned.	This	is	a

refinement	of	Figure	4.1	where	microservice	3	is	being	upgraded	(shown	in	dark
gray).	Microservice	3	depends	on	microservices	4	and	5,	and	microservices	1
and	2	(i.e.,	clients	of	microservice	3)	depend	on	it.	For	now,	we	assume	that	any
VM	runs	exactly	one	service.	This	assumption	allows	us	to	focus	on	services—
their	design	and	their	relationships—and	to	equate	deployment	of	services	with
deployment	of	VMs.	We	discuss	other	options	later	in	this	chapter.

FIGURE	6.1	Microservice	3	is	being	upgraded.	(Adapted	from	Figure	4.1.)
[Notation:	Architecture]

Figure	6.1	also	shows	the	multiple	VMs	on	which	the	service	is	running.	The
number	of	VMs	for	a	particular	service	depends	on	the	workload	experienced	by
that	service	and	may	grow	into	the	hundreds	or	even	thousands	for	VMs	that
must	provide	for	many	clients.	Each	active	VM	has	a	single	version	of	the
service	being	deployed,	but	not	all	VMs	may	be	executing	the	same	version.
The	goal	of	a	deployment	is	to	move	from	the	current	state	that	has	N	VMs	of

the	old	version,	A,	of	a	service	executing,	to	a	new	state	where	there	are	N	VMs
of	the	new	version,	B,	of	the	same	service	in	execution.

6.2	Strategies	for	Managing	a	Deployment
There	are	two	popular	strategies	for	managing	a	deployment—blue/green
deployment	and	rolling	upgrade.	They	differ	in	terms	of	costs	and	complexity.
The	cost	may	include	both	that	of	the	VM	and	the	licensing	of	the	software
running	inside	the	VM.	Before	we	discuss	these	strategies	in	more	detail,	we

need	to	make	the	following	two	assumptions:
1.	Service	to	the	clients	should	be	maintained	while	the	new	version	is	being
deployed.	Maintaining	service	to	the	clients	with	no	downtime	is	essential
for	many	Internet	e-commerce	businesses.	Their	customers	span	the	globe
and	expect	to	be	able	to	transact	business	around	the	clock.	Certainly,
some	periods	of	a	day	are	going	to	be	busier	than	others,	but	service	must
be	available	at	all	times.	Organizations	that	have	customers	primarily
localized	in	one	geographic	area	can	afford	scheduled	downtime—but	why
have	downtime	if	it	is	avoidable?	Scheduled	off-hours	during	downtime
requires	system	administrators	and	operators	to	work	in	the	off-hours.	This
is	another	reason	to	avoid	downtime.

2.	Any	development	team	should	be	able	to	deploy	a	new	version	of	their
service	at	any	time	without	coordinating	with	other	teams.	This	may
certainly	have	an	impact	on	client	services	developed	by	other	teams.	We
have	previously	discussed	the	relationship	between	synchronous
coordination	of	development	teams	and	the	time	to	release	new	features.
Allowing	a	development	team	or	individual	developer	to	release	a	new
version	of	their	service	without	coordinating	with	teams	developing	client
services	removes	one	cause	for	synchronous	coordination.	It	may,
however,	cause	logical	problems,	which	we	discuss	in	Section	6.3.

In	addition,	the	placement	of	a	new	VM	with	a	version	into	production	takes
time.	In	order	to	place	an	upgraded	VM	of	a	service	into	production,	the	new
version	must	be	loaded	onto	a	VM	and	be	initialized	and	integrated	into	the
environment,	sometimes	with	dependency	on	placements	of	some	other	services
first.	This	can	take	on	the	order	of	minutes.	Consequently,	depending	on	how
parallel	some	actions	can	be	and	their	impact	on	the	system	still	serving	clients,
the	upgrade	of	hundreds	or	thousands	of	VMs	can	take	hours	or,	in	extreme
cases,	even	days.

Blue/Green	Deployment
A	blue/green	deployment	(sometimes	called	big	flip	or	red/black	deployment)
consists	of	maintaining	the	N	VMs	containing	version	A	in	service	while
provisioning	N	VMs	of	virtual	machines	containing	version	B.	Once	N	VMs
have	been	provisioned	with	version	B	and	are	ready	to	service	requests,	then
client	requests	can	be	routed	to	version	B.	This	is	a	matter	of	instructing	the
domain	name	server	(DNS)	or	load	balancer	to	change	the	routing	of	messages.
This	routing	switch	can	be	done	in	a	single	stroke	for	all	requests.	After	a

supervisory	period,	the	N	VMs	provisioned	with	version	A	are	removed	from	the
system.	If	anything	goes	wrong	during	the	supervisory	period,	the	routing	is
switched	back,	so	that	the	requests	go	to	the	VMs	running	version	A	again.	This
strategy	is	conceptually	simple,	but	expensive	in	terms	of	both	VM	and	software
licensing	costs.	Long-running	requests	and	stateful	data	during	the	switch-over
and	rollback	require	special	care.
The	provisioning	of	the	N	VMs	containing	version	B	prior	to	terminating	all

version	A	VMs	is	the	source	of	the	cost.	First,	the	new	VMs	must	all	be
provisioned.	The	provisioning	can	be	done	in	parallel,	but	the	total	time	for
provisioning	hundreds	of	VMs	can	still	be	time-consuming.	There	will	be	an
additional	N	VMs	allocated	beyond	what	is	necessary	to	provide	service	to
clients	for	the	duration	of	the	whole	process,	including	initial	provisioning	of
version	B	and	the	supervisory	time	after	fully	switching	to	version	B.	For	this
period	of	time,	therefore,	the	VM-based	cost	doubles.
A	variation	of	this	model	is	to	do	the	traffic	switching	gradually.	A	small

percentage	of	requests	are	first	routed	to	version	B,	effectively	conducting	a
canary	test.	We	mentioned	canary	testing	in	Chapter	5	and	discuss	it	in	more
detail	in	the	section	“Canary	Testing.”	If	everything	goes	well	for	a	while,	more
version	B	VMs	can	be	provisioned	and	more	requests	can	be	routed	to	this	pool
of	VMs,	until	all	requests	are	routed	to	version	B.	This	increases	confidence	in
your	deployment,	but	also	introduces	a	number	of	consistency	issues.	We
discuss	these	issues	in	Section	6.3.

Rolling	Upgrade
A	rolling	upgrade	consists	of	deploying	a	small	number	of	version	B	VMs	at	a
time	directly	to	the	current	production	environment,	while	switching	off	the
same	number	of	VMs	running	version	A.	Let	us	say	we	deploy	one	version	B
VM	at	a	time.	Once	an	additional	version	B	VM	has	been	deployed	and	is
receiving	requests,	one	version	A	VM	is	removed	from	the	system.	Repeating
this	process	N	times	results	in	a	complete	deployment	of	version	B.	This	strategy
is	inexpensive	but	more	complicated.	It	may	cost	a	small	number	of	additional
VMs	for	the	duration	of	the	deployment,	but	again	introduces	a	number	of	issues
of	consistency	and	more	risks	in	disturbing	the	current	production	environment.
Figure	6.2	provides	a	representation	of	a	rolling	upgrade	within	the	Amazon

cloud.	Each	VM	(containing	exactly	one	service	for	the	moment)	is
decommissioned	(removed,	deregistered	from	the	elastic	load	balancer	(ELB),
and	terminated)	and	then	a	new	VM	is	started	and	registered	with	the	ELB.	This

process	continues	until	all	of	the	VMs	containing	version	A	have	been	replaced
with	VMs	containing	version	B.	The	additional	cost	of	a	rolling	upgrade	can	be
low	if	you	conduct	your	rolling	upgrade	when	your	VMs	are	not	fully	utilized,
and	your	killing	of	one	or	a	small	number	of	VMs	at	a	time	still	maintains	your
expected	service	level.	It	may	cost	a	bit	if	you	add	a	small	number	of	VMs
before	you	start	the	rolling	upgrade	to	mitigate	the	performance	impact	and	risk
of	your	rolling	upgrade.

FIGURE	6.2	Representation	of	a	rolling	upgrade	[Notation:	BPMN]

During	a	rolling	upgrade,	one	subset	of	the	VMs	is	providing	service	with
version	A,	and	the	remainder	of	the	VMs	are	providing	service	with	version	B.
This	creates	the	possibility	of	failures	as	a	result	of	mixed	versions.	We	discuss
this	type	of	failure	in	the	next	section.

6.3	Logical	Consistency
Assuming	that	the	deployment	is	done	using	a	rolling	upgrade	introduces	one
type	of	logical	inconsistency—multiple	versions	of	the	same	service	will	be
simultaneously	active.	This	may	also	happen	with	those	variants	of	the
blue/green	deployment	that	put	new	versions	into	service	prior	to	the	completion
of	the	deployment.
Revisiting	Figure	6.1	and	assuming	that	a	service	is	being	deployed	without

synchronous	coordination	with	its	client	or	dependent	services,	we	can	see	a
second	possible	source	of	logical	inconsistency—inconsistency	in	functionality
between	a	service	and	its	clients.
A	third	source	of	logical	inconsistency	is	inconsistency	between	a	service	and

data	kept	in	a	database.
We	now	discuss	these	three	types	of	inconsistencies.

Multiple	Versions	of	the	Same	Service	Simultaneously
Active
Figure	6.3	shows	an	instance	of	an	inconsistency	because	of	two	active	versions
of	the	same	service.	Two	components	are	shown—the	client	and	two	versions
(versions	A	and	B)	of	a	service.	The	client	sends	a	message	that	is	routed	to
version	B.	Version	B	performs	its	actions	and	returns	some	state	to	the	client.
The	client	then	includes	that	state	in	its	next	request	to	the	service.	The	second
request	is	routed	to	version	A,	and	this	version	does	not	know	what	to	make	of
the	state,	because	the	state	assumes	version	B.	Therefore,	an	error	occurs.	This
problem	is	called	a	mixed-version	race	condition.

FIGURE	6.3	Mixed-version	race	condition,	leading	to	an	error	[Notation:
UML	Sequence	Diagram]

Several	different	techniques	exist	to	prevent	this	situation.
	Make	the	client	version	aware	so	that	it	knows	that	its	initial	request	was
serviced	by	a	version	B	VM.	Then	it	can	require	its	second	request	to	be
serviced	by	a	version	B	VM.	In	Chapter	4,	we	described	how	a	service	is
registered	with	a	registry/load	balancer.	This	registration	can	contain	the
version	number.	The	client	can	then	request	a	specific	version	of	the
service.	Response	messages	from	the	service	should	contain	a	tag	so	that
the	client	is	aware	of	the	version	of	the	service	with	which	it	has	just
interacted.
	Toggle	the	new	features	contained	in	version	B	and	the	client	so	that	only
one	version	is	offering	the	service	at	any	given	time.	More	details	are
given	below.
	Make	the	services	forward	and	backward	compatible,	and	enable	the
clients	to	recognize	when	a	particular	request	has	not	been	satisfied.	Again,
more	details	are	given	below.

These	options	are	not	mutually	exclusive.	That	is,	you	can	use	feature	toggles
within	a	backward	compatible	setting.	Suppose	for	example,	you	make	a	major
reorganization	of	a	service	and	add	new	features	to	it.	Within	a	rolling	upgrade
you	will	have	installed	some	VMs	of	the	new	version	with	its	reorganization
while	still	not	having	activated	the	new	features.	This	requires	the	new	version	to
be	backward	compatible.

be	backward	compatible.
We	begin	by	discussing	feature	toggling.	Feature	toggling	was	introduced	in

Chapter	5	as	a	means	for	deploying	partially	completed	code	without	it
impacting	the	testing	process.	Here	we	use	the	same	mechanism	for	activating
new	capabilities	in	an	upgrade.

Feature	Toggling
If	services	are	developed	by	a	single	small	team,	the	features	of	the	services	will
be	limited.	This	means	that	features	are	likely	to	span	multiple	services.	In	turn,
this	means	that	you	must	coordinate	the	activation	of	the	feature	in	two
directions.	First,	all	of	the	VMs	for	the	service	you	just	deployed	must	have	the
service’s	portion	of	the	feature	activated.	And	second,	all	of	the	services
involved	in	implementing	the	feature	must	have	their	portion	of	the	feature
activated.
Feature	toggles,	as	described	in	Chapter	5,	can	be	used	to	control	whether	a

feature	is	activated.	A	feature	toggle,	to	repeat,	is	a	piece	of	code	within	an	if
statement	where	the	if	condition	is	based	on	an	externally	settable	feature
variable.	Using	this	technique	means	that	the	problems	associated	with
activating	a	feature	are	(a)	determining	that	all	services	involved	in
implementing	a	feature	have	been	sufficiently	upgraded	and	(b)	activating	the
feature	in	all	of	the	VMs	of	these	services	at	the	same	time.
Both	of	these	problems	are	examples	of	synchronizing	across	the	elements	of

a	distributed	system.	The	primary	modern	methods	for	performing	such
synchronization	are	based	on	the	Paxos	or	ZAB	algorithms.	These	algorithms	are
difficult	to	implement	correctly.	However,	standard	implementations	are
available	in	systems	such	as	ZooKeeper,	which	are	not	difficult	to	use.
Let	us	look	at	how	this	works	from	the	service’s	perspective.	For	simplicity	of

description,	we	assume	the	service	being	deployed	implements	a	portion	of	a
single	feature,	Feature	X.	When	a	VM	of	the	service	is	deployed,	it	registers
itself	as	being	interested	in	FeatureXActivationFlag.	If	the	flag	is	false,	then	the
feature	is	toggled	off;	if	the	flag	is	true,	the	feature	is	toggled	on.	If	the	state	of
the	FeatureXActivationFlag	changes,	then	the	VM	is	informed	of	this	and	reacts
accordingly.
An	agent	external	to	any	of	the	services	in	the	system	being	upgraded	is

responsible	for	setting	FeatureXActivationFlag.	This	agent	can	be	a	human
gatekeeper,	or	it	can	be	automated.	The	flag	is	maintained	in	ZooKeeper	and
thus	kept	consistent	across	the	VMs	involved.	As	long	as	all	of	the	VMs	are
informed	simultaneously	of	the	toggling,	then	the	feature	is	activated

simultaneously	and	there	is	no	version	inconsistency	that	could	lead	to	failures.
The	simultaneous	information	broadcast	is	performed	by	ZooKeeper.	This
particular	use	of	ZooKeeper	for	feature	toggling	is	often	implemented	in	other
tools.	For	example,	Netflix’s	Archaius	tool	provides	configuration	management
for	distributed	systems.	The	configuration	being	managed	can	be	feature	toggles
or	any	other	property.
The	agent	is	aware	of	the	various	services	implementing	Feature	X	and	does

not	activate	the	feature	until	all	of	these	services	have	been	upgraded.	Thus,
there	is	no	requirement	that	the	services	involved	be	upgraded	in	any	particular
order	or	even	in	temporal	proximity	to	each	other.	It	could	be	a	matter	of	days	or
even	weeks	before	all	of	the	services	involved	have	been	modified	to	implement
Feature	X.
One	complication	comes	from	deciding	when	the	VMs	have	been	“sufficiently

upgraded.”	VMs	may	fail	or	become	unavailable.	Waiting	for	these	VMs	to	be
upgraded	before	activating	the	feature	is	not	desirable.	The	use	of	a	registry/load
balancer	as	described	in	Chapter	4	enables	the	activation	agent	to	avoid	these
problems.	Recall	that	each	VM	must	renew	its	registration	periodically	to
indicate	that	it	is	still	active.	The	activation	agent	examines	the	relevant	VMs
that	are	registered	to	determine	when	all	VMs	of	the	relevant	services	have	been
upgraded	to	the	appropriate	versions.

Backward	and	Forward	Compatibility
Using	feature	toggles	to	coordinate	the	various	services	involved	in	a	new
feature	is	one	option	for	preventing	failures	as	a	result	of	multiple	versions.
Another	option	is	to	ensure	forward	and	backward	compatibility	of	services.

	A	service	is	backward	compatible	if	the	new	version	of	the	service	behaves
as	the	old	version.	For	requests	that	are	known	to	the	old	version	of	a
service,	the	new	version	provides	the	same	behavior.	In	other	words,	the
external	interfaces	provided	by	version	B	of	a	service	are	a	superset	of	the
external	interfaces	provided	by	version	A	of	that	service.
	Forward	compatibility	means	that	a	client	deals	gracefully	with	error
responses	indicating	an	incorrect	method	call.	Suppose	a	client	wishes	to
utilize	a	method	that	will	be	available	in	version	B	of	a	service	but	the
method	is	not	present	in	version	A.	Then	if	the	service	returns	an	error
code	indicating	it	does	not	recognize	the	method	call,	the	client	can	infer
that	it	has	reached	version	A	of	the	service.

Requiring	backward	compatibility	might	seem	at	first	to	preclude	many

changes	to	a	service.	If	you	cannot	change	an	interface,	how	can	you	add	new
features	or,	for	example,	refactor	your	service?	In	fact,	maintaining	backward
compatibility	can	be	done	using	the	pattern	depicted	in	Figure	6.4.

FIGURE	6.4	Maintaining	backward	compatibility	for	service	interfaces
[Notation:	Architecture]

The	service	being	upgraded	makes	a	distinction	between	internal	and	external
interfaces.	External	interfaces	include	all	of	the	existing	interfaces	from	prior
versions	as	well	as,	possibly,	new	ones	added	with	this	version.	Internal
interfaces	can	be	restructured	with	every	version.	In-between	the	external
interfaces	and	the	internal	interfaces	is	a	translation	layer	that	maps	the	old
interfaces	to	the	new	ones.	As	far	as	a	client	is	concerned,	the	old	interfaces	are
still	available	for	the	new	version.	If	a	client	wishes	to	use	a	new	feature,	then	a
new	interface	is	available	for	that	feature.
One	consequence	of	using	this	pattern	is	that	obsolete	interfaces	may	be

maintained	beyond	the	point	where	any	clients	use	them.	Determining	which
clients	use	which	interfaces	can	be	done	through	monitoring	and	recording	all
service	invocations.	Once	there	are	no	usages	for	a	sufficiently	long	time,	the
interface	can	be	deprecated.	The	deprecating	of	an	interface	may	result	in
additional	maintenance	work,	so	it	should	not	be	done	lightly.
Forward	and	backward	compatibility	allows	for	independent	upgrade	for

services	under	your	control.	Not	all	services	will	be	under	your	control.	In
particular,	third-party	services,	libraries,	or	legacy	services	may	not	be	backward
compatible.	In	this	case,	there	are	several	techniques	you	can	use,	although	none
of	them	are	foolproof.

	Discovery.	In	Chapter	4,	we	described	how	services	register	so	that	clients
can	find	them.	This	registration	should	involve	the	version	number	of	the
service.	The	clients	can	request	that	they	be	connected	to	particular
versions	of	services	or	versions	satisfying	some	constraint.	If	no	existing

service	satisfies	the	constraint	then	the	client	either	executes	a	fall-back
action	or	reports	failure.	This	requires	the	client	to	be	aware	of	the	version
of	the	service	that	they	require	and	that	the	service	conforms	to	the
architecture	by	registering	its	version	number.	There	is	an	ongoing
discussion	in	the	standards	community	as	to	whether	version	numbers
should	be	included	as	a	portion	of	service	interfaces.
	Exploration.	Discovery	assumes	that	a	service	registers	with	a	registry.
Libraries	and	many	third-party	software	systems	do	not	perform	such	a
registration.	In	this	case,	using	introspection	on	the	library	or	third-party
system	enables	the	client	to	determine	the	version	number.	Introspection
requires	that	the	library	or	third-party	software	makes	their	version	number
accessible	at	runtime,	either	through	an	interface	or	through	other
mechanisms	such	as	recording	the	version	number	on	a	file.	Introspection
also	assumes	that	the	client	is	aware	of	the	version	of	the	service	that	it
requires.
	Portability	layer.	Figure	6.5	shows	the	concept	of	a	portability	layer.	A
portability	layer	provides	a	single	interface	that	can	be	translated	into	the
interfaces	for	a	variety	of	similar	systems.	This	technique	has	been	used	to
port	applications	to	different	operating	systems,	to	allow	multiple	different
devices	to	look	identical	from	the	application	perspective,	or	to	allow	for
the	substitution	of	different	database	systems.	In	Chapter	4,	we	identified
the	requirement	that	interactions	with	external	systems	from	a	component
be	localized	into	a	single	module.	This	module	acts	as	a	portability	layer.
One	requirement	is	that	the	interface	defined	for	the	portability	layer	be
adequate	to	manage	all	versions	of	the	external	system.	Two	variants	of
this	pattern	exist	depending	on	whether	the	two	versions	of	the	external
system	need	to	coexist.	If	the	two	versions	need	to	coexist,	the	portability
layer	must	decide	at	runtime	which	version	of	the	external	system	to	use
and	the	service	must	provide	some	basis	to	allow	the	portability	layer	to
choose.	Managing	devices	with	different	protocols	falls	into	this	category.
If	the	two	versions	do	not	need	to	coexist,	then	the	decision	can	be	made	at
build	time	and	the	correct	version	of	the	portability	layer	can	be
incorporated	into	the	service.	Figure	6.5	shows	the	two	versions
coexisting.

FIGURE	6.5	Portability	layer	with	two	versions	of	the	external	system
coexisting	[Notation:	Architecture]

Compatibility	with	Data	Kept	in	a	Database
In	addition	to	maintaining	compatibility	among	the	various	services,	some
services	must	also	be	able	to	read	and	write	to	a	database	in	a	consistent	fashion.
Suppose,	for	example,	that	the	data	schema	changes:	In	the	old	version	of	the
schema,	there	is	one	field	for	customer	address;	in	the	new	version,	the	address
is	broken	into	street,	city,	postal	code,	and	country.	Inconsistency,	in	this	case,
might	mean	that	a	service	intends	to	write	the	address	as	a	single	field	using	the
schema	that	has	the	address	broken	into	portions.	Inconsistencies	are	triggered
by	a	change	in	the	database	schema.	Note	that	a	schema	can	be	either	explicit
such	as	in	relational	database	management	systems	(RDBMSs)	or	implicit	such
as	in	various	NoSQL	database	management	systems.
The	most	basic	solution	to	such	a	schema	change	is	not	to	modify	existing

fields	but	only	to	add	new	fields	or	tables,	which	can	be	done	without	affecting
existing	code.	The	use	of	the	new	fields	or	tables	can	be	integrated	into	the
application	incrementally.	One	method	for	accomplishing	this	is	to	treat	new
fields	or	tables	as	new	features	in	a	release.	That	is,	either	the	use	of	the	new
field	or	table	is	under	the	control	of	a	feature	toggle	or	the	services	are	forward
and	backward	compatible	with	respect	to	database	fields	and	tables.
If,	however,	a	change	to	the	schema	is	absolutely	required	you	have	two

options:
1.	Convert	the	persistent	data	from	the	old	schema	to	the	new	one.
2.	Convert	data	into	the	appropriate	form	during	reads	and	writes.	This	could
be	done	either	by	the	service	or	by	the	database	management	system.

These	options	are	not	mutually	exclusive.	You	might	perform	the	conversion
in	the	background	and	convert	data	on	the	fly	while	the	conversion	is	ongoing.
Modern	RDBMSs	provide	the	ability	to	reorganize	data	from	one	schema	to

another	online	while	satisfying	requests—although	at	a	storage	and	performance
cost.	See	Sockut	and	Iyer	cited	in	Section	6.10	for	a	discussion	of	the	issues	and
the	techniques	used.	NoSQL	database	systems	typically	do	not	provide	this
capability,	and	so,	if	you	use	them,	you	have	to	engineer	a	solution	for	your
particular	situation.

6.4	Packaging
We	now	turn	from	consistency	of	services	during	runtime	to	consistency	of	the
build	process	in	terms	of	getting	the	latest	versions	into	the	services.	Deciding
that	components	package	services	and	that	each	service	is	packaged	as	exactly
one	component,	as	we	discussed	in	Chapter	4,	does	not	end	your	packaging
decisions.	You	must	decide	on	the	binding	time	among	components	residing	on
the	same	VM	and	a	strategy	for	placing	services	into	VMs.	Packaging
components	onto	a	VM	image	is	called	baking	and	the	options	range	from	lightly
baked	to	heavily	baked.	We	discussed	these	options	in	Chapter	5.	What	we	add
to	that	discussion	here	is	the	number	of	processes	loaded	into	each	VM.
A	VM	is	an	image	that	is	running	on	top	of	a	hypervisor	that	enables	sharing	a

single	bare	metal	processor,	memory,	and	network	among	multiple	tenants	or
VMs.	The	image	of	the	VM	is	loaded	onto	the	hypervisor	from	which	it	is
scheduled.
A	VM	image	could	include	multiple	independent	processes—each	a	service.

The	question	then	is:	Should	multiple	services	be	placed	in	a	single	VM	image?
Figure	6.6	shows	two	options.	In	the	top	option,	a	developer	commits	a	service
for	deployment,	which	is	embedded	into	a	single	VM	image.	For	example,
Netflix	claims	they	package	one	service	per	VM.	In	the	bottom	option,	different
developers	commit	different	services	into	a	single	VM	image.	The	emergence	of
lightweight	containers	often	assumes	one	service	per	container,	but	with	the
possibility	to	have	multiple	containers	per	VM.

FIGURE	6.6	Different	options	for	packaging	services	[Notation:
Architecture]

One	difference	in	these	two	options	is	the	number	of	times	that	a	VM	image
must	be	baked.	If	there	is	one	service	per	VM,	then	that	VM	image	is	created
when	a	change	in	its	service	is	committed.	If	there	are	two	services	per	VM,	then
the	VM	image	must	be	rebaked	whenever	a	change	to	either	the	first	or	second
service	is	committed.	This	difference	is	minor.
A	more	important	difference	occurs	when	service	1	sends	a	message	to	service

2.	If	the	two	are	in	the	same	VM,	then	the	message	does	not	need	to	leave	the
VM	to	be	delivered.	If	they	are	in	different	VMs,	then	more	handling	and,
potentially,	network	communication	are	involved.	Hence,	the	latency	for
messages	will	be	higher	when	each	service	is	packaged	into	a	single	VM.
On	the	other	hand,	packaging	multiple	services	into	the	same	VM	image

opens	up	the	possibility	of	deployment	race	conditions.	The	race	conditions	arise
because	different	development	teams	do	not	coordinate	over	their	deployment
schedules.	This	means	that	they	may	be	deploying	their	upgrades	at	(roughly)
the	same	time.	Our	examples	below	assume	the	upgraded	services	are	included
in	the	deployed	portion	of	the	VM	(heavily	baked)	and	not	loaded	later	by	the
deployed	software.
We	see	one	possibility	in	Figure	6.7.	Development	team	1	creates	a	new

image	with	a	new	version	(vm+1)	of	service	1	(S1)	and	an	old	version	of	service	2
(S2).	Development	team	2	creates	a	new	image	with	an	old	version	of	service	1

and	a	new	version	(vn+1)	of	service	2.	The	provisioning	processes	of	the	two
teams	overlap,	which	causes	a	deployment	race	condition.	We	see	another
version	of	the	same	problem	in	Figure	6.8.	In	this	example,	development	team	1
builds	their	image	after	development	team	2	has	committed	their	changes.	The
result	is	similar	in	that	the	final	version	that	is	deployed	does	not	have	the	latest
version	of	both	service	1	and	service	2.

FIGURE	6.7	One	type	of	race	condition	when	two	development	teams	deploy
independently	[Notation:	UML	Sequence	Diagram]

FIGURE	6.8	A	different	type	of	race	condition	when	two	development	teams
deploy	independently	[Notation:	UML	Sequence	Diagram]

The	tradeoff	for	including	multiple	services	into	the	same	VM	is	between
reduced	latency	and	the	possibility	of	deployment	race	conditions.

6.5	Deploying	to	Multiple	Environments
You	may	wish	to	deploy	some	of	your	services	to	one	environment	such	as
VMware	and	other	services	to	a	different	environment	such	as	Amazon	EC2.	As
long	as	services	are	independent	and	communicate	only	through	messages,	such
a	deployment	is	possible	basically	with	the	design	we	have	presented.	The
registry/load	balancer	that	we	discussed	in	Chapter	4	needs	to	be	able	to	direct
messages	to	different	environments.
There	will	also	be	a	performance	penalty	for	messages	sent	across

environments.	The	amount	of	this	penalty	needs	to	be	determined	experimentally
so	that	the	overall	penalty	is	within	acceptable	limits.

Business	Continuity
In	Chapter	2,	we	briefly	discussed	the	need	for	and	the	concepts	associated	with
business	continuity.	Recall	that	business	continuity	is	the	ability	for	a	business	to
maintain	service	when	facing	a	disaster	or	serious	outages.	Now	we	can	begin	to
see	how	business	continuity	is	achieved.	Fundamentally,	it	is	achieved	by
deploying	to	sites	that	are	physically	and	logically	separated	from	each	other.
We	differentiate	between	deploying	to	a	public	cloud	and	a	private	cloud,
although	the	essential	element,	the	management	of	state,	is	the	same.	We	discuss
more	about	disaster	recovery	in	Chapter	10	and	in	the	case	study	in	Chapter	11.

Public	Cloud
Public	clouds	are	extremely	reliable	in	the	aggregate.	They	consist	of	hundreds
of	thousands	of	physical	servers	and	provide	extensive	replication	and	failover
services.	Failures,	however,	do	occur.	These	failures	can	be	to	particular	VMs	of
your	system	or	to	other	cloud	services.

	A	failure	to	a	VM	is	not	a	rare	occurrence.	Cloud	providers	achieve
economies	of	scale	partially	by	purchasing	commodity	hardware.	Any
element	of	the	hardware	can	fail—memory,	disk,	motherboard,	network,	or
CPU.	Failures	may	be	total	or	partial.	A	partial	failure	in	the	underlying
hardware	can	make	your	VM	run	slowly	although	it	is	still	executing.	In
either	case,	you	must	architect	your	system	to	detect	VM	failures	and
respond	to	them.	This	is	outside	the	scope	of	this	chapter.
	A	failure	to	the	cloud	infrastructure	is	a	rare	but	not	impossible	occurrence.
A	quick	search	on	“public	cloud	outages”	can	give	you	information	about
the	latest	high-profile	outages	that	have	occurred.	Other	outages	are	lower-
profile	but	do	still	occur.	You	can	survive	many	outages	by	choosing	how
you	deploy	your	VMs.

Amazon	EC2	has	multiple	regions	(nine	as	of	this	writing)	scattered	around
the	globe.	Each	region	has	multiple	availability	zones.	Each	availability	zone	is
housed	in	a	location	that	is	physically	distinct	from	other	availability	zones	and
that	has	its	own	power	supply,	physical	security,	and	so	forth.	If	you	deploy
VMs	of	your	system	to	different	availability	zones	within	the	same	region,	you
have	some	measure	of	protection	against	a	cloud	outage.	If	you	deploy	VMs	of
your	system	to	different	regions,	then	you	have	much	more	protection	against
outages,	since	some	of	the	services	such	as	elastic	load	balancing	are	per-region.
Two	considerations	that	you	must	keep	in	mind	when	you	deploy	to	different
availability	zones	or	regions	are	state	management	and	latency.

1.	State	management.	Making	services	stateless	has	several	advantages,	as
discussed,	for	example,	in	Chapter	4.	If	a	service	is	stateless	then
additional	VMs	can	be	created	at	any	time	to	handle	increased	workload.
Additional	VMs	can	also	be	created	in	the	event	of	a	VM	failure.	With
appropriate	infrastructure,	the	creation	or	deletion	of	VMs	of	a	stateless
service	is	transparent	to	the	client.	The	disadvantages	of	stateless	services
are	that	state	must	be	maintained	somewhere	in	the	system	and	latency
may	increase	when	the	service	needs	to	obtain	or	change	this	state.	One
consequence	of	increased	latency	is	that	services	may	cache	state	locally.
This	means	that	you	may	be	required	to	purge	the	cache	in	certain
circumstances.	Small	amounts	of	state	can	be	maintained	in	various
services	such	as	Memcached,	which	is	designed	for	caching	(as	indicated
by	the	name).	Large	amounts	of	state	should	be	maintained	in	a	persistent
repository.	Deploying	to	different	availability	zones	or	regions	requires
that	your	persistent	repositories	be	kept	consistent.	MRDMSs	can	be
configured	to	provide	this	service	automatically.	Some	of	the	NoSQL
database	systems	also	provide	replication	across	multiple	VMs	of	the
repository.	Public	cloud	providers	typically	offer	specific	services	for	this
purpose,	although	in	the	case	of	Amazon,	the	replication	between	Amazon
RDS	replicas	is	only	offered	across	availability	zones.

One	problem	with	making	services	stateless	is	that	the	service	may	be
provided	by	third-party	software	that	does	maintain	state,	is	outside	of	your
control,	and	does	not	provide	replication	services.	Migrating	from	such
software	to	a	different	supplier	is	one	of	the	tradeoffs	that	you	must
consider	when	making	your	business	continuity	plans.

2.	Latency.	Sending	messages	from	one	availability	zone	to	another	adds	a
bit	of	latency;	messages	sent	from	one	region	to	another	adds	more	latency
to	your	system.	One	set	of	measurements	puts	the	additional	latency	at
1.35ms	across	availability	zones	within	the	EU	region	and	231ms	between
the	EU	and	the	eastern	United	States.	The	additional	latency	is	another	one
of	the	tradeoffs	that	you	must	consider	with	respect	to	business	continuity.

Private	Cloud
Many	organizations	may	be	required	or	may	decide	to	maintain	private
datacenters	rather	than	utilizing	the	public	cloud.	These	datacenters	are	located
in	distinct	physical	locations,	for	example,	~100	miles	apart,	and	with	a	high-
speed	link	between	them.	We	have	seen	many	organizations	with	two
datacenters	but	none	with	three.	Having	three	datacenters	adds	50%	to	the	cost
of	maintaining	business	continuity,	and	the	possibility	of	a	double	failure	is

of	maintaining	business	continuity,	and	the	possibility	of	a	double	failure	is
usually	judged	to	be	highly	unlikely.	This	is	a	risk	management	decision	a
particular	organization	must	make.
From	a	software	architectural	perspective,	the	only	difference	between	using

two	datacenters	and	two	availability	zones	in	the	public	cloud	is	the	choice	of
hardware	within	the	datacenter.	In	the	public	cloud,	you	can	specify	which	sort
of	(virtual)	hardware	you	wish	to	have	allocated.	In	the	private	cloud,	a	solution
to	the	problem	of	disparate	hardware	is	to	make	the	hardware	identical	across
both	datacenters.	Then	services	can	be	deployed	into	either	datacenter	without
making	the	services	or	the	deployment	tools	aware	of	the	datacenter.
Virtualization	provides	some	measure	of	hardware	independence,	but	hardware
features	such	as	the	number	of	physical	cores	or	the	use	of	blades	impact	the
operating	system	and	the	performance.	If	the	two	datacenters	have	hardware
features	that	impact	the	operating	system	and	these	features	are	visible	to	VMs,
then	a	VM	cannot	be	directly	moved	from	one	environment	to	another.	If
performance	is	impacted	by	the	differing	hardware,	the	deployment	tools	need	to
cater	to	that,	for	example,	by	provisioning	50%	more	virtual	machines	per
service	in	the	second	datacenter,	because	the	machines	are	slower	by	that	much.
A	further	advantage	of	having	two	identical	datacenters	is	that	one	can	be

used	for	pre-production	testing	during	periods	when	the	expected	load	on	that
datacenter	is	low.

6.6	Partial	Deployment
Up	to	this	point,	our	discussion	has	been	focused	on	all-or-nothing	deployments.
Now	we	discuss	two	types	of	partial	deployments—canary	testing	and	A/B
testing.	We	introduced	these	briefly	in	Chapter	5;	here	we	elaborate	on	how	to
achieve	these	types	of	partial	deployments.

Canary	Testing
A	new	version	is	deployed	into	production	after	having	been	tested	in	a	staging
environment,	which	is	as	close	to	a	production	environment	as	possible.	There	is
still	a	possibility	of	errors	existing	in	the	new	version,	however.	These	errors	can
be	either	functional	or	have	a	quality	impact.	Performing	an	additional	step	of
testing	in	a	real	production	environment	is	the	purpose	of	canary	testing.	A
canary	test	is	conceptually	similar	to	a	beta	test	in	the	shrink-wrapped	software
world.
One	question	is	to	whom	to	expose	the	canary	servers.	This	can	be	a	random

sample	of	users.	An	alternative	is	to	decide	the	question	based	on	the
organization	a	user	belongs	to,	for	example,	the	employees	of	the	developing

organization	a	user	belongs	to,	for	example,	the	employees	of	the	developing
organization,	or	particular	customers.	The	question	could	also	be	answered	based
on	geography,	for	example,	such	that	all	requests	that	are	routed	to	a	particular
datacenter	are	served	by	canary	versions.
The	mechanism	for	performing	the	canary	tests	depends	on	whether	features

are	activated	with	feature	toggles	or	whether	services	are	assumed	to	be	forward
or	backward	compatible.	In	either	case,	a	new	feature	cannot	be	fully	tested	in
production	until	all	of	the	services	involved	in	delivering	the	feature	have	been
partially	deployed.
Messages	can	be	routed	to	the	canaries	by	making	the	registry/load	balancer

canary-aware	and	having	it	route	messages	from	the	designated	testers	to	the
canary	versions.	More	and	more	messages	can	be	routed	until	a	desired	level	of
performance	has	been	exhibited.
If	new	features	are	under	the	control	of	feature	toggles,	then	turning	on	the

toggle	for	the	features	on	the	canary	versions	activates	these	features	and	enables
the	tests	to	proceed.
If	the	services	use	forward	and	backward	compatibility,	then	the	tests	will	be

accomplished	once	all	of	the	services	involved	in	a	new	feature	have	been
upgraded	to	the	new	version.	In	either	case,	you	should	carefully	monitor	the
canaries,	and	they	should	be	rolled	back	in	the	event	an	error	is	detected.

A/B	Testing
We	introduced	A/B	testing	in	Chapter	5.	It	is	another	form	of	testing	that	occurs
in	the	production	environment	through	partial	deployment.	The	“A”	and	“B”
refer	to	two	different	versions	of	a	service	that	present	either	different	user
interfaces	or	different	behavior.	In	this	case,	it	is	the	behavior	of	the	user	when
presented	with	these	two	different	versions	that	is	being	tested.
If	either	A	or	B	shows	preferable	behavior	in	terms	of	some	business	metric

such	as	orders	placed,	then	that	version	becomes	the	production	version	and	the
other	version	is	retired.
Implementing	A/B	testing	is	similar	to	implementing	canaries.	The

registry/load	balancer	must	be	made	aware	of	A/B	testing	and	ensure	that	a
single	customer	is	served	by	VMs	with	either	the	A	behavior	or	the	B	behavior
but	not	both.	The	choice	of	users	that	are	presented	with,	say,	version	B	may	be
randomized,	or	it	may	be	deliberate.	If	deliberate,	factors	such	as	geographic
location,	age	group	(for	registered	users),	or	customer	level	(e.g.,	“gold”	frequent
flyers),	may	be	taken	into	account.

6.7	Rollback
For	some	period	after	deployment,	the	new	version	of	a	service	is	on	probation.
It	has	gone	through	testing	of	a	variety	of	forms	but	it	still	is	not	fully	trusted.
Recognition	of	the	potential	untrustworthiness	of	a	new	version	is	contained	in
the	release	plan	that	we	discussed	in	Chapter	1	where	testing	the	rollback	plan	is
one	of	the	dictates	of	the	plan.	Rolling	back	means	reverting	to	a	prior	release.	It
is	also	possible	to	roll	forward—that	is,	correct	the	error	and	generate	a	new
release	with	the	error	fixed.	Rolling	forward	is	essentially	just	an	instance	of
upgrading,	so	we	do	not	further	discuss	rolling	forward.
Because	of	the	sensitivity	of	a	rollback	and	the	possibility	of	rolling	forward,

rollbacks	are	rarely	triggered	automatically.	A	human	should	be	in	the	loop	who
decides	whether	the	error	is	serious	enough	to	justify	discontinuing	the	current
deployment.	The	human	then	must	decide	whether	to	roll	back	or	roll	forward.
If	you	still	have	VMs	with	version	A	available,	as	in	the	blue/green

deployment	model	before	decommissioning	all	version	A	VMs,	rolling	back	can
be	done	by	simply	redirecting	the	traffic	back	to	these.	One	way	of	dealing	with
the	persistent	state	problem	is	to	keep	version	A	VMs	receiving	a	replicated
copy	of	the	requests	version	B	has	been	receiving	during	the	probation	period.
However,	if	you	are	using	a	rolling	upgrade	model	or	you	cannot	simply

replace	version	B	by	version	A	as	a	whole,	you	have	to	replace	a	version	B	VM
with	a	version	A	VM	in	more	complicated	ways.	The	new	version	B	can	be	in
one	of	four	states	during	its	lifetime:	uninstalled,	partially	installed,	fully
installed	but	on	probation,	or	committed	into	production.
Two	of	these	states	have	no	rollback	possibilities.	If	version	B	has	not	yet

been	installed	then	it	cannot	be	rolled	back.	Once	it	has	been	committed,	it	also
cannot	be	rolled	back—although	the	old	version	could	be	treated	as	a	new
deployment	and	be	redeployed.	As	we	said	in	Chapter	5,	if	version	B	has	been
committed	then	removal	of	all	of	the	feature	toggles	that	have	been	activated
within	version	B	should	be	put	on	the	development	teams’	list	of	activities	to
perform.
The	remaining	two	states—namely,	version	B	is	partially	installed	or	fully

installed	but	on	probation—have	rollback	possibilities.	The	strategy	for	rolling
back	depends	on	whether	feature	toggles	are	being	used	and	have	been	activated.
This	pertains	to	both	of	the	remaining	two	states.

	Not	using	feature	toggles.	Rolling	back	VMs	in	this	case	is	a	matter	of
disabling	those	VMs	and	reinstalling	VMs	running	version	A	of	the
service.

	Using	feature	toggles.	If	the	features	have	not	been	activated,	then	we	have
the	prior	version.	Disable	VMs	running	version	B	and	reinstall	version	A.
If	the	feature	toggles	have	been	activated,	then	deactivate	them.	If	this
prevents	further	errors,	then	no	further	action	is	required.	If	it	does	not,
then	we	have	the	situation	as	if	feature	toggles	were	not	present.

The	remaining	case	deals	with	persistent	data	and	is	the	most	complicated.
Suppose	all	of	the	version	B	VMs	have	been	installed	and	version	B’s	features
activated,	but	a	rollback	is	necessary.	Rolling	back	to	the	state	where	version	B
is	installed	but	no	features	activated	is	a	matter	of	toggling	off	the	new	features,
which	is	a	simple	action.	The	complications	come	from	consideration	of
persistent	data.
A	concern	when	an	error	is	detected	is	that	incorrect	values	have	been	written

into	the	database.	Dealing	with	erroneous	database	values	is	a	delicate	operation
with	significant	business	implications.	We	present	a	general	approach	here	but	it
should	be	used	with	caution.	You	certainly	do	not	want	to	make	the	situation
worse.
Our	general	approach	is	to	roll	back	those	requests	that	were	processed	by

versions	of	the	service	where	new	features	were	activated	and	replay	them	with
an	older,	working	version.	We	first	discuss	what	is	necessary	to	accomplish	the
rollback,	and	then	we	discuss	potential	problems	that	can	occur.
In	order	to	roll	back	potentially	questionable	transactions,	they	need	to	be

identified.	This	can	be	accomplished	by	maintaining	a	pedigree	for	each	data
item.	The	pedigree	includes	the	version	number	of	the	service	that	wrote	the	data
item	and	an	identification	of	the	request	that	triggered	the	writing	of	the	data
item.	It	also	involves	logging	requests	with	sufficient	information	so	that	you
can	recover	a	causal	chain	from	initial	request	to	writing	the	data.
When	a	rollback	is	triggered,	the	versions	of	the	services	involved	in

implementing	that	feature	are	identified.	This	enables	you	to	identify	the	data
items	that	were	written	by	those	versions,	which,	in	turn,	enables	the
identification	of	the	requests	to	be	replayed.	Removing	the	identified	data	items
and	restoring	any	overwritten	items	purges	the	database	of	potentially	erroneous
directly	written	values.	Restoring	overwritten	items	requires	keeping	a	history	of
data	fields	and	their	values.	It	is	possible	that	an	erroneous	data	value	could	have
cascaded	through	the	triggering	of	dependent	actions.	Worse,	it	is	possible	that
an	erroneous	data	value	could	have	external	effects.	For	example,	a	customer
may	have	been	shown	a	much	reduced	fare	and	purchased	a	ticket.
Tracking	the	cascading	of	actions	and	determining	which	data	values	are

potentially	erroneous	and	which	have	escaped	the	system	can	be	done	by

potentially	erroneous	and	which	have	escaped	the	system	can	be	done	by
maintaining	a	pedigree	of	the	data	items.	If	the	pedigree	of	a	data	item	includes
the	data	items	on	which	it	depends	then	those	dependent	data	items	that	are
saved	in	the	database	can	be	located	and	removed.	For	those	dependent	actions
that	are	externally	visible,	logging	the	source	of	any	externally	visible	data	item
enables	you	to	determine	the	consequences	of	the	erroneous	feature,	but
correction	becomes	a	business	matter.	Some	of	the	incorrect	externally	visible
data	may	not	have	a	severe	impact,	others	do.	Determining	the	consequences	of
externally	visible	erroneous	data	requires	special	handling	and	must	be	done	in
conjunction	with	business	decision	makers.
Once	the	offending	data	is	removed,	the	specified	requests	can	be	replayed

with	older	versions	of	the	services.	This	regenerates	the	data	that	has	been
removed,	but	in	a	non-erroneous	fashion.	A	problem	with	this	strategy	is	that	the
requests	may	depend	on	the	features	that	have	been	removed.	In	this	case,	the
replay	should	trigger	an	error	indication	from	one	of	the	services.	The	replay
mechanism	must	know	what	to	do	with	these	errors.
As	you	may	have	gathered,	identifying	and	correcting	incorrect	values	in	the

database	is	a	delicate	and	complicated	operation	requiring	the	collection	of	much
metadata.

6.8	Tools
A	large	number	of	tools	exist	to	manage	deployment.	One	method	for
categorizing	tools	is	to	determine	whether	they	directly	affect	the	internals	of	the
entity	being	deployed.	As	mentioned	in	Chapter	5,	if	a	VM	image	contains	all
the	required	software	including	the	new	version,	you	can	replace	a	whole	VM	of
the	old	version	with	a	whole	VM	of	the	new	version.	This	is	called	using	a
heavily	baked	deployment	approach.	Alternatively,	you	can	use	tools	to	change
the	internals	of	a	VM,	so	as	to	deploy	the	new	version	by	replacing	the	old
version	without	terminating	the	VM.	Even	if	you	terminate	the	VM	with	the	old
version,	you	can	start	a	new	lightly	baked	VM	but	then	access	the	machine	from
the	inside	to	deploy	the	new	version	at	a	later	stage	of	the	deployment	process.
Netflix	Asgard,	for	example,	is	an	open	source,	web-based	tool	for	managing

cloud-based	applications	and	infrastructure.	Asgard	is	not	interested	in	the
contents	of	these	VMs.	It	uses	a	VM	image	that	contains	the	new	version	and
creates	VMs	for	these	images.	One	of	the	features	of	Asgard	is	that	it
understands	deployment	processes	such	as	rolling	upgrade.	It	allows
specification	of	the	number	of	VMs	to	be	upgraded	in	a	single	cycle.
Infrastructure-as-a-Service	(IaaS)	vendors	also	provide	specific	tools	for
coordinated	VM	provisioning,	which	is	used	as	a	part	of	a	deployment.	For

coordinated	VM	provisioning,	which	is	used	as	a	part	of	a	deployment.	For
example,	Amazon	allows	users	to	use	CloudFormation	scripts	as	a
parameterized,	declarative	approach	for	deployment	of	VMs.	CloudFormation
scripts	understand	dependencies	and	rollback.
Chef	and	Puppet	are	two	examples	of	tools	that	manage	the	items	inside	a

virtual	machine.	They	can	replace	a	version	of	a	piece	of	software	inside	a	VM
and	ensure	that	configuration	settings	conform	to	a	specification.
One	emerging	trend	is	the	use	of	lightweight	container	tools,	such	as	Docker,

in	deployment.	A	lightweight	container	is	an	OS-level	virtualization	technique
for	running	multiple	isolated	OSs	on	a	single	host	(VM	or	physical	machine).
They	are	like	VMs,	but	they	are	smaller	and	start	much	faster.
Image	management	and	testing	tools	such	as	Vagrant	and	Test	Kitchen	help

control	both	VMs	and	items	inside	the	VMs.	A	developer	can	spin	up
production-like	environments	for	pre-commit	testing	and	integration	testing	to
reveal	issues	that	would	only	surface	in	production.

6.9	Summary
Strategies	for	deploying	multiple	VMs	of	a	service	include	blue/green
deployment	and	rolling	upgrade.	A	blue/green	deployment	does	not	introduce
any	logical	problems	but	requires	allocating	twice	the	number	of	VMs	required
to	provide	a	service.	A	rolling	upgrade	is	more	efficient	in	how	it	uses	resources
but	introduces	a	number	of	logical	consistency	problems.

	Multiple	different	versions	of	a	single	service	can	be	simultaneously
active.	These	multiple	versions	may	provide	inconsistent	versions	of	the
service.
	A	client	may	assume	one	version	of	a	dependent	service	and	actually	be
served	by	a	different	version.
	Race	conditions	can	exist	because	of	the	choice	of	packing	multiple	and
dependent	services	and	multiple	development	teams	performing	concurrent
deployment.	Choosing	the	number	of	services	to	be	packed	into	a	single
VM	is	often	a	tradeoff	among	resource	utilization,	performance,	and
complexity	of	deployment.

Solutions	to	the	problems	of	logical	consistency	involve	using	some
combination	of	feature	toggles,	forward	and	backward	compatibility,	and	version
awareness.
Deployments	must	occasionally	be	rolled	back.	Feature	toggles	support	rolling

back	features,	but	the	treatment	of	persistent	data	is	especially	sensitive	when
rolling	back	a	deployment.

rolling	back	a	deployment.
Deployment	also	plays	an	important	role	for	achieving	business	continuity.

Deploying	into	distinct	sites	provides	one	measure	of	continuity.	Having	an
architecture	that	includes	replication	allows	for	a	shorter	time	to	repair	and	to
resume	processing	in	the	event	of	an	unexpected	outage.
A	variety	of	tools	exist	for	managing	deployment.	The	emergence	of

lightweight	containers	and	image	management	tools	is	helping	developers	to
deploy	into	small-scale	production-like	environments	more	easily	for	testing.

6.10	For	Further	Reading
To	learn	more	about	the	peril	of	doing	an	upgrade,	you	can	find	an	empirical
study	on	the	topic	at	[Dumitras	09].
The	Paxos	algorithm	is	difficult	to	understand	and	implement.	That	is	why	we

recommend	the	use	of	libraries	or	tools	that	have	already	implemented	it	and
provide	higher-level	features.	But	if	you	do	want	to	have	a	better	understanding
of	the	algorithm,	have	a	look	at	the	latest,	supposedly	simple,	explanation	of	it
from	the	Turing	Award–winning	author,	Leslie	Lamport	[Lamport	14].
ZooKeeper	is	based	on	the	ZAB	algorithm,	and	is	arguably	used	much	more

widely	than	Paxos.	You	can	find	more	about	ZooKeeper	and	some	links	to
higher-level	tools	at	http://zookeeper.apache.org.	For	a	comparison	of	Paxos	and
ZooKeeper’s	ZAB,	see	[Confluence	12].
Whether	it	be	for	a	schema	change	or	a	rollback	of	erroneous	upgrade,	you

can	find	more	about	the	reorganization	of	a	live	database	at	[Sockut	09].
To	read	more	about	the	pros	and	cons	of	the	heavily	baked	and	the	lightly

baked	approach	for	VM	images,	see	[InformationWeek	13].
You	can	find	more	about	latency	between	services	involving	multiple

regions/VMs	at	the	links:
http://www.smart421.com/cloud-computing/amazon-web-services-inter-az-

latency-measurements/
http://www.smart421.com/cloud-computing/which-amazon-web-services-

region-should-you-use-for-your-service/
As	for	tooling,	you	can	find	more	information	about	the	various	tools	we

mentioned	here:
	Netflix	Asgard:	https://github.com/Netflix/asgard
	Amazon	CloudFormation:	http://aws.amazon.com/cloudformation/
	Chef:	http://docs.opscode.com/chef_overview.html

http://zookeeper.apache.org
http://www.smart421.com/cloud-computing/amazon-web-services-inter-az-latency-measurements/
http://www.smart421.com/cloud-computing/which-amazon-web-services-region-should-you-use-for-your-service/
https://github.com/Netflix/asgard
http://aws.amazon.com/cloudformation/
http://docs.opscode.com/chef_overview.html

	Puppet:	http://puppetlabs.com/puppet/what-is-puppet
	Docker:	https://www.docker.com/whatisdocker/
	Vagrant:	https://www.vagrantup.com/

http://puppetlabs.com/puppet/what-is-puppet
https://www.docker.com/whatisdocker/
https://www.vagrantup.com/

Part	Three:	Crosscutting	Concerns
Part	Two	described	the	facets	of	a	deployment	pipeline.	This	is	a	functional
perspective	that	focuses	on	the	parts	of	the	pipeline.	In	this	part,	we	focus	on
those	topics	that	crosscut	the	pipeline.	There	are	four	such	chapters	in	Part
Three.
In	Chapter	7,	we	discuss	the	collection,	processing,	and	interpretation	of	data

during	the	execution	of	a	system.	Such	data	is	vital	for	several	purposes
including	error	detection	and	recovery,	forecasting,	and	the	identification	of
performance	problems.
In	Chapter	8,	we	discuss	security	from	several	different	perspectives.	One

perspective	is	that	of	the	auditor	who	must	evaluate	the	extent	to	which	the
security	of	your	application	or	environment	complies	with	its	requirements.	We
also	discuss	securing	the	deployment	pipeline.	In	either	case,	our	discussion
includes	both	malicious	attempts	to	breach	your	security	and	accidental	breaches
committed	by	your	personnel	who	mean	no	harm.
In	addition	to	security,	several	other	quality	attributes	are	important	to

DevOps.	We	discuss	these	in	Chapter	9.	We	show	how	qualities	such	as
traceability,	performance,	reliability,	and	repeatability	are	important	to	the
successful	execution	of	a	deployment	pipeline.
Finally,	in	Chapter	10,	we	focus	on	business.	An	organization	cannot	adopt

many	DevOps	practices	without	buy-in	from	other	portions	of	the	business
including	management.	This	chapter	discusses	how	you	could	develop	a
business	plan	for	DevOps,	including	the	types	of	measurements	you	should	take
and	how	you	can	approach	an	incremental	adoption	of	DevOps	practices.

7.	Monitoring

With	Adnene	Guabtni	and	Kanchana	Wickremasinghe

First	get	your	facts;	then	you	can	distort	them	at	your	leisure.
—Mark	Twain

7.1	Introduction
Monitoring	has	a	long	history	in	software	development	and	operation.	The
earliest	monitors	were	hardware	devices	like	oscilloscopes,	and	such	hardware
devices	still	exist	in	the	monitoring	ecosystem.	We	are	going	to	ignore	this
history,	however,	and	focus	on	software	monitoring	in	this	chapter.	Software
monitoring	comprises	myriad	types	of	monitoring	and	the	considerations	that
come	with	them.	Activities	as	varied	as	collecting	metrics	at	various	levels
(resources/OS/middleware/application-level),	graphing	and	analyzing	metrics,
logging,	generating	alerts	concerning	system	health	status,	and	measuring	user
interactions	all	are	a	portion	of	what	is	meant	by	monitoring.
As	Richard	Hamming	said:	“The	purpose	of	computing	is	insight,	not

numbers.”	The	insights	available	from	monitoring	fall	into	five	different
categories.

1.	Identifying	failures	and	the	associated	faults	both	at	runtime	and	during
postmortems	held	after	a	failure	has	occurred.

2.	Identifying	performance	problems	of	both	individual	systems	and
collections	of	interacting	systems.

3.	Characterizing	workload	for	both	short-	and	long-term	capacity	planning
and	billing	purposes.

4.	Measuring	user	reactions	to	various	types	of	interfaces	or	business
offerings.	We	discussed	A/B	testing	in	Chapters	5	and	6.

5.	Detecting	intruders	who	are	attempting	to	break	into	the	system.
We	use	the	term	monitoring	to	refer	to	the	process	of	observing	and	recording

system	state	changes	and	data	flows.	State	changes	can	be	expressed	by	direct
measurement	of	the	state	or	by	logs	recording	updates	that	impact	part	of	the
state.	Data	flows	can	be	captured	by	logging	requests	and	responses	between

both	internal	components	and	external	systems.	The	software	supporting	such	a
process	is	called	a	monitoring	system.
When	we	speak	of	monitoring	a	workload,	we	are	including	the	tools	and

infrastructure	associated	with	operations	activities.	All	of	the	activities	in	an
environment	contribute	to	a	datacenter’s	workload,	and	this	includes	both
operations-centric	and	monitoring	tools.
In	this	chapter,	we	focus	on	new	aspects	of	monitoring	and	challenges	that

arise	with	the	advent	of	the	DevOps	movement.	DevOps’	continuous
delivery/deployment	practices	and	strong	reliance	on	automation	mean	that
changes	to	the	system	happen	at	a	much	higher	frequency.	Use	of	a	microservice
architecture	also	makes	monitoring	of	data	flows	more	challenging.	We	discuss
these	and	other	challenges	in	more	detail	in	Section	7.6.	Some	examples	of	the
new	challenges	are

	Monitoring	under	continuous	changes	is	difficult.	Traditional	monitoring
relies	heavily	on	anomaly	detection.	You	know	the	profile	of	your	system
during	normal	operation.	You	set	thresholds	on	metrics	and	monitor	to
detect	abnormal	behavior.	If	your	system	changes,	you	may	have	to
readjust	them.	This	approach	becomes	less	effective	if	your	system	is
constantly	changing	due	to	continuous	deployment	practices	and	cloud
elasticity.	Setting	thresholds	based	on	normal	operation	will	trigger
multiple	false	alarms	during	a	deployment.	Disabling	alarms	during
deployments	will,	potentially,	miss	critical	errors	when	a	system	is	already
in	a	fairly	unstable	state.	Multiple	deployments	can	simultaneously	occur
as	we	discussed	in	Chapter	6,	and	these	deployments	further	complicate
the	setting	of	thresholds.
	The	cloud	environment	introduces	different	levels	from	application
programming	interface	(API)	calls	to	VM	resource	usage.	Choosing
between	a	top-down	approach	and	a	bottom-up	approach	for	different
scenarios	and	balancing	the	tradeoffs	is	not	easy.
	When	adopting	the	microservice	architecture	we	introduced	in	Chapter	4,
monitoring	requires	attention	to	more	moving	parts.	It	also	requires
logging	more	inter-service	communication	to	ensure	a	user	request
traversing	through	a	dozen	services	still	meets	your	service	level
agreements.	If	anything	goes	wrong,	you	need	to	determine	the	cause
through	analysis	of	large	volumes	of	(distributed)	data.
	Managing	logs	becomes	a	challenge	in	large-scale	distributed	systems.
When	you	have	hundreds	or	thousands	of	nodes,	collecting	all	logs

centrally	becomes	difficult	or	prohibitively	expensive.	Performing	analysis
on	huge	collections	of	logs	is	challenging	as	well,	because	of	the	sheer
volume	of	logs,	noise,	and	inconsistencies	in	logs	from	multiple
independent	sources.

Monitoring	solutions	must	be	tested	and	validated	just	as	other	portions	of	the
infrastructure.	Testing	a	monitoring	solution	in	your	various	environments	is	one
portion	of	the	testing,	but	the	scale	of	your	non-production	environments	may
not	approach	the	scale	of	your	production—which	implies	that	your	monitoring
environments	may	be	only	partially	tested	prior	to	being	placed	into	production.
We	have	heard	how	a	feature	toggle	involving	monitoring	brought	down	a	major
Internet	service	for	45	minutes.	This	reinforces	not	only	the	importance	of
testing	monitoring	software	but	also	the	importance	of	maintaining	control	of
feature	toggles.
We	organize	this	chapter	by	describing	what	to	monitor,	how	to	monitor,

when	to	monitor,	and	how	to	interpret	the	monitoring	data.	We	provide	pointers
to	tools,	further	discuss	the	challenges	just	described,	and	provide	an	example	of
interpreting	monitoring	data.

7.2	What	to	Monitor
The	data	to	be	monitored	for	the	most	part	comes	from	the	various	levels	of	the
stack.	Table	7.1	lists	the	insights	you	might	gain	from	the	monitoring	data	and
the	portions	of	the	stack	where	such	data	can	be	collected.	Notice	that	the	whole
stack	is	involved	in	most	of	the	purposes	for	which	you	will	do	monitoring.	We
emphasize	that	tools	supporting	operations	are	applications	that	contribute	to	the
workload,	have	failures,	and	should	be	monitored.	In	Chapter	6,	we	pointed	out
the	failures	that	can	come	from	race	conditions	during	deployment.	Monitoring
changes	to	configurations	and	resource	specification	files	enables	the	detection
of	such	errors.

TABLE	7.1	Goals	of	Monitoring	by	Level	of	the	Stack

The	fundamental	items	to	be	monitored	consist	of	inputs,	resources,	and

The	fundamental	items	to	be	monitored	consist	of	inputs,	resources,	and
outcomes.	The	resources	can	be	hard	resources	such	as	CPU,	memory,	disk,	and
network—even	if	virtualized.	They	can	also	be	soft	resources	such	as	queues,
thread	pools,	or	configuration	specifications.	The	outcomes	include	items	such
as	transactions	and	business-oriented	activities.
We	now	discuss	the	monitoring	goals	from	Table	7.1.

Failure	Detection
Any	element	of	the	physical	infrastructure	can	fail.	The	cause	can	be	anything
from	overheating	to	mice	eating	the	cables.	Total	failures	are	relatively	easy	to
detect:	No	data	is	flowing	where	data	used	to	flow.	It	is	the	partial	failures	that
are	difficult	to	detect,	for	instance:	a	cable	is	not	firmly	seated	and	degrades
performance;	before	a	machine	totally	fails	because	of	overheating	it	experiences
intermittent	failure;	and	so	forth.
Detecting	failure	of	the	physical	infrastructure	is	the	datacenter	provider’s

problem.	Instrumenting	the	operating	system	or	its	virtual	equivalent	will
provide	the	data	for	the	datacenter.
Software	can	also	fail,	either	totally	or	partially.	Total	failure,	again,	is

relatively	easy	to	detect.	Partial	software	failures	have	myriad	causes,	just	as
partial	hardware	failures	do.	The	underlying	hardware	may	have	a	partial	failure;
a	downstream	service	may	have	failed;	the	software,	or	its	supporting	software,
may	have	been	misconfigured,	and	so	forth.
Detecting	software	failures	can	be	done	in	one	of	three	fashions.
1.	The	monitoring	software	performs	health	checks	on	the	system	from	an
external	point.

2.	A	special	agent	inside	the	system	performs	the	monitoring.
3.	The	system	itself	detects	problems	and	reports	them.
Partial	failures	may	also	manifest	as	performance	problems,	which	we	now

discuss.

Performance	Degradation	Detection
Detecting	performance	degradations	is,	arguably,	the	most	common	use	of
monitoring	data.	Degraded	performance	can	be	observed	by	comparing	current
performance	to	historical	data—or	by	complaints	from	clients	or	end	users.
Ideally	your	monitoring	system	catches	performance	degradation	before	users
are	impacted	at	a	notable	strength.
Performance	measures	include	latency,	throughput,	and	utilization.

Performance	measures	include	latency,	throughput,	and	utilization.

Latency
Latency	is	the	time	from	the	initiation	of	an	activity	to	its	completion.	It	can	be
measured	at	various	levels	of	granularity.	At	a	coarse	grain,	latency	can	refer	to
the	period	from	a	user	request	to	the	satisfaction	of	that	request.	At	a	fine	grain,
latency	can	refer	to	the	period	from	placing	a	message	on	a	network	to	the
receipt	of	that	message.
Latency	can	also	be	measured	at	either	the	infrastructure	or	the	application

level.	Measuring	latency	within	a	single	physical	computer	can	be	done	by
reading	the	clock	prior	to	initiating	an	activity,	reading	the	clock	subsequent	to
the	activity,	and	calculating	the	difference.	Measuring	latency	across	different
physical	computers	is	more	problematic	because	of	the	difficulty	of
synchronizing	clocks.	We	discuss	this	problem	in	more	detail	later.
It	is	important	when	reporting	latency	numbers	to	associate	them	with	the

activity	that	they	are	measuring.	Furthermore,	latency	is	cumulative	in	the	sense
that	the	latency	of	responding	to	a	user	request	is	the	sum	of	the	latency	of	all	of
the	activities	that	occur	until	the	request	is	satisfied,	adjusted	for	parallelism.	It	is
useful	when	diagnosing	the	cause	of	a	latency	problem	to	know	the	latency	of
the	various	subactivities	performed	in	the	satisfaction	of	the	original	request.

Throughput
Throughput	is	the	number	of	operations	of	a	particular	type	in	a	unit	time.
Although	throughput	could	refer	to	infrastructure	activities	(e.g.,	the	number	of
disk	reads	per	minute),	it	is	more	commonly	used	at	the	application	level.	For
example,	the	number	of	transactions	per	second	is	a	common	reporting	measure.
Throughput	provides	a	system-wide	measure	involving	all	of	the	users,

whereas	latency	has	a	single-user	or	client	focus.	High	throughput	may	or	may
not	be	related	to	low	latency.	The	relation	will	depend	on	the	number	of	users
and	their	pattern	of	use.
A	reduction	in	throughput	is	not,	by	itself,	a	problem.	The	reduction	in

throughput	may	be	caused	by	a	reduction	in	the	number	of	users.	Problems	are
indicated	through	the	coupling	of	throughput	and	user	numbers.

Utilization
Utilization	is	the	relative	amount	of	use	of	a	resource	and	is,	typically,	measured
by	inserting	probes	on	the	resources	of	interest.	For	example,	the	CPU	utilization
may	be	80%.	High	utilization	can	be	used	as	either	an	early	warning	indicator	of
problems	with	latency	or	throughput,	or	as	a	diagnostic	tool	used	to	find	the

problems	with	latency	or	throughput,	or	as	a	diagnostic	tool	used	to	find	the
cause	of	problems	with	latency	or	throughput.
The	resources	can	either	be	at	the	infrastructure	or	application	level.	Hard

resources	such	as	CPU,	memory,	disk,	or	network	are	best	measured	by	the
infrastructure.	Soft	resources	such	as	queues	or	thread	pools	can	be	measured
either	by	the	application	or	the	infrastructure	depending	on	where	the	resource
lives.
Making	sense	of	utilization	frequently	requires	attributing	usage	to	activities

or	applications.	For	example,	app1	is	using	20%	of	the	CPU,	disk	compression	is
using	30%,	and	so	on.	Thus,	connecting	the	measurements	with	applications	or
activities	is	an	important	portion	of	data	collection.

Capacity	Planning
We	distinguish	between	long-	and	short-term	capacity	planning.	Long-term
capacity	planning	involves	humans	and	has	a	time	frame	on	the	order	of	days,
weeks,	months,	or	even	years.	Short-term	capacity	planning	is	performed
automatically	and	has	a	time	frame	on	the	order	of	minutes.

Long-Term	Capacity	Planning
Long-term	capacity	planning	is	intended	to	match	hardware	needs,	whether	real
or	virtualized,	with	workload	requirements.	In	a	physical	datacenter,	it	involves
ordering	hardware.	In	a	virtualized	public	datacenter,	it	involves	deciding	on	the
number	and	characteristics	of	the	virtual	resources	that	are	to	be	allocated.	In
both	cases,	the	input	to	the	capacity	planning	process	is	a	characterization	of	the
current	workload	gathered	from	monitoring	data	and	a	projection	of	the	future
workload	based	on	business	considerations	and	the	current	workload.	Based	on
the	future	workload,	the	desired	throughput	and	latency	for	the	future	workload,
and	the	costs	of	various	provisioning	options,	the	organization	will	decide	on
one	option	and	provide	the	budget	for	it.

Short-Term	Capacity	Planning
In	the	context	of	a	virtualized	environment	such	as	the	cloud,	short-term	capacity
planning	means	creating	a	new	virtual	machine	(VM)	for	an	application	or
deleting	an	existing	VM.	A	common	method	of	making	and	executing	these
decisions	is	based	on	monitoring	information	collected	by	the	infrastructure.	In
Chapter	4,	we	discussed	various	options	for	controlling	the	allocation	of	VM
instances	based	on	the	current	load.	Monitoring	the	usage	of	the	current	VM
instances	was	an	important	portion	of	each	option.

Monitoring	data	is	also	used	for	billing	in	public	clouds.	Charging	for	use	is
an	essential	characteristic	of	the	cloud	as	defined	by	the	U.S.	National	Institute
of	Science	and	Technology	and	discussed	in	Chapter	2.	In	order	to	charge	for
use,	the	use	must	be	determined,	and	this	is	accomplished	through	monitoring	by
the	cloud	provider.

User	Interaction
User	satisfaction	is	an	important	element	of	a	business.	Besides	the	utility	and
quality	of	the	application	itself,	user	satisfaction	depends	on	four	elements	that
can	be	monitored.

1.	The	latency	of	a	user	request.	Users	expect	decent	response	times.
Depending	on	the	application,	seemingly	trivial	variations	in	response	can
have	a	large	impact.	Google	reports	that	delaying	a	search	results	page	by
100ms	to	400ms	has	a	measurable	impact	on	the	number	of	searches	that
users	perform.	Amazon	reports	a	similar	effect.

2.	The	reliability	of	the	system	with	which	the	user	is	interacting.	We
discussed	failure	and	failure	detection	earlier.

3.	The	effect	of	a	particular	business	offering	or	user	interface	modification.
We	discussed	A/B	testing	in	Chapters	5	and	6.	The	measurements
collected	from	A/B	testing	must	be	meaningful	for	the	goal	of	the	test,	and
the	data	must	be	associated	with	variant	A	or	B	of	the	system.

4.	The	organization’s	particular	set	of	metrics.	Every	organization	has	a	set
of	metrics	that	it	uses	to	determine	the	effectiveness	of	their	offerings	and
their	support	services.	If	you	run	a	photo	gallery	website,	you	may	be
interested	specifically	in	metrics	like	photo	upload	rates,	photo	sizes,	photo
processing	times,	photo	popularity,	advertisement	click-through	rates,	and
levels	of	user	activity.	Other	organizations	will	have	different	metrics,	but
they	should	all	be	important	indicators	of	either	user	satisfaction	or	the
effectiveness	of	the	organization’s	computer-based	services.

There	are	generally	two	types	of	user	interaction	monitoring.
1.	Real	user	monitoring	(RUM).	RUM	essentially	records	all	user
interactions	with	an	application.	RUM	data	is	used	to	assess	the	real
service	level	a	user	experiences	and	whether	server	side	changes	are	being
propagated	to	users	correctly.	RUM	is	usually	passive	in	terms	of	not
affecting	the	application	payload	without	exerting	load	or	changing	the
server-side	application.

2.	Synthetic	monitoring.	Synthetic	monitoring	is	similar	to	developers

performing	stress	testing	on	an	application.	Expected	user	behaviors	are
scripted	either	using	some	emulation	system	or	using	actual	client	software
(such	as	a	browser).	However,	the	goal	is	often	not	to	stress	test	with	heavy
loads,	but	again	to	monitor	the	user	experience.	Synthetic	monitoring
allows	you	to	monitor	user	experience	in	a	systematic	and	repeatable
fashion,	not	dependent	on	how	users	are	using	the	system	right	now.
Synthetic	monitoring	may	be	a	portion	of	the	automated	user	acceptance
tests	that	we	discussed	in	Chapter	5.

Intrusion	Detection
Intruders	can	break	into	a	system	by	subverting	an	application,	for	example,
through	incorrect	authorization	or	a	man-in-the-middle	attack.	Applications	can
monitor	users	and	their	activities	to	determine	whether	the	activities	are
consistent	with	the	users’	role	in	the	organization	or	their	past	behavior.	For
instance,	if	user	John	has	a	mobile	phone	using	the	application,	and	the	phone	is
currently	in	Australia,	any	log-in	attempts	from,	say,	Nigeria	should	be	seen	as
suspicious.
An	intrusion	detector	is	a	software	application	that	monitors	network	traffic

by	looking	for	abnormalities.	These	abnormalities	can	be	caused	either	by
attempts	to	compromise	a	system	by	unauthorized	users	or	by	violations	of	an
organization’s	security	policies.
Intrusion	detectors	use	a	variety	of	different	techniques	to	identify	attacks.

They	frequently	use	historical	data	from	an	organization’s	network	to	understand
what	is	normal.	They	also	use	libraries	that	contain	the	network	traffic	patterns
observed	during	various	attacks.	Current	traffic	on	a	network	is	compared	to	the
expected	(from	an	organization’s	history)	and	the	abnormal	(from	the	attack
history)	to	decide	whether	an	attack	is	currently	under	way.
Intrusion	detectors	can	also	monitor	traffic	to	determine	whether	an

organization’s	security	policies	are	being	violated	without	malicious	intent.	For
example,	a	current	employee	may	attempt	to	open	a	port	for	external	traffic	for
experimental	purposes.	The	organization	may	have	a	policy	disallowing	external
traffic	on	particular	ports.	The	intrusion	detector	can	detect	such	violations.
Intrusion	detectors	generate	alerts	and	alarms	as	we	discuss	in	Section	7.5.

Problems	with	false	positives	and	false	negatives	exist	with	intrusion	detectors
as	they	do	with	all	monitoring	systems.
Determining	whether	a	particular	data	anomaly	reflects	an	intrusion	is	not	an

easy	task.	We	discuss	an	example	in	more	detail	in	Section	7.8.

7.3	How	to	Monitor
Monitoring	systems	typically	interact	with	the	elements	being	monitored,	as
shown	in	Figure	7.1.	The	system	to	be	monitored	(Systems	1,	2,	…	in	Figure
7.1)	can	be	as	broad	as	a	collection	of	independent	applications	or	services,	or	as
narrow	as	a	single	application.	If	the	system	is	actively	contributing	to	the	data
being	monitored	(the	arrow	labeled	“agentless”)	then	the	monitoring	is	intrusive
and	affects	the	system	design.	If	the	system	is	not	actively	contributing	to	the
data	being	monitored	(the	arrow	labeled	“agent-based”)	then	the	monitoring	is
nonintrusive	and	does	not	affect	the	system	design.	A	third	source	of	data	is
indicted	by	the	arrow	labeled	“health	checks.”	External	systems	can	also	monitor
system	or	application-level	states	through	health	checks,	performance-related
requests,	or	transaction	monitoring.

FIGURE	7.1	Monitoring	system	interacting	with	the	elements	being
monitored	[Notation:	Architecture]

The	data	collected	either	through	agents	or	through	agentless	means	is
eventually	sent	to	a	central	repository	(“Monitoring	data	storage”	in	Figure	7.1).
The	central	repository	is	typically	distributed—so	it	is	logically	but	not
physically	central.	Each	step	from	the	initial	collection	to	the	central	repository
can	do	filtering	and	aggregation.	The	considerations	in	determining	the	amount
of	filtering	and	aggregation	are:	the	volume	of	data	being	generated,	the
potential	failure	of	local	nodes,	and	the	granularity	of	the	necessary
communication.	Retrieving	the	data	from	local	nodes	is	important	because	the
local	node	may	fail	and	the	data	become	unavailable.	Sending	all	of	the	data
directly	to	a	central	repository	may	introduce	congestion	to	the	network.	Thus,
selecting	the	intermediate	steps	from	the	local	nodes	to	the	central	repository	and
the	filtering	and	aggregation	done	at	each	step	are	important	architectural
decisions	when	setting	up	a	monitoring	framework.
One	strategy	for	making	the	filtering/consolidation	decision	is	to	consider	the

effect	of	the	loss	of	data.	Some	data	represents	instantaneous	readings	that	are
shortly	to	be	superseded	by	another	set	of	instantaneous	readings.	Loss	of	one	set
of	readings	may	not	affect	the	overall	monitoring	or	the	triggering	of	alarms.
Once	monitoring	data	is	collected,	you	can	do	many	things.	Alarms	can	be

configured	to	trigger	alerts	that	notify	operators	or	other	systems	about	major
state	changes.	Graphing	and	dashboards	can	be	used	to	visualize	system	state
changes	for	human	operators.	A	monitoring	system	also	allows	operators	to	drill
down	into	detailed	monitoring	data	and	logs,	which	is	important	for	error
diagnosis,	root	cause	analysis,	and	deciding	on	the	best	reaction	to	a	problem.
So	far	we	have	presented	a	traditional	view	of	the	monitoring	system,	but	this

view	is	increasingly	being	challenged	by	new	interactions	between	the
monitoring	system	and	other	systems.	We	show	these	outside	of	the	dotted	areas
in	Figure	7.1.
You	can	perform	stream	processing	and	(big)	data	analytics	on	monitoring

data	streams	and	historical	data.	Not	only	can	you	gain	insights	into	system
characteristics	using	system-level	monitoring	data,	you	may	also	gain	insights
into	user	behaviors	and	intentions	using	application-	and	user-level	monitoring
data.
Because	of	these	growing	different	uses	of	monitoring	data,	many	companies

are	starting	to	use	a	unified	log	and	metrics-centric	publish-subscribe
architecture	for	both	the	monitoring	system	and	the	overall	application	system.
More	and	more	types	of	data,	including	nontraditional	log	and	metrics	data,	are

More	and	more	types	of	data,	including	nontraditional	log	and	metrics	data,	are
being	put	into	a	unified	storage,	where	various	other	systems	(whether
monitoring-related	or	not)	can	subscribe	to	the	data	of	interest.	Several
implications	of	the	unified	view	are

	It	significantly	reduces	the	coupling	of	any	two	systems.	Systems	interact
with	the	unified	log	in	a	publish-subscribe	fashion	that	makes	publishers
ignorant	of	the	specific	identity	of	the	subscriber	and	vice	versa.
	It	simplifies	the	integration	of	multiple	sources	of	data.	Much	of	the
analysis	of	monitoring	data	involves	the	correlation	of	multiple	sources	of
data.	We	have	mentioned	relating	business	metrics	to	performance	metrics.
The	sources	of	these	measurements	are	not	going	to	be	the	same.	Using	a
central	log	store	allows	data	to	be	correlated	based	on	attributes	such	as
time	stamps	rather	than	their	source.

The	line	between	the	monitoring	system	and	the	system	to	be	monitored	is
getting	blurred	when	application	and	user	monitoring	data	are	treated	the	same
as	system-level	monitoring	data—data	from	anywhere	and	at	any	level	could
contribute	to	insights	about	both	systems	and	users.	Thus,	the	architecture
presented	here	is	no	longer	just	a	monitoring	system	architecture	when	you
consider	all	the	other	systems	putting	information	into	and	getting	information
out	of	the	central	storage.
We	now	discuss	several	aspects	of	the	architecture	in	more	detail,	namely,	the

method	of	retrieving	monitoring	data,	monitoring	operations,	and	data	collection
and	storage.

Agent-Based	and	Agentless	Monitoring
In	some	situations,	the	system	to	be	monitored	already	has	internal	monitoring
facilities	that	can	be	accessed	through	a	defined	protocol.	For	example,	the
Simple	Network	Management	Protocol	(SNMP)	is	a	common	mechanism	for
gathering	metrics	from	servers	and	network	equipment.	It	is	especially	useful	on
network	equipment	because	that	equipment	often	comes	as	a	closed	system	and
you	cannot	install	monitoring	agents.	Windows	Management	Instrumentation
(WMI)	provides	access	to	management	data	for	Windows	systems.	You	can	use
protocols	like	Secure	Shell	(SSH)	to	remotely	access	a	system	and	retrieve
available	data.	Agentless	monitoring	is	particularly	useful	when	you	cannot
install	agents,	and	it	can	simplify	the	deployment	of	your	monitoring	system.	In
Section	7.2,	we	discussed	applications	that	contributed	information	to	the
monitoring	system.	Application	Response	Measurement	(ARM)	is	an	industry
standard	that	provides	ways	for	an	application	to	trigger	actions	such	as

requesting	an	external	ARM-supported	system	to	start	or	stop	tracking	a
transaction	and	correlating	times	spent	in	different	systems	for	a	single
transaction.
The	agent-based	and	agentless	approaches	both	have	their	strengths	and

weaknesses.	The	agentless	approach	is	better	in	terms	of	deployment	and
maintenance	effort.	However,	it	is	less	secure	if	the	collection	repository	is
outside	of	your	network	because	more	ports	need	to	be	opened	and	firewall	rules
relaxed	to	allow	different	layers	of	a	system	to	communicate	its	data	to	the
external	world.	In	contrast,	an	agent	on	a	host	can	communicate	with	the	OS	and
applications	locally	and	send	all	collected	information	over	a	single	channel.
This	also	allows	an	agent-based	approach	to	optimize	network	traffic	and
processing	overhead.
In	addition	to	collecting	monitoring	data	from	inside	a	system,	you	can	collect

information	from	an	external	viewpoint.	You	can	set	up	health	checks	to
periodically	check	a	system	or	conduct	performance	monitoring	from	an	external
user’s	point	of	view.
As	we	mentioned	earlier,	multiple	types	of	information	are	considered

monitoring	information	or	at	least	as	contributing	to	monitoring	data	analysis.
Questions	to	be	considered	when	designing	a	system	include:	Where	does	this
information	come	from?	How	does	this	information	fit	into	the	application	and
monitoring	architecture?	What	are	the	quality	implications?

Monitoring	Operation	Activities
Some	operations	tools,	such	as	Chef,	monitor	resources	such	as	configuration
settings	to	determine	whether	they	conform	to	prespecified	settings.	We	also
mentioned	monitoring	resource	specification	files	to	identify	changes.	Both	of
these	types	of	monitoring	are	best	done	by	agents	that	periodically	sample	the
actual	values	and	the	files	that	specify	those	values.
Treating	infrastructure-as-code	implies	that	infrastructure	should	contribute

monitoring	information	in	the	same	fashion	as	other	applications.	This	can	be
through	any	of	the	means	that	we	have	discussed:	agents,	agentless,	or	external.
In	Chapter	14,	we	discuss	how	to	perform	fine-grained	monitoring	of	the

behavior	of	operations	tools	and	scripts.	This	can	include	assertions	over
monitoring	data.	For	instance,	during	a	rolling	upgrade	a	number	of	VMs	are
taken	out	of	service	to	be	replaced	with	VMs	running	a	newer	version	of	the
application.	Then	you	can	expect	the	average	CPU	utilization	of	the	remaining
machines	to	increase	by	a	certain	factor.

Collection	and	Storage
The	core	of	monitoring	is	recoding	and	analyzing	time	series	data,	namely,	a
sequence	of	time-stamped	data	points.	These	data	points	are	typically	acquired	at
successive	intervals	in	time	and	represent	certain	aspects	of	states	and	state
changes.	In	addition,	the	system	being	monitored	will	generate	time-stamped
event	notifications	at	various	levels	of	severity.	These	notifications	are	typically
output	as	logs.	The	monitoring	system	can	conduct	direct	measurement	or	collect
existing	data,	statistics,	or	logs	and	then	turn	them	into	metrics,	which	have	a	set
of	properties	usually	indicating	time	and	space.	The	data	is	then	transferred	to	a
repository	using	a	predefined	protocol.	The	incoming	data	streams	often	need	to
be	further	processed	into	a	time	series	and	stored	in	a	time	series	database.	Three
key	challenges	are:	collating	related	items	by	time,	collating	related	items	by
context,	and	handling	the	volume	of	monitoring	data.

	Collating	related	items	by	time.	Time	stamps	in	a	distributed	system	are
not	going	to	be	consistent.	Different	nodes	in	a	single	cluster	may	differ	in
their	clocks	by	several	microseconds.	Different	nodes	across	multiple
clusters	may	differ	by	much	more.	Thus,	using	time	stamps	to	decide	that
two	items	are	related	in	time	or	even	if	they	are	sequential	is	problematic.
Using	time	intervals	to	determine	relation	rather	than	exact	measurements
is	one	technique,	although	it	may	miss	some	relationships	if	the	time
difference	between	two	related	measurements	is	greater	than	the	window
defined	as	determining	a	relationship.
	Collating	related	items	by	context.	The	context	for	a	message	is	often	as
important	as	the	message.	Suppose	you	are	performing	a	rolling	upgrade
and	replacing	two	instances	in	each	wave	of	the	upgrade.	Different	nodes
may	produce	log	messages	about	the	state	of	the	instance	upgrade.	Without
being	able	to	determine	that	two	messages	refer	to	the	same	instance,	it	is
very	difficult	to	reconstruct	a	sequence	of	events	to	diagnose	a	problem.
This	same	problem	occurs	when	monitoring	data	flows.	A	particular
message	from	an	instance	of	a	system	is	in	direct	response	to	the	input	to
that	instance	and	in	indirect	response	to	a	user	request	or	an	external	event.
Identifying	both	the	direct	and	indirect	triggers	for	a	particular	message	is
important	to	enable	analysis	of	performance	problems	or	failures.
	The	volume	of	monitoring	data.	You	may	need	a	retention	policy	to	cope
with	the	volume	of	data	collected.	A	simple	retention	time	for	your
monitoring	data	may	be	suboptimal:	you	may	be	interested	in	storing	finer-
grained	monitoring	data	for	the	recent	past	and	increasingly	course-grained

data	aggregates	for	a	more	distant	past.	Your	varying	policies	may	also	be
related	to	your	current	remaining	storage	capacity	and	the	criticality	of	the
metrics.	For	fast	processing	of	queries	or	display,	you	may	also	choose	to
process	the	basic	data	into	special	views	with	indexing.

One	popular	time	series	database	is	the	Round-Robin	Database	(RRD),	which
is	designed	for	storing	and	displaying	time	series	data	with	good	retention	policy
configuration	capabilities.	As	we	are	moving	into	the	big	data	age,	big	data
storage	and	processing	solutions	are	increasingly	used	for	monitoring	data.	You
can	treat	your	monitoring	data	as	data	streams	feeding	into	streaming	systems	for
real-time	processing,	combined	with	(big)	historical	data.	You	can	load	all	your
data	into	big	data	storage	systems	such	as	Hadoop	Distributed	File	System
(HDFS)	or	archive	it	in	relatively	inexpensive	online	storage	systems	such	as
Amazon	Glacier.

7.4	When	to	Change	the	Monitoring	Configuration
Monitoring	is	either	time-	or	event-based.	Time-based	monitoring	is	based	on	a
reporting	interval	but	the	interval	does	not	need	to	be	a	constant	interval	for	all
applications	and	throughout	the	execution	of	an	application.	Timing	frequency
and	generation	of	events	should	all	be	configurable	and	changed	in	response	to
events	occurring	in	the	datacenter.	Some	examples	of	events	that	could	change
the	monitoring	configuration	are:

	An	alert.	We	discuss	alarms	and	alerts	in	detail	in	the	next	section.	One
consequence	of	an	alert	could	be	that	the	frequency	of	sampling	is
increased.	The	frequency	could	be	decreased	if	the	alert	does	not	turn	into
an	alarm.
	Deployment.	Any	of	the	deployment	scenarios	we	discussed	in	Chapter	6
can	trigger	changes	to	monitoring.	These	include
	Canary	deployment.	Since	the	purpose	of	a	canary	deployment	is	to	test
new	versions,	these	new	versions	should	be	monitored	more	closely.
	Rolling	upgrade.	We	discussed	several	possible	race	conditions
depending	on	your	packaging	of	services	into	VMs.	Closer	monitoring
will	help	detect	the	occurrence	of	a	race	condition	more	quickly.
	Feature	activation	or	deactivation.	Activating	or	deactivating	features
will	change	the	behavior	of	services.	Such	changes	should	trigger
changes	in	the	monitoring	configuration.

	Changes	to	any	infrastructure	software	including	DevOps	tools.	Changes
to	infrastructure	software	can	affect	the	behavior	or	performance	of

applications	just	as	changes	to	the	applications	themselves.
	Changes	to	any	configuration	parameters.	One	of	the	major	sources	of
errors	in	modern	distributed	systems	is	incorrect	parameters.	More	detailed
monitoring	in	the	wake	of	changes	to	parameters	can	help	detect	problems
more	quickly.

7.5	Interpreting	Monitoring	Data
Now	assume	that	the	monitoring	data	(both	time-	and	event-based)	has	been
collected	in	a	central	repository.	This	data	is	being	added	and	examined
continually,	by	both	other	systems	and	humans.	We	begin	by	describing	some
general	principles	about	the	content	of	log	messages.

Logs
A	log	is	a	time	series	of	events,	since	it	is	a	sequence	of	records	ordered	by	time.
Records	are	typically	appended	to	the	end	of	the	log.	Rather	than	directly
recording	the	states,	logs	usually	record	the	actions	performed	that	may	result	in
a	state	change	of	the	system.	The	changed	value	itself	may	not	be	included	in	the
log.
Logs	play	an	important	role	in	monitoring,	especially	in	DevOps	settings.	In

development,	programmers	are	familiar	with	application	logging,	where	they
print	out	system	states	and	actions	to	assist	their	development,	testing,	and
debugging	activities.	Most	logging	will	then	be	turned	off	or	removed	for
production	deployment,	so	that	only	warnings	and	critical	information	will	be
logged	and	displayed.	Logs	written	by	the	developers	are	frequently	for	the
developers’	use	rather	than	for	operators.	One	of	the	motivations	of	the	DevOps
movement	has	been	to	treat	operators	as	first-class	stakeholders,	and	this	means
writing	logs	that	they	can	use.	The	sources	of	these	logs	are	not	only
applications.	Web	servers,	database	systems,	and	the	DevOps	pipeline	all
produce	logs.	Another	type	of	important	log	is	composed	of	the	log	lines	printed
by	operations	tools.	When	a	system	is	being	upgraded	by	an	upgrade	tool,
migrated	by	a	migration	tool,	or	reconfigured	by	a	configuration	management
tool,	logs	about	the	operations	or	change	histories	are	recorded—these	are	very
important	for	error	detection	and	diagnosis	of	any	operation,	including	those
triggered	by	the	DevOps	pipeline.
Logs	are	used	during	operations	to	detect	and	diagnose	problems.	Logs	are

used	during	debugging	to	detect	errors.	Logs	are	used	during	post-problem
forensics	to	understand	the	sequence	that	led	to	a	particular	problem.	Some
general	rules	about	writing	logs	are

general	rules	about	writing	logs	are
	Logs	should	have	a	consistent	format.	This	is	not	always	possible	since
some	logs	are	produced	by	third-party	systems	out	of	your	control.	The	log
production	that	is	within	your	control	should	be	consistent,	however.
	Logs	should	include	an	explanation	for	why	this	particular	log	message
was	produced.	Tags	such	as	“error	condition	detected”	or	“tracing	of	code”
can	be	used.
	Log	entries	should	include	context	information.	Context	is	more	than	date
and	time;	it	also	includes	information	to	support	tracking	the	log	entry	such
as:
	Source	of	the	log	entry	within	the	code
	Process	ID	for	the	process	executing	when	the	log	entry	was	produced
	Request	ID	for	the	request	that	caused	that	process	to	execute	this	log
producer
	VM	ID	for	the	VM	that	produced	this	message

	Logs	should	provide	screening	information.	Log	messages	are	collected	in
a	repository	that	is	accessed	through	queries.	Severity	levels	are	an
example	of	screening	information,	alert	levels	are	another.

Graphing	and	Display
Once	you	have	all	relevant	data,	it	is	useful	to	visualize	it	in	various	ways.	Most
monitoring	data	is	time	series	data,	which	is	amenable	to	plotting.	A	flexible
system	should	allow	you	to	have	full	control	over	what	to	plot	and	how.	Some
monitoring	systems	have	strong	visualization	capabilities	embedded.	There	are
also	specialized	systems	just	for	visualization	and	querying,	such	as	Graphite,
which	support	real-time	graphing	of	large	amounts	of	data.
You	can	set	up	a	dashboard	showing	important	real-time	aspects	of	your

system	and	its	components	at	an	aggregated	level.	You	can	also	dive	into	the
details	interactively	or	navigate	through	history	when	you	detect	an	issue.	An
experienced	operator	will	use	visual	patterns	of	graphs	to	discern	problems.	The
graphs	may	show	spikes,	bursts,	cyclic	variation,	steadily	trending	up/down,	or
sparse	events,	all	of	which	need	to	be	understood	in	the	context	of	characteristics
of	the	state	being	monitored	and	the	environment.	In	a	virtualized	environment
running	on	shared	physical	resources	or	in	a	continuous	deployment	setting,
there	will	be	a	large	number	of	legitimate	changes	going	on,	such	as	resource
scaling,	resource	migration,	and	rolling	upgrade.	Therefore,	visual	abnormalities
may	not	always	indicate	problems.	It	is	becoming	increasingly	challenging	for
human	operators	to	look	at	the	graphs	and	figure	out	which	interactions	in	a

human	operators	to	look	at	the	graphs	and	figure	out	which	interactions	in	a
complex	setup	lead	to	the	perceived	graphs.	This	naturally	leads	to	challenges
for	alerting	systems	and	alarm	configuration.

Alarms	and	Alerts
Monitoring	systems	inform	the	operator	of	significant	events.	This	information
can	be	in	the	form	of	either	an	alarm	or	an	alert.	Technically,	alerts	are	raised	for
purposes	of	informing	and	may	be	in	advance	of	an	alarm	(e.g.,	the	datacenter
temperature	is	rising),	whereas	alarms	require	action	by	the	operator	or	another
system	(e.g.,	the	datacenter	is	on	fire).	Alarms	and	alerts	are	generated	based	on
configurations	set	by	the	operators.	Alarms	and	alerts	can	be	triggered	by	events
(e.g.,	a	particular	physical	machine	is	not	responding),	by	values	crossing	a
threshold	(e.g.,	the	response	time	for	a	particular	disk	is	greater	than	an
acceptable	value),	or	by	sophisticated	combinations	of	values	and	trends.
In	an	ideal	world,	every	alarm	generated	by	the	monitoring	system	represents

a	real	issue	that	needs	attention	and	every	issue	that	needs	attention	generates	an
alarm.	When	an	alarm	is	triggered,	the	alerts	should	provide	information	to
enable	further	diagnosis	of	the	situation	and	provide	guidance	as	to	the	remedial
action.	Unfortunately,	we	do	not	live	in	an	ideal	world.	The	typical	issues
therefore	are

	How	do	you	configure	your	monitoring	system	to	reduce	false	positives
(alarms	without	the	necessity	for	action)	and	false	negatives	(the	necessity
for	action	without	an	alarm	being	raised)?
	How	do	you	configure	your	monitoring	system	so	that	the	alerts	provide
necessary	information	to	diagnose	an	alarm?

In	a	monitoring	system	with	many	metrics	covering	many	aspects	of	the
system,	generating	an	alert	or	an	alarm	can	pose	very	tricky	tradeoffs.	A	problem
for	operators	is	receiving	false	positive	alarms	or	a	flood	of	alerts	from	different
channels	about	the	same	event.	Under	such	conditions,	operators	will	quickly	get
“alert	fatigue”	and	start	ignoring	alerts	or	simply	turn	some	of	them	off.	On	the
other	hand,	if	you	try	to	reduce	false	positives,	you	may	risk	missing	important
events,	which	increases	false	negatives.	If	your	alarms	are	very	specific	in	their
triggering	conditions,	you	may	be	informed	about	some	subtle	errors	early	in
their	occurrence—but	you	may	risk	rendering	your	alarms	less	effective	when
the	system	undergoes	changes	over	time,	or	when	the	system	momentarily
exhibits	interference	of	legitimate	but	previously	unknown	operations.
Continuous	deployment	and	cloud	elasticity	exacerbate	the	problem.	As	you	can

see,	determining	the	correct	configurations	for	a	monitoring	system	is	nontrivial
and	will	vary	depending	on	the	environment	and	the	severity	of	problems	you
might	uncover.
Some	general	rules	to	improve	the	usefulness	of	alerts	and	alarms	are
	Introduce	context	to	your	alarms.	This	could	be	as	simple	as	disabling
certain	alerts	during	specific	times	or	actions;	for	example,	when	replacing
a	physical	computer	it	does	not	make	sense	to	raise	alarms	about	the
computer’s	health.	Other	more	complex	contexts	could	be	related	to
external	events	or	interfering	operations.
	Alarms	can	not	only	go	off	if	something	happens,	they	can	also	be	set	to	go
off	if	an	expected	event	did	not	happen.	This	helps	with	drills	and	testing
of	your	alarms	since	you	can	set	an	alarm	to	go	off	when	an	event	that	you
know	is	not	going	to	happen	does	not,	in	fact,	happen.
	Aggregate	different	alerts	that	are	likely	referring	to	the	same	events.
	Set	clear	severity	levels	and	urgency	levels	so	people	or	systems	receiving
the	alerts	can	act	accordingly.

Diagnosis	and	Reaction
Operators	often	use	monitoring	systems	to	diagnose	the	causes	and	observe	the
progress	of	mitigation	and	recovery.	However,	monitoring	systems	are	not
designed	for	interactive	or	automated	diagnosis.	Thus,	operators,	in	ad	hoc	ways,
will	try	to	correlate	events,	dive	into	details	and	execute	queries,	and	examine
logs.	Concurrently,	they	manually	trigger	more	diagnostic	tests	and	recovery
actions	(such	as	restarting	processes	or	isolating	problematic	components)	and
observe	their	effects	from	the	monitoring	system.
We	discussed	reliability	engineers	in	an	earlier	chapter.	The	essence	of	the

skill	of	a	reliability	engineer	is	the	ability	to	diagnose	a	problem	in	the	presence
of	uncertainty.	Once	the	problem	has	been	diagnosed,	frequently	the	reaction	is
clear	although,	at	times,	possible	reactions	have	different	business	consequences.
If	there	are	business	consequences	of	the	reactions	to	a	problem,	the	escalation
procedures	of	an	organization	should	indicate	who	makes	the	decision.

Monitoring	DevOps	Processes
DevOps	processes	should	be	monitored	so	that	they	can	be	improved	and
problems	can	be	detected.	In	Chapter	3,	we	discussed	the	improvement	of
processes.	Such	improvement	depends	on	gathering	information.
Damon	Edwards	lists	five	things	that	are	important	to	monitor:

Damon	Edwards	lists	five	things	that	are	important	to	monitor:
1.	A	business	metric
2.	Cycle	time
3.	Mean	time	to	detect	errors
4.	Mean	time	to	report	errors
5.	Amount	of	scrap	(rework)
Observe	that	the	raw	data	for	these	five	values	will	come	from	multiple

sources	and	multiple	reporting	systems.	As	we	said	earlier,	being	able	to
correlate	data	from	multiple	sources	is	important	in	interpreting	monitoring	data.

7.6	Challenges
In	this	section,	we	discuss	the	four	challenges	mentioned	in	Section	7.1	in	more
detail.	These	challenges	arise	due	to	DevOps	practices	and	modern	computing
environments.

Challenge	1:	Monitoring	Under	Continuous	Changes
A	problem	in	the	operations	context	is	signaled	by	a	deviation	from	normal
behavior.	Normal	behavior	assumes	the	system	is	relatively	stable	over	time.
However,	in	a	large-scale	complex	environment,	changes	are	the	norm.	We	are
not	talking	about	varying	workloads	or	dynamic	aspects	of	your	application,
which	are	often	well	anticipated.	The	new	challenges	come	from	both	cloud
elasticity,	making	infrastructure	resources	more	volatile,	and	the	automated
DevOps	operations,	which	trigger	various	sporadic	operations	(such	as	upgrade,
reconfiguration,	or	backups).	Sporadic	operations	and	continuous	deployment
and	deployment	practices	make	software	changes	more	frequent.	As	we	have
seen,	deploying	a	new	version	into	production	multiple	times	a	day	is	becoming
a	common	practice.	Each	deployment	is	a	change	to	the	system	and	may	impact
monitoring.	Furthermore,	these	changes	may	be	happening	simultaneously	in
different	portions	of	an	application	or	the	infrastructure.
To	what	extent	can	you	use	the	past	monitoring	data	of	your	system	to	do

performance	management,	capacity	planning,	anomaly	detection,	and	error
diagnosis	for	the	new	system?	In	practice,	operators	may	turn	off	monitoring
during	scheduled	maintenance	and	upgrades	as	a	work-around	to	reduce	false
positive	alerts	triggered	by	those	changes.	When	change	is	the	norm,	this	can
lead	to	no	monitoring—for	example,	flying	blind.
One	technique	is	to	carefully	identify	the	non-changing	portions	of	the	data.

For	example,	use	dimensionless	data	(i.e.,	ratios).	You	may	find	that	although

For	example,	use	dimensionless	data	(i.e.,	ratios).	You	may	find	that	although
individual	variables	change	frequently,	the	ratio	of	two	variables	is	relatively
constant.	Another	technique	is	to	focus	monitoring	on	those	things	that	have
changed.
We	also	discussed,	in	Chapter	6,	the	merits	of	canary	testing	as	a	way	of

monitoring	a	small	rollout	of	a	new	system	for	issues	in	production.	One
technique	is	to	compare	performance	of	the	canaries	with	historical	performance.
Changes	that	cannot	be	rationalized	because	of	feature	changes	may	indicate
problems.
Another	challenge	related	to	monitoring	under	continuous	changes	is	the

specification	of	monitoring	parameters.	When	your	system	is	not	overly	complex
and	relatively	stable,	specifying	what	needs	to	be	monitored,	setting	thresholds,
and	defining	the	alerting	logic	can	be	done	manually.	In	the	past,	large-scale
monitoring	reconfiguration	usually	happened	during	major	infrastructure
changes	and	migration	to	new	infrastructure,	for	example,	to	a	virtualized
environment	or	the	cloud.	A	new	software	release	came	in	every	few	months,
and	there	was	ample	time	left	for	tweaking	the	monitoring	part.	Even	in	such	an
environment,	the	complexity	of	setting	up	and	maintaining	a	monitoring	system
during	occasional	changes	is	still	often	mentioned	as	the	number	one	challenge
identified	by	monitoring	experts.
Continuous	changes	in	the	system	infrastructure	and	the	system	itself

complicate	the	setting	of	monitoring	parameters.	On	the	infrastructure	side,	we
mentioned	in	Chapter	5	that	there	can	be	significant	variation	in	performance
even	if	you	are	requesting	exactly	the	same	VM	type.	This	variance	is	due	to
factors	beyond	your	control,	such	as	the	CPU	type	you	get.	Your	monitoring
may	need	to	be	adjusted	for	this,	or	you	may	configure	your	scaling	controller	to
replace	VMs	that	are	performing	slowly	with	new	VMs,	in	the	hope	of	being
luckier	with	the	next	ones.
As	a	consequence,	it	makes	sense	to	automate	the	configuration	of	alarms,

alerts,	and	thresholds	as	much	as	possible.	The	monitoring	configuration	process
is	just	another	DevOps	process	that	can	and	should	be	automated.	When	you
provision	a	new	server,	a	part	of	the	job	is	to	register	this	server	in	the
monitoring	system	automatically.	When	a	server	is	terminated,	a	de-registration
process	should	happen	automatically.
We	discussed	changing	configurations	as	a	result	of	changes,	but	the

assumption	in	that	discussion	was	that	the	rules	for	changing	the	configurations
would	be	manually	set.	Some	thresholds	can	be	automatically	derived	from
underlying	changes.	Other	thresholds	can	be	automatically	learned	over	time.

For	example,	the	monitoring	results	during	canary	testing	for	a	small	set	of
servers	can	be	the	new	baseline	for	the	full	system	and	populated	automatically.

Challenge	2:	Bottom-Up	vs.	Top-Down	and	Monitoring	in
the	Cloud
One	major	goal	of	monitoring	is	to	detect	faults,	errors,	or	small-scale	failures	as
soon	as	possible,	so	you	can	react	to	them	early.	In	order	to	fulfil	this	goal,	it	is
natural	to	monitor	in	a	bottom-up	fashion:	Ideally,	errors	in	lower	layers	and	in
individual	components	can	be	detected	early,	before	they	propagate	and	affect
upper-layer	application	servers	or	applications	themselves	in	terms	of
aggregated	values.	There	are	two	challenges	here.
First,	there	is	usually	a	lot	more	to	be	monitored	at	the	individual	component

level	and	other	low	levels.	You	may	have	a	single	application	that	is	composed
of	several	components	deployed	on	hundreds	of	servers,	which	are	in	turn
supported	by	networks	and	storage	components.	A	single	root	cause	may	trigger
noticeable	phenomena	across	many	components.	It	can	be	very	tricky	to
correlate	these	phenomena	and	identify	the	root	cause	in	a	real-world
environment.
A	second	challenge	is	related	to	continuous	change	caused	by	cloud	elasticity

and	automation.	In	the	cloud,	lower-layer	infrastructure	and	servers	come	and	go
for	both	legitimate	reasons,	(e.g.,	termination	for	preventing	server	drifts,	scaling
out/in,	and	rolling	upgrades)	as	well	as	illegitimate	reasons	(e.g.,	instance
failures	or	resource	sharing	uncertainty).	It	is	a	nontrivial	task	to	discern	the
illegitimate	reasons	from	the	legitimate	ones.
Adopting	a	more	top-down	approach	for	monitoring	cloud-based	and	highly

complex	systems	is	an	attempt	to	solve	these	problems.	You	monitor	the	top
level	or	aggregated	data	and	only	dive	into	the	lower-level	data	in	a	smart	way	if
you	notice	issues	at	the	top	level.	The	lower-level	data	must	still	be	collected	but
not	systematically	monitored	for	errors.	The	collection	of	lower-level	data	is
only	done	to	the	degree	that	performance,	storage,	and	shipping	overhead	allow.
This	is	not	a	“silver	bullet,”	for	a	number	of	reasons.	First,	you	are	sacrificing
the	opportunity	to	notice	issues	earlier,	and	it	might	already	be	too	late	to
prevent	a	bigger	impact	once	you	notice	that	something	is	wrong	at	the	top	level.
The	second	and	even	more	problematic	issue	is	how	to	dive	down	to	the	lower-
level	data.	The	time	between	the	moment	you	detected	the	higher-level	issues
and	the	moment	the	lower-level	root	cause	happened	may	be	fairly	long.	Modern
distributed	systems	have	built-in	fault	tolerance	to	mask	faults	and	errors,

preventing	them	from	manifesting	at	the	system	level	and	affecting	end	user
experience.	Essentially,	it	may	take	a	variable	amount	of	time	from	when	an
initial	fault	takes	place	until	it	propagates	through	the	system	to	become
apparent.	You	cannot	simply	rely	on	the	time	stamp	of	your	high-level	error
detection.	Also,	you	cannot	assume	the	metrics	and	logs	related	to	the	original
problem	are	still	there:	They	may	have	disappeared	together	with	a	dead	node	or
region	of	your	network.	Trying	to	ship	all	relevant	data	to	a	safer	location	all	the
time	poses	a	major	challenge	in	a	large-scale	system	with	millions	of	external
and	internal	requests	per	second.
There	is	no	easy	solution.	Bottom-up	and	top-down	monitoring	are	both

important	and	should	be	combined	in	practice.	Context	information	is	usually
much	more	important	than	just	time	stamps.	As	already	mentioned,
incorporating	operations	knowledge	about	changes	into	your	monitoring	data	is
an	important	way	of	correlating	events	better.

Challenge	3:	Monitoring	a	Microservice	Architecture
In	earlier	chapters,	we	discussed	that	one	consequence	of	DevOps	on
architecture	is	the	adoption	of	a	microservice	architecture,	which	enables	having
an	independent	team	for	each	microservice.	However,	this	turns	your	system	into
a	fanout	system	or	a	deep-hierarchy	system.	Every	external	request	may
potentially	travel	through	a	large	number	of	internal	services	before	an	answer	is
returned.	If	any	of	the	services	is	slow	to	respond,	the	overall	response	time	will
suffer.	In	a	large-scale	system,	one	part	or	another	may	experience	some
slowdown	at	any	given	time,	which	may	consequently	lead	to	a	negative	impact
on	an	unacceptable	portion	of	the	overall	requests.	We	described	long-tail
responses	in	Chapter	2.	Micropartitions	and	selective	replication	enable	easier
migration,	which	can	be	used	to	move	services	away	from	problematic	parts	of
the	network.	Monitoring	multiple	requests	for	the	same	service	and	determining
that	only	one	response	is	necessary	becomes	quite	a	challenge.
Another	challenge	that	microservice	architectures	raise	is	how	to	identify	and

fix	“slow”	nodes.	We	mentioned	the	difficulty	of	determining	sporadic
performance	problems	earlier.	In	a	microservice	architecture	with	many	nodes,
determining	slow	but	still	performing	nodes	becomes	more	of	an	issue.	The
questions	are:	What	is	“slow”?	How	do	you	choose	appropriate	thresholds?	We
discuss	some	solutions	in	the	case	study	in	Chapter	13.

Challenge	4:	Dealing	with	Large	Volumes	of	Distributed
(Log)	Data

(Log)	Data
In	a	large-scale	system,	monitoring	everything	will	incur	a	considerable
overhead	in	terms	of	performance,	transmission,	and	storage.	A	large-scale
system	can	easily	generate	millions	of	events,	metric	measurements,	and	log
lines	per	minute.	Some	considerations	about	this	volume	of	data	are

1.	The	performance	overhead	of	collecting	metrics	at	a	small	time	interval
might	be	significant.	Operators	should	use	varied	and	changeable	intervals
rather	than	fixed	ones,	depending	on	the	current	situation	of	the	system.	If
there	are	initial	signs	of	an	anomaly	or	when	a	sporadic	operation	is
starting,	you	may	want	finer-grained	monitoring,	and	you	may	return	to
bigger	time	intervals	when	the	situation	is	resolved	or	the	operation
completed.

2.	You	should	use	a	modern	distributed	logging	or	messaging	system	for	data
collection,	rather	than	building	one	yourself.	A	distributed	logging	system
such	as	Logstash	can	collect	all	kinds	of	logs	and	conduct	a	lot	of	local
processing	before	shipping	the	data	off.	This	type	of	system	allows	you	to
reduce	performance	overhead,	remove	noise,	and	even	identify	errors
locally.	LinkedIn	developed	Kafka,	a	high-performance	distributed
messaging	system,	largely	for	log	aggregation	and	monitoring	data
collection.	It	adopts	an	event-oriented	architecture	and	decouples	the
incoming	stream	and	the	processing.

3.	With	the	emergence	of	big	data	analytics,	researchers	are	starting	to	use
advanced	machine	learning	algorithms	to	deal	with	noisy,	inconsistent,	and
voluminous	data.	This	is	a	space	to	watch.

7.7	Tools
There	are	many	monitoring	systems	and	tools	available,	both	from	the	open
source	community	and	from	commercial	players.	Due	to	an	overloading	of	the
term	monitoring,	it	is	often	difficult	to	compare	them.	We	list	a	few	typical	ones.

	Nagios:	Nagios	is	probably	the	most	widely	used	monitoring	tool	due	to	its
large	number	of	plug-ins.	The	plug-ins	are	basically	agents	that	collect
metrics	you	are	interested	in.	A	large	and	active	community	maintains
plug-ins	for	many	metrics	and	systems.	However,	Nagios’	core	is	largely
an	alerting	system	with	limited	features.	Nagios	also	has	limitations	in
dealing	with	a	cloud	environment	where	servers	come	and	go.
	Sensu	and	Icinga:	There	are	several	systems	that	try	to	improve	over
Nagios.	Sensu	is	a	highly	extensible	and	scalable	system	that	works	well	in

cloud	environments.	Incinga	is	a	fork	of	Nagios.	It	focuses	on	a	more
scalable	distributed	monitoring	architecture	and	easy	extension.	Inciga	also
has	a	stronger	internal	reporting	system	than	Nagios.	Both	systems	can
reuse	Nagios’s	large	plug-in	pool.
	Ganglia:	Ganglia	was	originally	designed	to	collect	cluster	metrics.	It	is
designed	to	have	node-level	metrics	replicated	to	nearby	nodes	to	prevent
data	loss	and	over-chattiness	to	the	central	repository.	Many	IaaS	providers
support	Ganglia.
	Graylog2,	Logstash,	and	Splunk:	These	three	are	distributed	log
management	systems,	tailored	for	processing	large	amounts	of	text-based
logs.	There	are	front	ends	for	integrative	exploration	of	logs	and	powerful
search	features.
	CloudWatch	and	the	like:	If	you	are	using	a	public	cloud,	the	cloud
provider	will	usually	offer	some	solution	for	monitoring.	For	example,
AWS	offers	CloudWatch,	which	allows	hundreds	of	metrics	to	be
collected	at	a	fixed	interval.
	Kafka:	As	mentioned	earlier,	due	to	the	significant	challenges	in	collecting
a	large	amounts	of	logs	and	metrics	for	real-time,	multiple	uses	by	other
systems,	specialized	systems	were	designed	for	the	collection	and
dissemination	part.	Kafka	is	a	publish-subscribe	messaging	system	used
not	only	for	monitoring	but	also	for	other	purposes.
	Stream	processing	tools	(Storm,	Flume,	S4):	If	you	are	collecting	a	large
number	of	logs	and	metrics	continuously,	you	are	effectively	creating
monitoring	data	streams.	Thus,	stream	processing	systems	can	be	used	for
processing	monitoring	data,	even	in	a	real-time	fashion.

Apdex	(Application	Performance	Index)	is	an	open	standard	developed	by	an
alliance	of	companies.	It	defines	a	standard	method	for	reporting	and	comparing
the	performance	of	software	applications	in	computing.	Its	purpose	is	to	convert
measurements	into	insights	about	user	satisfaction,	by	specifying	a	uniform	way
to	analyze	and	report	on	the	degree	to	which	measured	performance	meets	user
expectations.

7.8	Diagnosing	an	Anomaly	from	Monitoring	Data—the
Case	of	Platformer.com
Two	of	the	reasons	we	identified	for	monitoring	are	to	identify	performance
problems	and	to	detect	intruders	in	the	system.	In	this	section,	we	explore	a

small	case	study	with	some	data	from	Platformer.com	that	demonstrates	three
aspects:

	Distinguishing	between	these	two	causes	of	an	anomaly	in	performance
data	is	not	always	straightforward.
	Deciding	whether	monitoring	the	performance	of	an	application	is	a	Dev
responsibility	or	an	Ops	responsibility	is	not	straightforward.
	Lack	of	coordination	between	different	organizational	entities	incurs	costs.

We	begin	by	presenting	the	context	for	the	data	collection	we	are	going	to
discuss.	We	then	discuss	the	data	that	was	observed	and	how	it	was	analyzed.
We	conclude	this	section	by	reflecting	on	the	implications	of	this	incident	on
DevOps	and	responsibilities.

Context
Platformer.com	is	an	Australian	Platform	as	a	Service	(PaaS)	provider.	It
provides	a	marketplace	of	applications,	such	as	content	management	solutions,
customer	relationship	management,	and	so	forth,	as	well	as	databases	and	other
underlying	systems.	Through	their	interface,	the	customer	can	specify	when	and
how	the	system	should	scale,	how	disaster	recovery	should	be	implemented,	and
so	forth.	The	value	comes	from	providing	services	at	a	higher	level	of
abstraction	than	IaaS,	so	that	customers	can	get	similar	benefits	without	having
to	deal	with	all	the	complexity	of	understanding	and	managing	IaaS	services.	It
also	allows	customers	to	avoid	being	locked	into	a	specific	cloud	vendor	because
the	same	interfaces	suffice	for	multiple	cloud	providers.
Platformer.com’s	customers	have	three	options	for	infrastructure	services:
1.	Access	third-party	cloud	providers.	AWS,	Microsoft	Azure,	Rackspace,
and	OrionVM	are	among	the	third-party	providers	supported	by
Platformer.com.	Customers	access	the	third-party	cloud	providers	through
a	Platformer.com	portal.

2.	Access	on	the	customers’	private	cloud.	This	option	places	Platformer.com
software	on	the	customers’	private	cloud.

3.	Access	on	the	customers’	private	datacenter.	This	option	is	similar	to
using	the	customers’	private	cloud	but	does	not	require	the	customer	to
have	adopted	a	cloud	solution.

Platformer.com	provides	its	services	using	a	layered	architecture,	as	shown	in
Figure	7.2.	The	salient	portions	of	the	architecture	are	the	API	that	provides	a
customer	with	a	common	view	of	Platformer.com	services,	regardless	of	the

http://Platformer.com
http://Platformer.com
http://Platformer.com
http://Platformer.com
http://Platformer.com
http://Platformer.com
http://Platformer.com
http://Platformer.com

delivery	mechanism,	and	the	dashboard	that	is	used	to	display	monitoring
information	back	to	the	customer.

FIGURE	7.2	Platformer.com	architecture	[Notation:	Architecture]

The	sample	customer	using	Platformer.com	in	this	discussion	is	called
PhotoPNP.	They	are	a	not-for-profit	organization	that	offers	online	services	for
the	exhibition,	education,	and	publication	of	photography.	They	rely	on
Platformer.com’s	services	to	provision	the	web	content	management	solution
Joomla,	integrated	with	an	e-commerce	application.

Data	Collection
When	providing	a	single	API	that	is	implemented	on	disparate	platforms,	a	PaaS
provider	such	as	Platformer.com	must	either	provide	the	least	common
denominator	of	the	platforms	they	support	(services	that	all	of	the	platforms
support)	or	simulate	services	available	on	some	platforms	with	services	available
on	others.
In	the	case	of	monitoring,	Platformer.com	provides	measurements	of	CPU,

disk,	memory,	and	networking	performance.	These	measures	serve	the
Platformer.com	needs	of	load	balancing	activities,	the	provisioning	of	new	VMs,
if	required,	or	the	de-provisioning	of	existing	VMs.	The	measurements	are

http://Platformer.com
http://Platformer.com
http://Platformer.com
http://Platformer.com
http://Platformer.com
http://Platformer.com

reported	to	Platformer.com’s	customers	through	a	dashboard.
Because	of	the	variety	of	platforms	supported	by	Platformer.com,	a	variety	of

measurement	tools	are	used,	depending	on	the	underlying	platform.	Table	7.2
provides	a	list	of	the	underlying	platforms	and	the	monitoring	solution	used	in
each	platform.

http://Platformer.com
http://Platformer.com

TABLE	7.2	Monitoring	Solutions	Associated	with	Platforms

Detecting	an	Anomaly
PhotoPNP’s	servers	have	a	normal	CPU	utilization	of	about	5%,	but	on
September	17	and	18,	it	spiked	to	around	17%.	This	spike	was	correlated	with
variations	in	the	other	resources	for	which	metrics	were	collected.	A	spike	in
CPU	load	is	one	symptom	of	an	intruder	in	the	system—in	this	case,	in	one	of
PhotoPNP’s	servers.	Platformer.com	became	concerned	and	investigated	why
the	spike	occurred.	It	subsequently	turned	out	that	PhotoPNP	had	an	opening
night	to	introduce	the	system	to	potential	users	and	this	caused	the	spike.	This
observation	was	confirmed	by	subsequently	having	PhotoPnNP	check	Google
Analytics	for	user-level	metrics	over	the	period	in	question.

Reflections
This	example	leads	to	a	number	of	different	conclusions.

	One	question	within	the	DevOps	community	is	who	the	first	responder
should	be	in	the	event	of	some	anomaly	in	observed	data.	In	this	example,
we	see	that	the	platform	provider	does	not	have	sufficient	insight	to
attribute	the	anomaly	to	a	normal	application-level	demand.	Consequently,
if	the	development	team	had	been	the	first	responder,	then	the	confusion
would	not	have	happened.	On	the	other	hand,	if	the	spike	in	CPU	usage
had	actually	been	caused	by	an	intruder,	having	the	application	developers
be	the	first	responders	would	have	delayed	an	adequate	response.
Furthermore,	requiring	the	application	developers	to	be	able	to	detect	an
intruder	is	asking	them	to	have	a	level	of	expertise	far	beyond	their
application.
	The	suggestion	that	an	intruder	might	have	penetrated	PhotoPNP’s	servers
came	from	an	examination	of	the	CPU	utilization,	but	the	attribution	of	the
load	required	application-level	metrics	rather	than	just	system-level
metrics.

Earlier	we	discussed	using	log	management	systems	to	correlate	logs	or
metrics	taken	from	diverse	sources.	In	the	case	of	Platformer.com,	the
application-level	metrics	were	not	available	because	their	visibility	was
limited	to	basic	system-level	metrics.
	If	PhotoPNP	had	informed	Platformer.com	that	they	were	planning	an
event	that	would	generate	additional	load,	then	the	suspicion	of	a	potential
intruder	would	not	have	occurred.	In	the	Platformer.com	case,	the

http://Platformer.com
http://Platformer.com
http://Platformer.com
http://Platformer.com

business-level	entity	was	in	another	organization—but	this	type	of	local
communication	could	just	as	easily	have	happened	within	the	same
organization,	so	this	could	easily	become	an	example	of	the	lack	of
coordination	between	business	and	IT	entities.

7.9	Summary
Monitoring	is	done	for	at	least	five	purposes:	detecting	failure,	diagnosing
performance	problems,	planning	capacity,	obtaining	data	for	insights	into	user
interactions,	and	detecting	intrusion.	Each	of	these	purposes	requires	different
data	and	different	means	of	interpreting	that	data.
Many	monitoring	systems	exist,	and	a	common	structure	allows	one	to	take

advantage	of	both	time-	and	event-based	collection.	A	common	structure	also
caters	to	applications	that	are	monitoring-aware	and	those	that	are	not.	The
monitoring	pipeline	typically	results	in	monitoring	data	being	in	a	central
repository	where	it	can	be	queried	and	used	to	generate	alarms,	alerts,	and
visualizations.	Correlating	data	from	multiple	sources	is	important	in	performing
analysis.
Continuous	deployment	practices	increase	the	frequency	of	change—to

applications	and	to	underlying	infrastructure.	There	is	less	time	for	observing
and	adjusting	your	monitoring	solution	to	these	changes.	This	suggests
automating	the	monitoring	configuration	process	itself,	including	automated
smart,	dynamic	adjustments	to	alarm	thresholds.	The	cloud	environment	makes
some	parts	of	the	system	more	opaque	and	introduces	constant	changes	at	the
infrastructure	level.	Monitoring	tools	need	to	be	designed	for	such	an
environment.
Systems	are	increasing	in	complexity,	degree	of	distribution,	and	size.	The

sheer	volumes	of	the	metrics	and	logs	demand	new	generations	of	infrastructure
to	support	the	collection,	transfer,	and	storage	for	monitoring	data.	And	once	you
have	collected	a	lot	of	monitoring	data,	big	data	analytics	has	the	potential	for
enabling	insight	from	it.	These	insights	are	no	longer	just	about	system	health
and	performance,	but	about	your	business	and	customers.

7.10	For	Further	Reading
The	book	Effective	Monitoring	and	Alerting	[Ligus	13]	goes	into	the	details	of
many	of	the	topics	we	discussed	in	this	chapter.
Ganglia	is	one	of	the	monitoring	tools	we	mentioned	and	is	the	subject	of	the

book	Monitoring	with	Ganglia	[Massie	12].

The	microservice	architectural	style	is	described	in	Building	Microservices:
Designing	Fine-Grained	Systems	[Newman	15].
The	idea	of	the	log	as	a	unifying	mechanism	comes	from	a	LinkedIn	page

[Kreps	13].
The	research	into	the	impact	of	delaying	a	response	to	a	Google	query	comes

from	a	Google	research	blog	[Brutlag	09].
Damon	Edwards	provides	the	types	of	monitoring	of	DevOps	processes	in

[Edwards	14].
As	always,	we	rely	on	Wikipedia	for	many	descriptions:
	Real	user	monitoring:	http://en.wikipedia.org/wiki/Real_user_monitoring
	Synthetic	monitoring:	http://en.wikipedia.org/wiki/Synthetic_monitoring
	Apdex:	http://en.wikipedia.org/wiki/Apdex

The	tools	that	we	mentioned	can	be	found	at	the	following	links:
	RRDtool:	http://oss.oetiker.ch/rrdtool/
	Application	Response	Measurement:
https://collaboration.opengroup.org/tech/management/arm/
	Logstash:	http://logstash.net/
	Nagios:	http://www.nagios.org/
	Sensu:	http://sensuapp.org/
	Icinga:	https://www.icinga.org/
	Graylog:	http://graylog2.org/
	Splunk:	http://www.splunk.com/
	CloudWatch:	http://aws.amazon.com/cloudwatch/
	Kafka:	http://kafka.apache.org
	Storm:	http://storm.incubator.apache.org/
	Flume:	http://flume.apache.org/
	S4:	http://incubator.apache.org/s4/

http://en.wikipedia.org/wiki/Real_user_monitoring
http://en.wikipedia.org/wiki/Synthetic_monitoring
http://en.wikipedia.org/wiki/Apdex
http://oss.oetiker.ch/rrdtool/
https://collaboration.opengroup.org/tech/management/arm/
http://logstash.net/
http://www.nagios.org/
http://sensuapp.org/
https://www.icinga.org/
http://graylog2.org/
http://www.splunk.com/
http://aws.amazon.com/cloudwatch/
http://kafka.apache.org
http://storm.incubator.apache.org/
http://flume.apache.org/
http://incubator.apache.org/s4/

8.	Security	and	Security	Audits

To	err	is	human;	to	really	screw	up	you	need	the	root	password.
—Anonymous

An	initial	reaction	to	discussing	security	in	a	DevOps	context	is	to	assume	that
security	practices	are	not	agile	and	can	actually	hinder	improving	the	time
between	a	code	commit	and	acceptance	into	normal	production.	We	believe	that
this	reaction	is	totally	backward.	Discussing	adoption	of	DevOps	practices
without	considering	security	makes	the	security	team	a	critic	of	these	practices
and	dooms	the	adoption	of	these	practices	in	many	enterprises.	In	our	case	study
in	Chapter	12,	we	see	an	approach	that	advocates	integrating	the	security	team
into	the	adoption	process.	Other	DevOps	activities	that	are	candidates	for	the
discussion	of	security	are

	Security	audits.	When	a	security	audit	is	imminent,	coordination	between
Dev	and	Ops	becomes	quite	important.
	Securing	the	deployment	pipeline.	The	deployment	pipeline	itself	is	an
attractive	target	for	malicious	attackers.
	Microservice	architectures.	The	adoption	of	a	microservice	architecture
introduces	new	security	challenges.

Security	audits	are	a	fact	of	life	for	financial	organizations,	organizations
dealing	with	health	records	or	other	private	information,	or	organizations	that
have	internal	controls	over	financial	transactions	(i.e.,	almost	all	organizations).
Security	audits	examine	all	aspects	of	an	organization,	from	its	policies	to	its
implementation.	One	of	the	catchphrases	in	DevOps	is	“infrastructure-as-code,”
which	means	treating	scripts	and	DevOps	process	specifications	as	code,	and
applying	the	same	quality	control	practices	as	you	do	with	code.	Security
policies,	governance	rules,	and	configurations	can	be	naturally	embedded	in	the
infrastructure	code	and	automation	for	easier	auditing.	The	automation	can	also
help	generate	audit	outputs	and	detect	noncompliance.	We	return	to	this	idea
when	we	discuss	specific	aspects	of	security.
A	security	audit	verifies	that	a	set	of	requirements	on	the	organization	has

been	met.	These	requirements	provide	an	umbrella	over	all	of	the	policies	and
practices	of	the	organization,	both	the	IT	and	non-IT	sides.	This	means	that
whatever	practices	a	development	group	follows,	these	practices	must	conform

whatever	practices	a	development	group	follows,	these	practices	must	conform
to	these	requirements.
We	organize	this	chapter	by	first	discussing	what	is	meant	by	security,	then

we	discuss	threats	to	security.	At	that	point,	we	present	the	organizational	roles
to	determine	who	is	supposed	to	be	doing	what	to	counter	those	threats.	We
discuss	techniques	to	counter	the	threats	and	explain	what	happens	during	a
security	audit.	We	then	cover	the	security	issues	from	an	application
development	perspective,	and	we	close	by	discussing	the	security	of	the
deployment	pipeline.

8.1	What	Is	Security?
Security	is	easily	remembered	by	the	acronym	CIA,	which	stands	for
confidentiality,	integrity,	and	availability.	Confidentiality	means	that	no
unauthorized	people	are	able	to	access	information;	integrity	means	that	no
unauthorized	people	are	able	to	modify	information;	and	availability	means	that
authorized	people	are	able	to	access	information.
Authorization	is	an	essential	part	of	these	definitions.	The	most	secure	system

has	no	users	but	also	no	utility.	It	is	difficult	to	allow	access	by	authorized
people	and	deny	access	by	unauthorized	people.	Authorization	has	two	elements
that	answer	the	following	questions:	Who	is	trying	to	access	or	modify
information	and	do	they	have	the	right	to	perform	the	operation	they	requested?
Both	of	these	elements	are	supported	by	a	variety	of	techniques.	In	a	DevOps
context,	the	information	and	operation	here	refer	to	the	application	and,	equally
important,	to	the	deployment	pipeline	(e.g.,	source	code,	build	servers,	and
specific	pipeline	operations).	Furthermore,	these	techniques	have	been
incorporated	into	widely	available	software	packages.	One	of	the	strong
recommendations	from	security	experts	is	“Do	not	roll	your	own.”	The	errors
that	may	creep	in	can	be	subtle.	You	may	not	detect	subtle	errors,	but	they	could
provide	an	avenue	for	an	attacker	to	compromise	your	system.
One	of	the	assumptions	that	security	professionals	make	is	that	any	single

means	of	protection	can	be	circumvented.	Consequently,	security	professionals
advocate	“defense	in	depth,”	which	means	that	an	attacker	must	circumvent
numerous	different	defenses	to	compromise	your	system.	Consider	the	case	of
how	sensitive	information	on	paper	is	protected	in	a	typical	spy	story:	There	is	a
fence	around	an	isolated	estate,	guard	dogs	inside	the	fence,	a	security	system	at
the	house,	locked	doors	inside	of	the	house,	and	a	safe	inside	that	contains	the
sensitive	paper.	This	analogy	points	out	that	the	amount	of	security	you	need	is	a
result	of	a	cost/benefit	analysis.	How	much	your	organization	is	willing	to	spend

on	security	will	depend	on	how	big	the	loss	can	be	if	your	system	is
compromised.	Equivalently,	how	much	an	attacker	is	willing	to	spend	on
compromising	your	system	will	depend	on	the	benefit	achieved	from	the
compromise.
Defense	in	depth	also	raises	the	idea	that	your	system	can	be	compromised.	In

this	case,	you	will	need	mechanisms	to	detect	what	has	happened	and	to	give
you	the	ability	to	recover.	Thus,	associated	with	CIA	is	also	a	property	of
nonrepudiation:	Individuals	cannot	deny	the	operations	they	performed	on	the
data	in	your	system.	This	is	important	for	auditing.
Another	concept	is	that	of	the	life	cycle	of	an	attack.	Attacks	can	be

prevented,	detected	while	they	are	occurring,	or	detected	after	they	have
succeeded.	In	the	security	world,	measures	to	minimize	security	risks	are	called
“security	controls.”	Controls	can	be	preventive,	detective,	or	corrective
depending	on	their	use	within	the	life	cycle	of	an	attack.
Finally,	controls	can	be	additionally	categorized	by	who	is	responsible	for

their	implementation.	Technical	controls	such	as	encryption	are	implemented
within	the	application	or	the	infrastructure.	Organizational	controls	such	as
applying	security	patches	within	24	hours	of	their	release	by	the	vendor	are
implemented	through	policies	and	procedures	developed	by	the	organization.
These	two	types	of	controls	can	be	complementary,	and	an	action	may	require
both	types.	For	example,	not	only	should	security	patches	be	installed	promptly
(organizational),	but	the	system	should	be	able	to	respond	to	queries	about	its
patch	level	(technical).

8.2	Threats
The	point	of	view	of	an	attacker	provides	one	perspective	for	you	to	take	when
designing	your	system	or	subsystem.	Microsoft	has	introduced	the	acronym
STRIDE	for	a	threat	model.	See	Figure	8.1.	STRIDE	stands	for

FIGURE	8.1	The	STRIDE	model

	Spoofing	identity.	An	example	of	identity	spoofing	is	illegally	accessing
and	then	using	another	user’s	authentication	information,	such	as	username
and	password.
	Tampering	with	data.	Data	tampering	involves	the	malicious	modification
of	data.
	Repudiation.	Repudiation	threats	are	associated	with	users	who	deny
performing	an	action	without	other	parties	having	a	way	to	prove
otherwise.
	Information	disclosure.	Information	disclosure	threats	involve	the
exposure	of	information	to	individuals	who	are	not	supposed	to	have
access	to	it.
	Denial	of	service.	Denial	of	service	(DoS)	attacks	target	the	service
availability	to	valid	users—for	example,	by	making	a	web	server
temporarily	unavailable	or	unusable.
	Elevation	of	privilege.	In	this	type	of	threat,	an	unprivileged	user	gains
privileged	access	and	thereby	has	sufficient	access	to	compromise	or
destroy	the	entire	system.

Notice	how	these	threats	relate	to	the	CIA	definitions.	Spoofing	circumvents
authentication;	tampering	violates	the	integrity	of	data;	repudiation	is	an	explicit
statement	of	what	should	happen	in	the	event	of	a	breach	or	attempted	breaking
of	the	rules;	information	disclosure	is	the	negative	of	confidentiality;	denial	of
service	compromises	availability;	and	elevation	of	privilege	is	a	technique	to
allow	compromise	of	any	of	the	CIA	properties.
During	an	audit,	you	should	be	prepared	to	demonstrate	how	the	controls	in

your	system,	in	conjunction	with	other	organizational	and	platform	controls,
reduce	the	likelihood	of	any	of	these	threats	succeeding.
Insiders	pose	one	source	of	threats	that	should	be	mentioned	here.	The

Software	Engineering	Institute	(SEI)	defines	an	insider	as	“a	current	or	former
employee,	contractor,	or	business	partner	who	has	or	had	authorized	access	to	an
organization’s	network,	system	or	data.”	An	attack	by	an	insider	means	that	the
insider	has	misused	that	access	to	intentionally	violate	one	of	the	CIA	properties.
Verizon	reports	that	approximately	15%	of	data	breaches	are	from	insiders.

Thus,	insider	attacks	are	significant	and	should	be	considered	in	an
organization’s	security	analysis.
Both	Verizon	and	the	SEI	loosely	characterize	the	motives	behind	an	attack	as

being

being
	Financial.	Financially	motivated	attacks	involve	the	theft	of	money	or	of
items	that	can	be	sold.	Markets	exist	for	items	such	as	credit	card	numbers,
and	tracking	those	markets	can	enable	you	to	gain	some	understanding	of
the	extent	of	the	breaches	that	have	occurred.
	Intellectual	property.	Many	attacks	attempt	to	gain	intellectual	property
such	as	trade	secrets	from	commercial	organizations	or	classified
information	from	government	organizations.
	Sabotage.	This	category	of	attacks	includes	denial-of-service	attacks	and
modifying	customer-facing	information	such	as	websites	as	well	as	out-
and-out	destruction	of	sensitive	data	by	disgruntled	employees.

Finally,	it	is	important	to	note	that	many	problems	can	be	caused	by	security-
related	mistakes	rather	than	intentional	attacks,	as	we	highlighted	in	the	chapter
quotation—“To	err	is	human;	to	really	screw	up	you	need	the	root	password.”

8.3	Resources	to	Be	Protected
Of	the	elements	of	security,	C	and	I	refer	to	“information.”	Information	is	one	of
the	key	resources	to	be	protected.	Information	can	be	at	rest,	in	use,	or	in	transit.
This	includes	information	related	to	DevOps	activities	such	as	source	code,	test
data,	logs,	updates,	and	who	placed	a	version	into	production.

	Information	at	rest	is	stored	on	persistent	storage.	It	can	be	accessed	either
through	the	software	systems	under	the	control	of	one	of	the	actors	or
through	physical	possession	of	the	persistent	storage.	As	an	example	of	the
former,	a	legitimate	user	logs	in	and	receives	credentials	allowing	him	or
her	to	access	certain	data.	The	software	that	can	be	accessed	understands
the	credentials	and	knows	how	to	retrieve,	display,	and	modify	the	data.	As
an	example	of	the	latter,	a	copy	of	sensitive	data	is	kept	on	a	laptop	that	is
stolen	from	the	trunk	of	your	car.	In	the	DevOps	context,	in	addition	to
protecting	persistent	application-related	data,	you	should	consider	whether
the	information	you	put	inside	plain-text	log	lines	is	sensitive,	whether
your	test	data	(which	could	be	an	early	snapshot	of	sensitive	production
databases)	is	well	protected,	and	whether	the	security	around	your	source
code	is	enough.	The	tradeoff	is	between	protecting	everything	through
encryption	and	subsequent	decryption	and	the	resulting	performance	costs
of	this	encryption	and	decryption.	As	we	will	see,	the	smallness	of
microservices	may	make	it	easier	to	enforce	service-specific	security
policies.

	Information	in	use	is	being	used	by	an	information	system.	It	may	be
displayed	to	the	user,	it	may	be	stored	in	a	cache	for	performance	or
reliability	reasons,	or	it	may	be	stored	in	a	virtual	machine	(VM),	also	for
performance	or	reliability	reasons.	This	data	is	available	to	users	who	can
access	the	portion	of	the	information	system	where	it	currently	exists.	In
the	DevOps	context,	many	advocate	a	much	shorter	server	life	span	(as	a
result	of	using	phoenix	or	ephemeral	servers,	where	any	change	means
replacing	the	old	set	of	VMs	through	a	set	of	new	VMs)	for	reliability
reasons	and	to	prevent	server	drift.	This	practice	also	adds	to	security	in
terms	of	destroying	any	sensitive	information	accumulating	in	the	server
over	time.	Information	in	use	may	also	be	internally	encrypted	and	only
decrypted	for	display.	This	may	have	the	effect	of	rendering	caching
proxies	less	effective	and	usage	more	cumbersome.
	Information	in	transit	is	being	moved	from	one	location	to	another.	If	the
movement	is	over	a	network,	then	the	data	is	available	through	access	to
the	network.	Network	access	can	be	through	one	of	the	endpoints	of	the
transit	or	through	an	intermediate	point.	Legitimate	reasons	exist	for
accessing	data	at	an	intermediate	point.	For	example,	monitoring	network
traffic	or	using	a	firewall	to	filter	certain	information	are	both	legitimate
reasons	and	rely	on	network	access	at	an	intermediate	point	of	the	transfer
of	information.	If	the	data	is	being	moved	from	one	VM	to	another	on	the
same	physical	host	or	from	one	process	to	another	through	a	socket,	then	it
is	accessed	by	either	the	endpoints	or	the	transmission	mechanism.	There
are	many	techniques	to	encrypt	the	data	during	movement	and	authenticate
both	ends.	This	adds	more	complexity	in	certificate	and	key	management
and	incurs	an	additional	performance	penalty	for	both
authentication/authorization	and	encryption/decryption.	We	discuss	this
later	in	a	microservice	architecture	context.

Computational	resources	also	need	to	be	protected.	This	is	the	A	in	CIA.
Authorized	users	should	be	able	to	access	the	resources	they	need.	Again,	this
includes	DevOps	resources	such	as	the	build	server.	Resources	can	become
unavailable	to	an	authorized	user	for	multiple	reasons,	including:

	The	simplest	reason	is	that	you	have	forgotten	your	password	or	misplaced
your	keys.	We	all	use	multiple	systems	with	different	keys	and
requirements	for	password	length	and	composition.	We	also	are	exhorted
not	to	reuse	passwords	and	have	specific	keys	for	specific	purposes.	In
such	a	situation,	forgetting	a	particular	password	or	mismanaging	a	key	is
not	uncommon.	Systems	should	provide	a	means	to	recover	or	revoke	a

password	or	key.
	Your	password,	key,	or	certificate	could	also	have	been	maliciously	reset
or	compromised.	If	an	attacker	succeeds	in	compromising	your	certificate,
the	attacker	may	pretend	to	be	you	and	act	maliciously.	Systems	should
have	a	means	to	verify	and	alert	users	when	a	change	has	happened	and
provide	corrective	means	quickly.	Managing,	monitoring,	and	replacing
compromised	certificates	are	complicated	processes	that	take	a	significant
amount	of	time,	often	amid	downtime.
	The	system	you	are	attempting	to	access	may	be	the	subject	of	a	denial-of-
service	attack.	Such	an	attack	is	an	orchestrated	series	of	requests	to	a
system	to	consume	resources	responding	to	these	requests	and	keep	the
resources	unavailable	for	authorized	users.	Installing	gateway	filters	based
on	IP	addresses	is	one	method	for	preventing	a	denial-of-service	attack
from	being	successful.	An	application	programming	interface	(API)	key	is
another	popular	method	for	limiting	access	rate	and	user	abuse,	whether
intentional	or	not.

Not	every	intruder	will	compromise	one	of	the	CIA	properties.	Suppose	an
unauthorized	student	is	using	your	system	to	do	homework.	This	user’s	demands
on	the	system	are	low,	and	so	the	use	does	not	compromise	availability.	The
student	does	not	access	or	modify	information	so	the	student’s	use	does	not
compromise	C	or	I.	This	use,	however,	is	still	illegitimate	and	is	an	indication
that	your	computational	resources	are	not	well	protected.
A	final	concern	about	resource	protection	comes	from	the	special	nature	of	the

cloud,	especially	in	a	DevOps	context.	Developers	have	the	ability	to	easily
create	new	VM	images	(e.g.,	for	using	a	heavily	baked	deployment	approach)
and	instances	of	them.	It	is	easy	to	lose	track	of	both	images	and	instances,
particularly	when	there	is	no	charge	for	usage,	such	as	in	a	private	cloud.	VM
image	sprawl	is	the	term	used	to	describe	the	proliferation	of	VM	images	to	the
point	where	the	management	systems	lose	track	of	them.	The	images	take	up
significant	storage,	and	losing	track	of	which	image	is	used	in	what	instances
also	introduces	additional	security	problems.	For	example,	lost	images	or
instances	are	not	patched	as	a	portion	of	the	normal	patching	process	and,
consequently,	are	more	vulnerable	to	attacks	than	patched	systems.	A	recent
example	of	a	successful	attack	because	of	VM	sprawl	comes	from
BrowserStack:	An	old	unutilized	VM	was	unpatched	and	was	compromised	by
Shellshock.	The	unutilized	VM	contained	some	credentials	that	were	then	used
to	compromise	active	VMs.
Lost	instances	may	also	incur	additional	cost.	Mechanisms	should	be	in	place

Lost	instances	may	also	incur	additional	cost.	Mechanisms	should	be	in	place
to	track	both	VM	images	and	instances.	For	example,	Netflix’s	Simian	Army
tool	suite	includes	a	Janitor	Monkey	that	finds	unused	resources	and	removes
them.	A	Security/Conformity	Monkey	also	finds	security	violations	or
vulnerabilities.	Some	operating	systems	vendors	provide	specific	tools,	such	as
Red	Hat’s	Spacewalk,	to	help	you	check	if	the	latest	patches	have	been	applied
to	your	(virtual)	machines.	As	said	earlier,	enforcing	a	shorter	lifetime	for	a	VM,
meaning	terminating	and	replacing	it	after	a	fixed	amount	of	time	even	when
healthy,	is	a	technique	for	preventing	VM	sprawl.	This	not	only	prevents
configuration	drifting	and	encourages	better	fault	tolerance,	but	also	improves
security	in	terms	of	reducing	attack	profile,	helping	tracking	and	removing
sensitive	information	traces.

8.4	Security	Roles	and	Activities
We	identify	four	different	roles	related	to	security,	and	we	will	refer	to	these
roles	when	we	discuss	the	various	activities	that	are	involved	in	achieving	a
secure	environment.	The	people	performing	these	roles	may	belong	to	the	same
organization	or	to	different	organizations.

1.	Security	architect.	A	security	architect	is	responsible	for	the	design	of	an
organization’s	network	to	achieve	security	for	the	network.	The	security
architect	is	also	responsible	for	overseeing	the	implementation	of	the
network.

2.	Solution	architect.	A	solution	architect	is	responsible	for	the	design	of
systems	to	support	the	organization’s	business	functions.	Developers
implement	these	designs.

3.	IT	staff.	The	organization’s	IT	staff	is	responsible	for	monitoring	and
tracing	any	events	related	to	potential	security	attacks.	The	IT	staff	is	also
responsible	for	the	implementation	of	the	architecture	designed	by	the
security	architect.

4.	Platform	provider.	The	platform	provider	is	responsible	for	securing	the
perimeter	of	the	computing	platforms	used	by	an	organization,	ensuring
isolation	among	the	customers	of	the	platform,	and	ensuring	that	the
customers	get	adequate	resources	when	they	require	them.	The	platform
provider	also	provides	services	used	by	the	security	architect.

You	can	see	a	set	of	dependencies	among	these	roles.	The	platform	provider
provides	a	base	potentially	usable	by	many	teams	and	business	units	within
many	organizations,	the	security	architect	designs	security	for	the	whole
organization	using	the	services	provided	by	the	platform,	the	IT	staff	implements
and	monitors	the	design	provided	by	the	security	architect,	and	the	solution

and	monitors	the	design	provided	by	the	security	architect,	and	the	solution
architect	designs	systems	within	the	security	architecture	and	the	platform.
In	a	DevOps	context,	the	activities	performed	by	these	roles	can	be	embedded

in	tools.	As	always,	the	use	of	these	tools	needs	to	be	logged	and	kept	for	future
examination	by	the	auditor.	There	is	also	a	debate	on	the	developers’	role	in
implementing	network-	and	infrastructure-related	security	through
infrastructure-as-code,	subsuming	some	of	the	responsibilities	of	IT	staff.	With
security	vendors	starting	to	expose	APIs	and	allowing	more	automation,	and
with	the	emergence	of	software-defined	networks	(SDNs),	this	is	becoming	a
reality.	The	most	important	question	is	perhaps	not	whether	Devs	or	Ops	plays	a
role	in	implementing	a	particular	layer	of	security	design,	but	whether	these
layers	are	implemented,	tracked,	automated,	and	auditable.
The	security	community	has	been	active	in	identifying	and	publicizing	the

types	of	controls	that	an	organization	should	adopt	to	manage	the	risks	to
information	security	and	privacy.	Two	different	widely	used	lists	are	published
by	the	National	Institute	of	Standards	and	Technology	(NIST	800-53)	and	by	the
International	Organization	for	Standardization/International	Electrotechnical
Commission	(ISO/IEC	27001).	These	two	organizations	collaborate,	and	their
lists	cross-reference	each	other,	so	the	two	lists	are	very	similar.	We	will	base
our	discussion	on	NIST	800-53	because	it	is	freely	available	over	the	Internet.
One	method	of	organizing	controls	is	by	functionally	related	categories.	The

categories	of	NIST	800-53	are:	access	control,	awareness	and	training,	audit	and
accountability,	security	assessment	and	authorization,	configuration
management,	contingency	planning,	identification	and	authentication,	incident
response,	maintenance,	media	protection,	physical	and	environmental	protection,
planning,	personnel	security,	risk	assessment,	system	and	services	acquisition,
system	and	communication	protection,	system	and	information	integrity,	and
program	management.
As	you	can	see,	these	categories	span	a	wide	range	of	supporting	activities	by

a	wide	collection	of	actors	within	an	organization.	Enumerating	all	of	these
controls	takes	over	200	pages.	The	controls	differentiate	between	activities	that
are	performed	by	the	organization	(e.g.,	the	organization	establishes	and
manages	cryptographic	keys	for	required	cryptography	employed	within	the
information	system)	and	those	performed	by	the	information	system	(e.g.,	the
information	system	implements	organization-defined	cryptographic	uses	and
types	of	cryptography	required	for	each	use	in	accordance	with	applicable
federal	laws,	executive	orders,	directives,	policies,	regulations,	and	standards).
The	controls	are	mainly	specified	in	terms	of	outcomes,	not	in	terms	of

methods.	For	example,	one	control	states,	“The	information	system	uniquely
identifies	and	authenticates	[Assignment:	organization-defined	specific	and/or
types	of	devices]	before	establishing	a	[Selection	(one	or	more):	local;	remote;
network]	connection.”	There	is	no	discussion	of	how	the	system	identifies	and
authenticates,	only	that	these	processes	occur.	Conformance	to	these	controls
should	be	implemented,	tested,	and	monitored.	For	implementation,	it	is	a	matter
of	having	manual	or	automatic	means	to	enforce	the	control.	You	will	rely	on
existing	security	mechanisms	in	a	platform,	service,	or	library	to	realize	security
features	like	authorization,	authentication,	and	encryption.	Some	of	these
mechanisms	can	be	automated	by	code	invoking	a	security	product’s	APIs.	Then
the	code	becomes	an	important	piece	of	evidence	during	auditing.	For	testing,
this	means	that	security-related	testing	is	integrated	into	the	continuous
deployment	pipeline,	which	may	result	in	static	analysis	in	an	integrated
development	environment	(IDE)	before	commit	or	security-related	test	cases	in
the	build	and	test	server.	This	continuous	and	integrated	nature	of	security
testing	becomes	another	evidence	for	auditing.	Finally,	for	monitoring,
production	environment	security	monitoring	and	conformance	checking	can	be
implemented	to	detect	and	correct	any	security	violations.	Thus,	DevOps
processes	and	tools	that	implement	a	control	can	be	used	without	compromising
an	organization’s	ability	to	pass	an	audit	and,	in	many	cases,	can	improve	the
organization’s	ability.
From	an	auditor’s	perspective,	the	method	for	assessing	an	organization’s

security	controls	begins	with	the	policies	adopted	by	the	organization.	An
auditor	initially	attempts	to	answer	the	question:	Are	an	organization’s	policies
adequate	to	meet	the	security	requirements	for	the	system	or	systems	under
assessment?	The	organizational	controls	enumerated	by	NIST	800-53	or	a
derivative	provide	a	starting	place	for	the	assessment.	Different	domains	have
used	NIST	800-53	as	a	starting	point	and	added	their	own	domain-specific
requirements.	These	domain-specific	variants	have	names	more	familiar	than
NIST	800-53.	Names	such	as	HIPAA	for	health	information,	PCI	for	credit	card
information,	and	security	profiles	for	the	electric	grid	are	familiar	to	those	in
these	respective	industries.	The	auditor	then	moves	on	to	the	controls	chosen	to
implement	a	particular	policy	and	attempts	to	answer	the	questions:	Are	the
chosen	controls	adequate	to	implement	the	policy?;	Are	they	implemented
correctly?;	and	Are	they	operating	as	intended?	Again,	the	implementation
controls	enumerated	by	NIST	800-53	or	its	derivatives	provide	a	starting	place
for	determining	whether	the	controls	are	adequate.	The	correct	implementation
and	the	operation	as	intended	are	determined	by	the	auditor	based	on	evidence

provided	by	the	organization.
We	focus	on	the	technical	controls—those,	at	least	partially,	that	the	software

architect	has	some	input	or	control	over.	Three	categories	exist	for	the	technical
controls:

	“Within	channels”	controls.	These	are	the	controls	that	allow	legitimate
users	access	to	the	network,	authenticate	users,	and	authorize	users	to
access	information	or	resources.	These	controls	support	and	should	be
applied	to	activities	involved	in	the	application	itself,	in	the	deployment
pipeline,	and	in	other	operations.	For	example,	modifying	a	script	should
involve	authentication	and	authorization	and	be	tracked	in	a	version
control	system.
	“Outside	of	channels”	controls.	These	are	the	controls	intended	to	prevent
access	through	nonapproved	channels.	For	example,	side	channel	attacks
exploit	timing,	power	consumption,	and	sound	and	electrometric	leaks	to
gain	useful	information.	Information	can	be	at	rest,	in	use,	or	in	transit	and
should	be	protected	in	any	case.	Resources	should	not	be	used	outside	of
normal	channels,	and	side	channels	should	be	evaluated.
	Auditing.	A	record	should	be	kept	of	various	activities	within	the	system
such	as	use	of	resources,	accesses	to	data,	and	modification	of	data.	The
auditing	controls	are	intended	to	ensure	that	such	a	record	is	created	and
maintained.	Again,	in	the	DevOps	context,	this	means	a	number	of
different	things:	1)	the	use	of	automated	tools	and	infrastructure-as-code	to
record	security	testing	results;	2)	the	integration	of	security	testing	in	the
DevOps	pipeline;	and	3)	the	security	of	the	DevOps	pipeline	and	other
operations	themselves.	All	these	provide	good	evidence	in	a	security	audit.

8.5	Identity	Management
Unless	an	application	is	available	to	all	users	without	restriction,	identifying
users	is	a	prerequisite	to	determining	whether	a	particular	use	is	legitimate.
Identity	management	refers	to	all	tasks	required	to	create,	manage,	and	delete
user	identities.	During	the	lifetime	of	a	user	account	this	will	include	adding	or
removing	access	to	specific	systems,	resetting	lost	passwords/keys,	and
enforcing	periodic	password/key	changes.	All	activities	within	the	identity
management	task	should	be	logged	for	audit	purposes—not	only	human-initiated
activities	but	also	activities	performed	by	tools	or	scripts.	Invocations	among
(micro)services	also	need	to	be	authenticated.
Identity	management	relates	to	the	roles	of	platform	provider	and	security

architect.	The	platform	provider	provides	the	means	to	manage	the	identity	of	all

architect.	The	platform	provider	provides	the	means	to	manage	the	identity	of	all
of	the	users	of	the	platform,	and	the	security	architect	does	the	same	for	all	users
of	an	organization’s	systems.	Given	that	the	organization’s	systems	are
executing	on	a	platform	from	the	platform	provider,	the	organization’s	users	are
also	users	of	the	platform.	The	same	identity	management	can	be	used	for
accessing	applications,	development	activities,	and	deployment	pipelines.	We
return	to	this	concept	when	we	discuss	authorization.
A	wide	variety	of	commercial	identity	management	tools	exist.	Identity

management	controls	are	categorized	under	the	identification	and	authentication
category	of	NIST	800-53.	Identity	management	tools	as	well	as	authentication
tools	are	under	the	control	of	the	security	architect	and	operated	by	the	IT	staff.

Authentication
Authentication	controls	are	intended	to	verify	that	you	are	who	you	say	you	are.
That	is,	they	protect	against	a	spoofing	attack.	The	“you”	here	also	covers	a
service	invoking	another	service.	We	focus	on	authenticating	an	individual	here
and	will	discuss	authentication	among	services	later.
Authenticating	an	individual	gets	complicated	for	a	number	of	reasons.
	“You”	may	not	mean	you,	but	may	mean	a	system	operating	on	your
behalf.
	“You”	may	not	be	uniquely	identified	by	the	system,	but	instead	“you”
may	be	a	role.
	Your	authentication	mechanism	(e.g.,	password	or	certificate)	may	have
been	compromised.
	You	may	no	longer	be	an	employee	or	authorized	user	of	the	system.

In	the	security	world,	there	are	three	methods	of	authenticating	you	as	an
individual.	These	are	something	you	know	(e.g.,	a	password),	something	you
have	(e.g.,	a	smart	card),	or	something	you	are,	(e.g.,	fingerprints).	Some
systems	require	you	to	use	two	of	these	three	categories.	For	example,	your
ATM	card	has	a	magnetic	strip	(something	you	have)	as	well	as	requiring	a	PIN
(something	you	know).	Other	systems	require	you	to	know	multiple	things.	For
example,	you	need	to	know	both	a	password	and	the	answer	to	a	secret	question.
The	system	can	authenticate	itself	to	you	prior	to	asking	for	something	you
know.	For	example,	systems	show	a	picture	you	have	preselected	to	identify	to
you	that	you	have	arrived	at	the	correct	location	before	you	enter	a	password.
This	technique	is	an	attempt	to	avoid	having	your	password	compromised.	A
certificate-based	approach	is	more	secure	in	some	aspects	but	requires	more

complicated	infrastructure	setup.
In	the	remainder	of	this	discussion	we	elaborate	on	the	different	types	of

authentication	controls.

Controls	Relating	to	a	System	Operating	on	Your	Behalf
The	considerations	for	hardware	and	software	differ,	and	we	divide	the
discussion	accordingly.

Hardware
A	strong	method	for	ensuring	only	legitimate	devices	can	connect	to	your	system
is	to	require	devices	to	be	preregistered.	This	prevents	man-in-the-middle
attacks.	A	weaker	form	is	for	your	system	to	leave	state	(e.g.,	a	cookie)	on	an
external	system	that	identifies	that	system	as	having	previously	accessed	your
system.	If	the	external	system	does	not	have	such	state	then	additional	questions
may	be	asked.
Maintenance	is	one	scenario	where	the	strong	method	becomes	important.

That	is,	your	system	has	a	physical	component	(e.g.,	an	ATM	machine),	and
maintenance	is	performed	via	utilization	of	a	specialized	computer.	Registering
the	specialized	computer	prevents	the	use	of	a	fraudulent	maintenance	computer
to	compromise	the	system.

Software
We	mentioned	that	your	system	may	access	resources	through	a	platform.	Your
system	has	users,	and	your	system	is	a	user	of	the	platform.	Requiring	the	user	to
log	on	first	to	your	system	and	second	to	the	platform	is	undesirable	for	several
reasons:

	Users	resist	having	to	log	in	several	times	to	the	same	system.	Although
you	know	that,	in	reality,	there	are	multiple	systems,	from	a	user’s
perspective	it	should	appear	as	a	single	system.
	The	platform	resources	accessed	may	be	shared	across	several	users,	and
exposing	the	same	password	to	multiple	users	violates	authentication
controls.	Requiring	each	user	to	have	an	account	on	the	platform	as	well	as
on	your	system	becomes	cumbersome.	Deleting	an	account,	for	example,
requires	coordination	between	your	system	and	the	platform	that	is
difficult	to	manage.

Two	fundamental	techniques	exist	to	allow	one	system	to	access	another
system	with	user	credentials.	One	is	single	sign-on	and	the	other	is	separate,
system-managed	credentials.

system-managed	credentials.
	Single	sign-on	relies	on	a	distinct	credential	providing	service.	Multiple
different	versions	of	this	capability	have	been	developed,	but	the	best
known	is	perhaps	Kerberos.	The	initial	sign-on	generates	a	Kerberos
ticket-granting	ticket.	This	ticket	is	used	to	sign	on	to	other	systems	that
accept	Kerberos	tickets.
	System-managed	credentials	means	that	your	system	maintains	a	set	of
credentials	suitable	for	access	to	platforms	or	other	systems.	Your	system
utilizes	these	credentials	on	behalf	of	your	users	to	authenticate	use	of	the
platform.	The	issue	you	must	consider	is	how	to	protect	these	credentials
from	unauthorized	access.	This	is	the	subject	of	a	distinct	set	of	controls	in
NIST	800-53	called	“System	and	Communications	Protection.”
Certificates	also	have	an	expiration	date,	and	one	common	cause	for
inability	to	communicate	with	external	systems	is	the	use	of	expired
certificates.	One	of	the	members	of	Netflix’s	Simian	Army	is	a	Security
Monkey,	among	whose	responsibilities	is	checking	for	expired	certificates.

Role-Based	Authentication
Role-based	authentication	(RBA)	is	a	technique	for	assigning	identifications
based	on	roles	rather	than	on	identity.	For	example,	you	may	log	in	as	super	user
using	the	root	password.	Super	user	is	a	role	you	are	assuming;	it	is	not	your
identity.	RBA	simplifies	some	problems	since	once	a	role	is	identified,	the
access	privileges	associated	with	the	role	can	be	automatically	assigned.	The
problem	with	RBA	is	that	there	is	no	traceability.	A	problem	may	be	traced	to
“super	user”	but	not	to	an	individual.	We	discuss	how	to	rectify	this	problem	in
the	next	section	on	authorization.

Controls	to	Prevent	Compromising	Passwords
Passwords	can	be	compromised	in	several	different	ways:

	An	attacker	breaks	an	individual’s	password	through	various	forms	of
brute	force	attacks.	Controls	specify	minimum	password	length,	password
lifetime,	and	limits	on	password	reuse.
	A	user	allows	her	or	his	password	to	be	determined	through	social
engineering	means.	There	are	controls	about	security	education	for	users,
but	perhaps	the	most	notorious	use	of	social	engineering	to	determine	a
password	comes	from	the	Stuxnet	worm.	This	worm	exploited	the	fact	that
some	system	passwords	were	hard	coded	in	the	software	being	attacked.	In
addition,	these	passwords	were	available	on	the	Internet.	One	of	the

controls	to	prevent	this	type	of	attack	is	to	require	that	default	passwords
be	changed	before	a	system	goes	into	production.
	An	authorized	user	changes	roles	or	leaves	the	organization.	We	defer	the
discussion	of	role	change	to	the	next	section	on	authorization,	but	when	an
employee	leaves	the	organization,	a	control	specifies	that	their	account
privileges	are	deleted	within	a	short	time	frame.
	Your	system	is	compromised,	allowing	determination	of	passwords.
Controls	specify	that	passwords	must	be	stored	in	an	encrypted	form	using
an	approved	piece	of	cryptographic	software.	The	data	is	difficult	to
decrypt	if	it	is	encrypted	in	a	sufficiently	strong	manner.	Furthermore,	the
software	that	provides	encryption	and	decryption	should	be	approved,
meaning	it	has	been	tested	by	an	authorized	testing	organization.

Authorization
Once	a	user	is	identified	then	it	becomes	possible	to	control	access	to	resources
based	on	the	privileges	granted	to	that	user.	The	most	relevant	control	in	NIST
800-53	is	“AC-3,	Access	Enforcement”:

Control:	The	information	system	enforces	approved	authorizations
for	logical	access	to	information	and	system	resources	in	accordance
with	applicable	access	control	policies.

As	with	authentication,	authorizations	can	be	logged,	whether	the	resources
are	accessed	manually,	through	scripts,	or	through	tools,	along	with	who	was
responsible	for	the	authorization.

Techniques	to	Control	Access	to	Resources
There	are	two	fundamental	techniques	used	to	control	access	to	resources:	access
control	lists	(ACLs)	and	capabilities.

	ACLs.	An	ACL	is	a	list	of	users	or	roles	and	allowed	operations	attached	to
a	resource	such	as	a	file	system	or	database	field.	When	a	user	asks	for
access	to	the	resource	to	perform	a	particular	operation,	the	list	is
examined	to	determine	whether	that	user	or	role	has	the	right	to	perform
that	operation	on	the	resource.
	Capability.	A	capability	is	a	token	that	grants	particular	rights	on	a
resource.	A	good	analogy	is	a	key	and	a	lock.	The	capability	is	the	key;	the
resource	maintains	the	lock.	When	access	is	requested,	the	resource	will
verify	that	the	token	provided	with	the	access	request	contains	sufficient
privileges	for	the	provider	of	that	token	to	be	granted	access.

Regardless	of	the	technique	used	to	control	access,	the	least	possible
privileges	should	be	granted	to	a	user	or	role	to	enable	them	to	perform	their
required	tasks.

Role-Based	Access	Control
We	discussed	RBA	and	pointed	out	that	assigning	privileges	to	roles	simplifies
managing	large	number	of	users.	Now	we	discuss	how	that	translates	into	access
control.	Every	user	should	have	a	unique	identity	as	far	as	the	system	is
concerned,	but	users	may	change	roles	and,	consequently,	have	different	access
privileges.	Consider,	for	example,	the	root	password.	Suppose	an	operator	gets
promoted	to	a	position	that	does	not	require	root	access.	The	options	are:	leave
the	root	password	as	is,	resulting	in	an	unauthorized	individual	knowing	the	root
password;	change	the	root	password,	resulting	in	all	of	the	remaining	operators
having	to	learn	a	new	password;	or	use	role-based	access	control	(RBAC).
RBAC	is	based	on	a	mapping	between	individuals	and	roles.	A	role	is	allowed

certain	access	privileges,	and	the	identity	management	system	maintains	a
mapping	between	users	and	roles.	It	also	maintains	a	mapping	between	roles	and
privileges.	Then,	when	a	user	changes	roles,	the	mapping	between	users	and
roles	is	changed	as	well	and	the	authorization	system	is	provided	with	the
information	appropriate	to	the	new	role.	Thus,	our	hypothetical	operator	who
gets	promoted	will	be	removed	from	the	operator	role	and	assigned	a	new	role,
and	the	identity	management	system	will	provide	the	appropriate	new	privileges
to	that	individual	while	removing	root	access.	This	transition	is	also	logged	for
auditing	purposes.
In	large	organizations,	RBAC	becomes	complicated	because	it	assumes	a

uniform	definition	of	roles	across	the	organization.	Many	large	organizations
have	similar,	but	different,	roles	in	different	portions	of	the	organization.
Defining	roles	uniformly	may	involve	moving	responsibilities	from	one	role	to
another	in	certain	places	within	the	organization.	Suppose,	for	example,	one
portion	of	an	organization	has	adopted	continuous	deployment	practices	and
another	has	not.	To	what	role	do	you	assign	“can	authorize	deployment	to
production?”
Let	us	use	a	deployment	pipeline	example	to	illustrate	this.	In	the	popular

Jenkins	continuous	integration	tool,	there	are	alternative	ways	of	providing
authorization	to	a	deployment	pipeline.	You	usually	want	to	have	different
authorization	to	different	parts	of	the	pipeline.	For	example,	developers	may	not
be	authorized	to	trigger	certain	types	of	quality	assurance	(QA)	jobs	or	deploy	to
a	production	environment.	You	can	use	the	Jenkins	Role	Strategy	plug-in	to
define	different	roles	that	have	authorization	to	different	parts	of	the	pipeline.

define	different	roles	that	have	authorization	to	different	parts	of	the	pipeline.
Then	you	can	link	jobs	to	roles.	At	the	moment,	this	is	done	through	regular
expression	on	job	names,	which	can	be	complicated	to	manage	especially	if	you
have	many	jobs.	An	alternative	approach	is	to	use	the	Jenkins	Matrix
Authorization	plug-in	where	you	organize	all	your	jobs	into	different	folders.
You	can	then	define	authorizations	at	the	folder	level	by	mapping	them	to	users
or	roles.

8.6	Access	Control
Identity	management	controls	are	intended	to	prevent	spoofing,	tampering,
information	disclosure,	and	elevation	of	privilege	for	those	users	who	have	gone
through	authentication	and	authorization	channels.	Tampering	and	information
disclosure	are	still	threats	from	those	who	do	not	go	through	authentication	and
authorization	channels,	and	are	discussed	in	this	section.	We	discuss	the
remaining	elements	of	STRIDE—nonrepudiation	and	denial	of	service—in	the
next	section.
We	begin	by	discussing	controls	intended	to	prevent	tampering	and

information	disclosure.	The	spy	analogy	that	we	used	in	the	beginning	of	this
chapter	is	relevant	here.	Prevent	access	and	then,	if	that	does	not	work,	make
what	the	intruder	finds	not	usable.

Preventing	Access
Working	from	outside	in,	the	boundary	of	the	system	or	the	organization’s
software	system	must	be	defined.	That	is,	the	resources	to	be	protected	must	be
clearly	identified.	Resources	may	have	different	levels	of	protection,	for
example,	available	for	reading	by	unauthenticated	users	(a	website	open	to	the
Internet)	or	not	available	for	reading	by	unauthenticated	users	(an	internal
website).

Defining	Boundaries
The	organization’s	network	can	be	partitioned	into	subnets,	each	with	its	own
boundary.	Each	subnet	represents	a	collection	of	resources	that	have	the	same
level	of	protection.	Using	a	microservice	architecture	provides	more	flexibility
in	determining	the	boundaries.	Once	the	boundaries	are	defined,	then
communication	from	outside	of	a	boundary	to	inside	of	the	boundary	or	vice
versa	can	be	controlled.	Access	from	the	Internet	is	treated	differently	from
mobile	access,	which,	in	turn,	is	different	from	internal	access.	There	should	be
firewalls,	gateways,	routers,	guards,	malicious	code	analysis,	and	virtualization
systems	or	encrypted	tunnels	protecting	each	subnet.	This	overall	structure	is

systems	or	encrypted	tunnels	protecting	each	subnet.	This	overall	structure	is
within	the	domain	of	the	security	architect.
Tools	that	live	outside	of	a	subnet—such	as	deployment	tools—must	have

permissions	granted	so	that	they	can	deploy	into	the	subnet.	These	permissions
can	be	inherited	from	the	invoker	of	the	tool.	A	special	subnet	called	the
Demilitarized	Zone	is	open	to	Internet	access	and	restricted	in	accessing	the
internal	network.	External-facing	websites	are	typically	placed	in	this	subnet.
With	this	type	of	boundary	protection,	external	access	must	go	through	a	firewall
or	gateway	that	can	restrict	port	usage,	maintain	blacklisted	IP	addresses,	and
perform	other	checking.	An	attacker	that	wishes	to	gain	unauthorized	access	to
data	or	resources	must	first	go	through	perimeter	checking	at	the	boundary.

Isolation
Isolation	is	a	technique	related	to	perimeter	checking.	Isolation	means	that
logically	distinct	functions	are	kept	apart,	either	physically	or	logically.	Physical
separation	has	historically	been	used—do	not	connect	resources	you	wish	to
protect	to	the	Internet	and	restrict	physical	access	to	these	resources.	In	the
modern	world,	physical	separation	is	appropriate	in	very	few	cases,	typically	in	a
process	control	context,	but	is	not	feasible	when	the	main	means	of	accessing
systems	is	over	the	Internet.
Isolation,	in	the	modern	context,	can	be	interpreted	as	separation.	You	can

separate	computational	functions,	for	example,	based	on	their	security
sensitivity.	Then	a	boundary	can	be	established	and	credentials	can	be	required
for	data	or	a	process	to	cross	that	boundary.	Sensitive	personal	data	can	be
separated	from	other	data.	Then	access	can	be	allowed,	with	one	set	of
credentials,	to	the	set	of	attributes,	with	a	different	set	of	credentials	to	the
personal	data,	and	with	a	third	set	of	credentials	to	both.
When	resources	are	shared,	such	as	two	VMs	sharing	a	single	physical

machine,	then	isolation	is	enforced	by	the	system	software	executing	on	the
physical	machine.	Memory,	disk,	and	networks	can	all	be	shared	in	a	cloud
environment.	Isolation	of	memory	is	performed	using	virtual	memory
techniques,	isolation	of	disk	is	performed	using	partitioning	of	disks,	and
isolation	of	network	usage	is	performed	by	the	network	protocols	used.

Encryption
In	order	to	prevent	an	attacker	from	gaining	access	to	data,	whether	at	rest	or	in
transit,	encryption	is	used	to	protect	that	data.	Many	of	the	controls	in	NIST	800-
53	describe	the	use	of	cryptographic	algorithms	and	software.	The	algorithm	and
the	software	must	be	certified	to	be	both	strong	and	correct	in	order	to	pass	an

the	software	must	be	certified	to	be	both	strong	and	correct	in	order	to	pass	an
auditing	process.
Data	in	use	can	only	be	reached	by	breaking	the	isolation	of	processes.	Data	in

use	is	typically	not	encrypted	both	for	performance	and	human	reasons.	It	takes
time	to	encrypt	and	decrypt	data—this	is	the	performance	reason.	Humans	have
difficulty	reading	encrypted	data—this	is	the	human	reason.
Observe	how	the	different	techniques	are	complementary.	Isolation	identifies

boundaries,	boundary	controls	prevent	unauthorized	access,	and	encryption
means	that	once	an	attacker	reaches	data,	it	cannot	be	interpreted.

Other	Considerations
Three	other	considerations	are	relevant	in	terms	of	preventing	access.	These	are:
decommissioning	data,	patching,	and	change	management.

1.	Data	that	is	no	longer	useful	still	might	remain	on	the	system.	This	data
could	be	available	for	an	attacker.	Some	controls	deal	with	how	to
decommission	data.	This	may	involve	removal	from	all	of	the	locations
where	it	has	been	stored,	but	it	can	also	involve	keeping	copies	of	the	data
for	auditing	purposes.

2.	Systems	have	vulnerabilities.	Vendors	repair	vulnerabilities	through
patches.	These	patches	must	be	applied.	Controls	specify	that	patches	must
be	applied	promptly	and	that	systems	must	be	able	to	report	their	patch
level	upon	request.

3.	Tracking	the	versions	and	patch	levels	of	all	of	the	software	on	your
system	is	important,	not	only	when	performing	root	cause	analysis	but	also
from	a	security	perspective.	Which	potential	vulnerabilities	in	your	system
have	been	patched	is	something	that	is	important	to	know.	Not	only	the
versions	of	the	software	but	also	the	versions	of	the	configuration
specifications	and	the	deployment	specifications	are	important	to	track	for
the	purposes	of	being	able	to	prove	that	your	system	can	withstand
particular	types	of	attacks.	The	existence	of	a	set	of	configuration
management	controls	is	of	particular	importance	to	DevOps.	Not	only	is
changing	a	configuration	directly	without	going	through	the	normal
process	bad	practice,	it	also	may	violate	security	controls	and	cause	a
problem	during	a	security	audit.

Let	us	use	a	service	authentication	example	to	illustrate	all	this.	The
communication	between	different	services	or	between	services	and	browsers
may	need	to	be	authenticated	and	also	encrypted	to	prevent	eavesdropping	or
man-in-the-middle	attacks.	One	way	of	doing	this	is	the	use	of	HTTPS	to
encrypt	the	traffic.	With	it,	the	client	service	also	gains	a	strong	guarantee	on	the

encrypt	the	traffic.	With	it,	the	client	service	also	gains	a	strong	guarantee	on	the
server-side	service	being	who	it	claims	to	be.	A	problem	with	this	is	that	the
organization	needs	to	manage	the	HTTPS	certification	issuing	and	revoking
processes,	the	automation	of	which	is	nontrivial.	If	you	have	many	microservices
and	servers,	this	can	become	a	significant	overhead	for	the	teams	and	the
deployment	pipeline.	There	are	also	performance	penalties	due	to	the	many
authentications	among	microservices	and	the	encryption	rendering	reverse
proxies	(e.g.,	Squid)	unusable.	You	may	want	to	have	strong	security	at	the
boundary	so	that	you	can	choose	not	to	use	encryption	inside	your	secured
network,	and	only	use	it	when	you	communicate	past	the	boundary.

Who	Is	Responsible	for	the	Prevention	Controls?
We	have	identified	three	roles	that	are	relevant	for	the	prevention	of
unauthorized	access—security	architect,	solution	architect,	and	platform
provider.	Border	protection	is	the	responsibility	of	the	owner	of	the	system	just
inside	the	border.	That	is,	the	platform	provider	is	responsible	for	protecting
access	to	the	platform’s	resources,	the	security	architect	is	responsible	for
protecting	access	to	the	organization’s	resources,	and	the	solution	architect	is
responsible	for	protecting	access	to	particular	systems.	Defensive	programming
and	lack	of	trust	in	incoming	messages	are	two	of	the	design	practices	that
characterize	secure	development	principles.
The	same	concept	of	ownership	determines	responsibility	for	the	other	types

of	prevention	controls.	If	it	concerns	a	portion	of	the	system	under	your	control,
then	you	are	responsible	for	protecting	the	data,	ensuring	auditability,	and
keeping	the	patches	up	to	date.

8.7	Detection,	Auditing,	and	Denial	of	Service
We	have	discussed	preventative	measures,	but	detecting	attacks	while	they
happen	touches	on	a	different	set	of	controls.	All	of	these	controls	involve
monitoring.	Resources	can	be	monitored	for	abnormal	usage	patterns.	Messages
can	be	monitored	for	a	wide	variety	of	different	characteristics,	ranging	from
port	scans	looking	for	an	open	port	to	repeated	login	attempts	to	velocity	of	page
fetching	requests.	All	of	these	controls	are	provided	by	available	tools	and	are
the	responsibility	of	the	platform	provider,	the	IT	staff,	and	the	security
architect.	The	solution	architect	is	usually	not	directly	involved	in	these	controls.
The	R	in	STRIDE	stands	for	repudiation.	Both	for	business	reasons	(e.g.,	“I

did	not	order	that”)	and	forensic	reasons	(e.g.,	“What	damage	did	the	attacker
do?”)	auditing	activities	are	important.	Some	of	the	items	to	be	recorded	include

do?”)	auditing	activities	are	important.	Some	of	the	items	to	be	recorded	include
account	creation,	modification,	override	of	access	control	mechanisms,	use	of
privileged	functions,	creation	or	deletion	of	security	attributes,	connections	from
both	internal	and	external	sources,	and	changes	to	software	or	configuration.
Once	an	audit	trail	has	been	created,	it	must	be	protected.	It	does	no	good	to

record	information	if	an	attacker	can	modify	that	information	to	hide	the	trail.
Audit	records	must	be	encrypted,	stored	independently	of	the	systems	that	are
being	audited,	and	have	protected	access.
Do	not	confuse	audit	trails	with	logs.	Audit	trails	persist	for	months	or	years,

have	legal	standing,	and	are	designed	for	security	purposes.	Logs	persist	for
times	measured	in	days	(or	less)	and	are	designed	to	support	operational	and
development	needs.
Audit	records	are	the	responsibility	of	all	of	the	stakeholders	we	mentioned.

Stakeholders	identify	the	significant	events	that	can	occur	within	their	sphere	of
control	and	are	responsible	for	determining	that	these	events	are	added	to	the
audit	trail	in	a	protected	fashion.
The	one	element	of	STRIDE	we	have	yet	to	discuss	is	the	D—denial	of

service.	Denial-of-service	protection	is	the	responsibility	of	the	platform
provider	and	the	security	architect.	A	variety	of	technologies	and	tools	exist	to
limit	the	effect	of	denial-of-service	attacks.	For	example,	boundary	control
devices	can	filter	certain	types	of	packets	and	limit	the	ports	accessed	to	protect
interior	systems.	Rate-limiting	or	traffic-shaping	switches	are	also	used	to
protect	against	denial-of-service	attacks.

8.8	Development
Controls	exist	in	NIST	800-53	that	specify	aspects	of	the	development	process.
To	once	again	mention	infrastructure-as-code,	scripts	and	other	inputs	into
DevOps	tools	must	be	developed	and	should	be	subject	to	the	same	scrutiny	as
application	code	development.	On	the	other	hand,	security	testing	must	be
integrated	with	the	deployment	pipeline.	Developers	must	demonstrate	that	they
have	explicitly	addressed	security	requirements	and	have	performed	processes
such	as	threat	modelling	and	deriving	quality	metrics.
Five	design	principles	for	security	are
1.	Provide	clients	with	the	least	privilege	necessary	to	complete	their	task.	If
temporary	access	is	needed	it	should	be	rescinded	right	after	use.

2.	Mechanisms	should	be	as	small	and	simple	as	possible.	As	we	stated	in
Chapter	5,	small	modules	with	narrow	interfaces	are	faster	to	test.	The

module	will	execute	each	test	more	quickly	because	it	is	smaller	and	the
number	of	interface	parameters	to	test	will	be	smaller	because	the	interface
is	narrow.

3.	Every	access	to	every	object	must	be	checked	not	only	during	normal	use
but	also	during	initialization,	shutdown,	and	restart.

4.	Minimize	the	number	of	mechanisms	common	to	more	than	one	user	and
depended	on	by	all	users.	Every	shared	mechanism	is	a	potential
information	path.

5.	Utilize	fail-safe	defaults.	Argue	why	a	particular	process	or	client	needs	to
have	access,	not	why	that	process	or	client	should	not	have	access.

These	design	principles	apply	to	both	the	application	design	and	the
deployment	pipeline	itself.	Security	is	more	than	a	matter	of	a	good	design;	it	is
also	a	matter	of	good	coding	practices.	Multiple	lists	of	secure	coding	practices
exist,	and	these	lists	have	been	built	into	static	analysis	tools.	One	of	the	security
gates	that	a	system	should	pass	during	the	deployment	pipeline	is	testing	for
coding	practices.	Another	is	testing	for	various	runtime	attack	methods,	such	as
cross-site	scripting.

8.9	Auditors
With	this	background,	what	does	an	auditor	look	for?	The	answer	is	“all	of	the
above.”	An	auditor	should	want	to	consider	everything	from	development
practices	on	code	and	scripts	to	which	controls	are	used	to	protect	against	what
kinds	of	attacks.
As	a	concrete	example,	consider	what	the	auditors	should	be	asking	about

identity	management—but	note	that	they	go	through	a	similar	sequence	for	all	of
the	security	elements	we	have	discussed.	First,	they	should	consider	the
organization’s	policies	with	respect	to	provisioning	and	de-provisioning
accounts.	Are	the	roles	within	the	organization	clearly	identified?	What
privileges	are	associated	with	a	normal	account	or	with	specialized	roles?	How
do	the	organization	and	their	platform	provider	interact?	Who	has	responsibility
for	the	identity	management	system?
These	questions	involve	the	security	architect	and	the	platform	provider.	The

concern	is	with	policy,	and	the	goal	is	to	ensure	that	appropriate	policies	are	in
place	at	an	organization	level	and	that	interfaces	between	the	organization	and
the	platform	provider	are	well	defined.
Platform	providers	can	acquire	independent	certification	that	they	are

compliant	to	one	or	more	of	the	domain-specific	standards.	If	this	is	the	case,
they	will	not	need	to	participate	in	this	audit	process.

they	will	not	need	to	participate	in	this	audit	process.
Next,	the	auditors	involve	the	solution	architects	and	ask	the	same	questions

with	respect	to	specific	systems.	Again,	the	goal	is	to	examine	the	systems
within	the	organization	from	a	policy	perspective.	The	auditors	also	ask
questions	about	the	development	process.	Is	there	security	awareness	on	the	part
of	the	developers?	Are	there	security	tests	in	the	deployment	pipeline?	Are
reviews	carried	out?	Are	the	design	considerations	enumerated	earlier	utilized
and	verified?	Are	the	same	practices	carried	out	in	developing	scripts	and	using
DevOps	tools?	and	so	forth.
The	auditors	are	then	interested	in	seeing	how	the	policies	are	implemented.

How	is	identity	management	implemented?	How	are	passwords	saved?	How	are
new	passwords	confirmed	as	to	strength?	How	are	credentials	for	the	platform
managed	from	the	organization?	How	is	the	system	tested	with	respect	to
security?	and	so	forth.	Having	security	test	cases	in	code	and	integrated	in	the
pipeline	or	having	security	policy	implementation	automated	in	well-tested
scripts	is	good	evidence	to	auditors.
Finally,	the	auditors	will	ask	for	sample	evidence.	Create	a	new	account	for

me,	show	me	the	privileges	I	get,	show	me	the	records	that	demonstrate	how
long	it	takes	to	deactivate	an	account	once	an	employee	leaves	the	organization,
and	show	me	how	this	links	back	into	your	change	management	system.
In	many	cases,	multiple	controls	exist	to	solve	the	same	problem.	The

organization	being	audited	must	demonstrate	that	their	particular	combination	of
organizational	and	technical	controls	will	satisfy	the	requirements.	There	is	no
“one	size	fits	all”	type	of	response.	If	one	control	is	defectively	implemented	or
has	no	evidence,	another	control	may	satisfy	the	requirement	being	reviewed.

8.10	Application	Design	Considerations
The	use	of	the	cloud	and	microservice	architecture	leads	to	some	special	design
considerations	for	security.

	A	few	additional	security	considerations	must	be	taken	for	the	application
host,	namely,	the	VMs	in	the	cloud.	We	use	AWS	Cloud	as	an	example.
	Any	cloud-wide	AWS	administration	account	(just	like	the	root	account)
should	not	be	used	after	initial	registration	and	setup.	Different	identities
(users	or	roles)	with	least	privileges	(to	resources)	should	be	set	up	using
AWS	Identity	and	Access	Management	(IAM)	for	different	purposes.
	No	EC2	key	pairs	should	be	shared	among	different	users.

	Use	server-side	encryption	to	secure	items	in	storage	such	as	AWS	S3.
	No	VMs	should	have	access	to	the	Internet	except	through	a	gateway
with	only	the	required	ports.	A	virtual	private	network	with	appropriate
subnets	should	be	used.
	Use	AWS	CloudTrail	logs	to	monitor	and	audit	access	history.
	Ship	logs	from	EC2	instances	to	outside	processing	and	storage
components.

	Components	should	be	able	to	be	isolated	and	deployed	independently
without	affecting	other	components.	This	is	for	security	and	other	reasons
we	discussed	earlier	in	the	book.
	Components	should	be	coded	to	be	defensive	and	not	to	trust	their	invoker.
This	is	true	not	only	for	security	reasons	but	also	for	reliability	reasons.
	Components	are	provided	with	configurations	(sometimes	through
dynamically	querying	an	external	service)	appropriate	to	the	environment
in	which	they	are	executing.	The	components	should	be	coded	to	test	all
configurations	at	initialization	and	use	these	configurations	when	invoking
other	components	or	resources.
	Configurations	should	be	saved	in	version-controlled	persistent	storage	so
that
	setting	and	using	the	configurations	can	be	tracked	for	auditing
purposes,	and
	the	values	of	the	configurations	are	available	in	case	a	component	fails.

	Invocation	among	services	should	be	authenticated,	with	performance
penalties	of	authentication	being	one	of	the	considerations.
	Communication	to	the	external	world	should	be	encrypted,	and
communications	among	internal	services	should	consider	encryption.	The
considerations	include	data	sensitivity,	perimeter	security,	and
performance	overhead.
	Use	a	well-patched	base	image	to	create	other	customized	images	for
individual	microservices	so	the	attack	profiles	can	be	reduced.	Consider	a
separate	team	responsible	for	creating	the	secure	base	image,	and	only
allow	each	development	team	limited	customization	for	their	own	services.

8.11	Deployment	Pipeline	Design	Considerations
The	deployment	pipeline	itself	can	also	be	hosted	in	the	cloud,	especially	the
testing	environment,	which	can	benefit	from	cloud	elasticity,	repetitive	clean

testing	environment,	which	can	benefit	from	cloud	elasticity,	repetitive	clean
setup,	and	better	consistency	among	different	environments.	The	cloud	hosting
security	considerations	will	be	the	same	as	we	mentioned	in	the	previous	section.
Other	special	security	considerations	may	include	the	following:

	Lock	down	your	pipeline	environment	most	of	the	time	and	track	all
changes	to	the	pipeline.
	Integrate	continuous	security	testing	throughout	the	pipeline,	which
includes	IDE/pre-commit	analysis,	build	and	integration	servers,	and	end-
to-end	testing	environment.
	Integrate	security	monitoring	in	the	production	environment.	An	example
we	mentioned	earlier	is	Netflix’s	Conformity	and	Security	Monkeys.
	Tear	down	testing	environments	every	time	the	respective	tests	are
finished,	or	at	least	regularly.	Not	only	does	this	reduce	security	risks	in	a
long-running	instance,	but	it	also	gives	an	opportunity	to	update	security
patches	before	relaunch.
	Automate	the	pipeline	as	much	as	possible	through	infrastructure-as-code,
and	promote	code	reuse,	especially	for	improving	environment	consistency
between	various	testing	and	production	environments.	This	includes
automating	security	operations	through	security	vendors’	APIs.
	Consider	encrypting	sensitive	logs	and	test	data,	both	at	rest	and	in	transit.
	No	direct	change	is	permitted	to	any	of	the	environments	without	going
through	the	pipeline	(and	its	change	tracking).	For	diagnosis,	try	to	use
monitoring	data,	shipped	logs,	and	a	replicated	environment	as	much	as
possible	without	directly	accessing	and	modifying	an	environment.
	Test	your	infrastructure	code	(not	just	application	code)	for	security
vulnerabilities.
	Be	able	to	generate	regular	conformance	and	auditing	output	though
automation.

8.12	Summary
Proving	that	your	system	is	secure	is	important	for	any	organization	that	wants
to	be	certified	as	appropriately	handling	sensitive	data.	The	proof	usually	is
presented	to	an	auditing	organization	that	is	trusted	to	perform	a	thorough	audit.
Security	requirements	for	particular	domains	have	been	codified	into	lists	of

controls	that	systems	should	implement.	These	controls	are	intended	to	protect
against	various	threats.	STRIDE—spoofing,	tampering,	repudiation,	information
disclosure,	denial	of	service,	and	elevation	of	privilege—is	one	threat	model.	A
commonly	used	list	of	controls	is	published	by	NIST.	This	list	covers	both

commonly	used	list	of	controls	is	published	by	NIST.	This	list	covers	both
organizational	controls	and	technical	controls.	The	technical	controls	can	be
categorized	as	those	dealing	with	identity	management,	those	dealing	with
access	control,	those	dealing	with	detection	of	attacks,	those	dealing	with
maintaining	an	audit	trail,	those	dealing	with	the	development	process,	and	those
dealing	with	denial	of	service.
Each	of	these	categories	generates	various	security	requirements,	and	they	all

come	together	when	an	organization	is	audited.	An	organization	must	know	what
their	security	requirements	are,	must	provide	evidence	that	controls	have	been
implemented	to	satisfy	these	requirements,	and	must	provide	evidence	that	the
implementation	is	correct.
Traditional	Devs	and	Ops	also	form	two	areas	of	security	concerns.

Developers	are	concerned	about	application	security	design,	while	operators	are
concerned	about	infrastructure	and	operations	environment	security.	Application
security	also	depends	on	operations	security.	DevOps	is	moving	some	operations
security	responsibilities	to	developers	and	tools	through	infrastructure-as-code,
developer-driven	automation,	and	DevOps	tools.	This	requires	developers	and
application	designers	to	be	more	aware	of	operation-environment	security
concerns.
Like	any	other	crosscutting	concerns,	security	verification	and	validation	need

to	be	considered	from	the	beginning	and	performed	at	different	stages
throughout	the	DevOps	pipeline	automatically.	It	is	nontrivial	to	perform	proper
and	semi-automated	security	analysis	and	testing	at	the	unit,	integration,	and
system	levels.	Security	analysis	is	often	an	expert-driven	human-intensive
activity.	Now	security	analysis	extends	to	deployment	time	and	also	requires	full
automation	inside	the	continuous	delivery	and	the	deployment	pipeline.
Security	in	DevOps	is	not	only	about	application	and	operation	security,	it	is

also	about	the	security	of	the	pipeline	itself,	such	as	build/test	server	security,
microservice	component	security,	environment	security,	and	security	during
dynamic	provisioning.	Treating	infrastructure-as-code	provides	a	mind	set	for
ensuring	that	DevOps	processes	are	secure.

8.13	For	Further	Reading
For	general	architecture-level	security	concerns,	see	Chapter	9	of	[Bass	13].
For	cloud-specific	security	issues,	you	can	find	an	extensive	catalogue	of

patterns	at
http://www.opensecurityarchitecture.org/cms/library/patternlandscape/251-

http://www.opensecurityarchitecture.org/cms/library/patternlandscape/251-pattern-cloud-computing

pattern-cloud-computing
You	can	find	more	about	the	STRIDE	threat	model	at

http://msdn.microsoft.com/en/library/ee823878(v=cs.20).aspx
For	ways	of	mitigating	insider	attacks,	the	Software	Engineering	Institute	has

a	technical	report	[SEI	12].
NIST	800-53	is	a	catalogue	of	security	controls	for	U.S.	federal	information

systems.	You	can	find	it	and	many	related	publications	at	[NIST	13].
For	some	good	analysis	of	recent	security	attacks,	see	Wikipedia’s	entry	at

http://en.wikipedia.org/wiki/Stuxnet	and	Verizon’s	report	at
http://www.verizonenterprise.com/DBIR/2013/download.xml
For	microservice-specific	security	considerations,	see	the	security	chapter	in

[Newman	15].
You	can	find	quite	a	few	blog	entries	discussing	the	relationship	between

DevOps	and	security	by	searching	for	“Security	and	DevOps.”
Wikipedia	discusses	security	controls	and	their	types	at

http://en.wikipedia.org/wiki/Security_controls
A	discussion	of	the	BrowserStack	attack	can	be	found	at	[ITSecurity	14].
Security	Monkey	is	described	at

http://techblog.netflix.com/2014/06/announcing-security-monkey-aws-
security.html

http://msdn.microsoft.com/en/library/ee823878(v=cs.20).aspx
http://en.wikipedia.org/wiki/Stuxnet
http://www.verizonenterprise.com/DBIR/2013/download.xml
http://en.wikipedia.org/wiki/Security_controls
http://techblog.netflix.com/2014/06/announcing-security-monkey-aws-security.html

9.	Other	Ilities

As	a	child	my	family’s	menu	consisted	of	two	choices:	take	it	or	leave	it.
—Buddy	Hackett

9.1	Introduction
In	Part	Two	of	the	book,	we	discussed	the	major	functionalities	of	the
continuous	deployment	pipeline,	such	as	build,	test,	and	deployment.	There	are
other	DevOps	operations	that	resemble	a	process-like	pipeline	such	as	error
detection,	diagnosis,	and	recovery.	In	this	chapter,	we	use	the	word	DevOps
pipeline	to	represent	all	aspects	of	DevOps.
If	you	are	a	software	architect,	you	probably	know	the	word	“ility”	is	used	to

describe	quality	concerns	other	than	those	that	focus	on	the	basic	functionalities
and	their	correctness.	In	terms	of	DevOps,	ilities	correspond	to	questions	such
as:	How	well	are	these	functionalities	in	your	pipeline	performing?	Can	you
precisely	repeat	your	DevOps	operations	when	needed?	How	much	time	has
passed	between	a	business	concept	and	its	final	release?	How	can	different	tools
in	your	pipeline	interoperate?	We	started	discussing	some	major	concerns	such
as	monitoring	and	security	in	Part	Three.	In	this	chapter,	we	cover	additional
concerns.	In	Table	9.1,	you	can	find	a	list	of	the	ilities	and	their	primary	quality
concerns	that	we	discuss.

TABLE	9.1	DevOps	Pipeline	Ilities	and	Quality	Concerns

We	focus	on	the	ilities	of	the	DevOps	pipeline	itself	rather	than	the
application	the	pipeline	produces	and	operates	on.	There	are	certainly	strong
connections	between	the	pipeline	and	the	application.	For	example,	the
performance	and	recoverability	of	an	upgrade	operation	may	have	significant
impacts	on	the	performance	and	recoverability	of	the	application	being	upgraded
—but	we	do	not	explore	these	connections	here.	We	consider	the	ility	issues	of
the	DevOps	pipeline	from	two	different	perspectives:	product	and	process.
First,	the	DevOps	pipeline	itself	is	a	piece	of	software	product,	its	end	users

are	developers	and	operators.	As	with	any	piece	of	software,	its	design	can	be
governed	by	good	software	architecture	practices	with	early	and	explicit	focus
on	quality	concerns	from	its	stakeholders.	As	advocated	earlier,	we	consider	it
important	to	treat	operators	as	first-class	stakeholders,	so	as	to	uncover	more
functional	and	ility	requirements	for	the	DevOps	pipeline.
Second,	the	DevOps	pipeline	has	characteristics	of	a	process.	Some	ilities

covered	here	are	more	related	to	process	quality	and	performance	than	product
quality	and	performance.	We	can	approach	the	improvement	of	such	process-
oriented	systems	at	two	different	levels.	At	one	level,	a	DevOps	process	may
resemble	a	human-intensive	process	similar	to	a	software	development	process.
We	can	apply	some	of	the	lessons	learned	in	improving	software	development
processes	to	DevOps	processes,	including	agility,	life-cycle	models,	quality
controls,	and	maturity	models.	In	fact,	the	DevOps	movement	arguably	started	as

an	agile	attempt	to	apply	Dev	tools	and	practices	to	the	Ops	realm.	At	another
level,	a	DevOps	process	may	fit	with	a	workflow	or	business	process
management	system	where	a	predefined	DevOps	workflow	is	executed	inside	a
workflow	engine.	The	quality	concerns	of	the	workflow	can	be	addressed	by
asserting	pre/post-conditions	of	different	tasks,	better	resource	allocation,
exception	handling,	and	management	of	long-running	transactions.	In	Chapter
14,	we	discuss	treating	operations	as	processes	in	more	detail.
In	the	following,	we	discuss	each	of	the	ilities	from	Table	9.1.	As	in	other

software,	the	design	of	DevOps	processes	involves	tradeoffs	among	the	relevant
quality	concerns.

9.2	Repeatability
Repeatability	is	the	degree	to	which	a	process	can	be	repeated	for	a	different
application	or	branch.	It	can	be	measured	by	counting	the	number	of	failures	and
successes	of	that	process.	If	a	process	that	was	previously	successful	now	fails,
this	failure	is	an	indication	that	the	process	is	not	repeatable	in	some	different
context.
Some	processes,	such	as	deploying	a	microservice	into	production,	are	defined

by	individual	teams,	whereas	other	processes,	such	as	allocating	features	across
microservices,	are	done	across	teams.	Still	other	processes,	such	as	using
particular	tools,	may	be	enforced	across	organizations.	A	portion	of	the	rollout	of
DevOps	processes	concerns	deciding	which	processes	are	intra-team,	which	are
inter-team,	and	which	are	across	a	whole	organization.	See	Chapter	10	for	a
further	discussion	of	this	topic.	Two	activities	are	key	to	achieving	repeatability:
definition	and	enforcement	of	processes	and	maintaining	version	control	over	all
artifacts.	We	discuss	these	activities	next.
Measuring	repeatability	depends	on	being	able	to	identify	that	two	executions

of	an	operation	are	executing	the	same	process.	One	means	for	doing	this	is	to
examine	traces	of	the	process	to	ensure	they	have	performed	the	same	steps	in
the	same	order.	In	other	words,	we	are	equating	repeatability	and	traceability.	If
the	steps	of	a	process	cannot	be	identified,	then	knowing	whether	the	outcome	of
a	step	is	a	repeat	of	a	prior	execution	of	that	step	is	not	possible.

Defining	and	Enforcing	Process	at	the	Appropriate	Level
Software	development	and	IT	operations	have	always	been	human-centric,
involving	some	creative	problem-solving	activities.	Even	with	the	trend	toward
full	automation	in	the	DevOps	space,	there	are	still	human-intensive	activities
such	as	release	planning	and	control,	deriving	complex	monitoring	rules,	and

such	as	release	planning	and	control,	deriving	complex	monitoring	rules,	and
problem	diagnosis.	This	means	there	will	be	important	tradeoffs	between
defining	and	enforcing	repeatable	actions	to	improve	quality	and	allowing	for
leeway	to	enable	desired	creative	activities.
Processes	provide	guidance,	and,	presumably,	their	development	is	the	result

of	a	rational	process	where	various	tradeoffs	have	been	considered.	Rigid
enforcement	of	a	process,	however,	reduces	the	flexibility	of	both	Dev	and	Ops.
Process	enforcement	is	a	matter	both	of	automation	and	of	social	processes.
Automating	a	process	will	enforce	certain	actions	and	certain	gates.	Social
processes	such	as	wearing	a	hat	that	says	“I	Broke	the	Build”	also	educate	and
encourage	team	members	to	conform	to	particular	processes.
We	look	at	developers	and	operators	separately.
Modern	developers	perform	their	tasks	using	a	range	of	different	feature-rich

tools	such	as	code	editors,	compilers,	debugging	tools,	static	analysis	tools,
testing	tools,	and	source	code	revision	control	systems.	Integrated	development
environments	(IDEs)	may	integrate	some	of	these	tools.	Each	individual	tool
makes	its	own	decisions	about	defining	and	enforcing	processes	or	allowing	for
leeway.	However,	the	process	flow	between	developer	activities	using	the	tools
is	less	regulated.	For	example,	a	developer	may	choose	to	do	minimal	testing
before	committing	large	pieces	of	code	into	a	repository.	Not	only	is	this	large
piece	of	code	highly	likely	to	break	during	building,	fail	the	integration	testing,
and	temporarily	stop	the	continuous	delivery	pipeline	for	the	whole	team,	the
debugging	and	merging	effort	may	also	be	disproportionally	high.
In	order	to	achieve	repeatability,	processes	must	enforce	selected	practices.

The	choice	of	which	practices	to	enforce	is	a	portion	of	the	tradeoffs	that	go	into
designing	a	DevOps	process.	For	example,	a	team	may	define	pre-commit/push
hooks	or	tests	as	mandatory,	to	enable	checks	on	a	piece	of	code	before	it	is
integrated	to	an	important	branch.	The	pre-commit	tests	could	include
procedures	ranging	from	coding-style	checks	to	running	a	set	of	test	cases.
However,	if	these	checks	take	too	long	and	the	developers	have	to	wait,	their
productivity	may	decrease.	The	tradeoff	is	between	the	appropriate	levels	of
enforced	testing—the	increased	reliability	that	comes	from	extensive	local
testing	and	the	risk	of	a	build	failing	and	affecting	the	pipeline.
The	goal	is	to	have	some	defined	and	repeatable	best	practices	around	the

development	workflow	at	an	appropriate	level.	These	best	practices	concern	not
only	individual	activities,	but	also	the	quantity	and	quality	of	the	flow	between
individual	activities	in	the	team.	In	the	past,	this	was	largely	promoted	through
education	and	management	practices	informed	by	life-cycle	models,	agile
methods,	and	capability	maturity	models	(CMMs).	In	DevOps,	these	best

methods,	and	capability	maturity	models	(CMMs).	In	DevOps,	these	best
practices	are	increasingly	enforced	through	repeatable	automation	although,
again,	there	is	a	tradeoff	between	enforcement	and	rigidity.
For	operators,	the	saying	“Automate	yourself	out	of	the	job!”	has	been	a

slogan	of	the	community.	IT	operators	have	sophisticated	automation	tools	to
potentially	repeat	every	aspect	of	their	work.	In	the	early	days,	configuration
management	tools	such	as	CFEngine	helped	to	manage	the	configuration	updates
of	large	clusters	of	servers.	Even	before	the	virtualization	era,	pioneers	like
LoudCloud	and	Opsware	provided	solutions	around	automated	server	and
network	provisioning.	Virtualization	technologies	make	repeatable	operations
much	easier.	Vendors	like	VMware	and	Amazon	cloud	have	provided
application	programming	interfaces	(APIs)	and	tools	to	help	achieve
repeatability.	Operators	often	have	their	own	favorite	scripts	and	Cron	jobs	to
solve	the	special	problems	and	pipeline	different	tools	and	platforms	together.
These	approaches	have	been	useful,	but	they	are	not	necessarily	enforcing

repeatable	practices	at	an	appropriate	level.	First,	the	flow	between	different
automated	tasks	may	be	less	regulated	and	repeatable.	An	operator	may	decide
to	perform	an	ad	hoc	sequence	of	tasks	even	when	each	task	is	embodied	in
scripts	and	is	repeatable.	This	issue	is	particularly	important	when	we	consider
the	full	pipeline	and	its	repeatability.	Second,	operators	also	have	to	battle	issues
and	outages	in	real	time	to	reduce	downtime.	There	is	tremendous	pressure	to	do
something	quickly	rather	than	defining	what	you	will	be	doing	in	repeatable
scripts	first,	testing	it,	version	controlling	it,	and	then	running	it.	Clearly	defining
when	ad	hoc	nonrepeatable	operations	are	allowed	and	how	to	remedy	the
situation	after	the	event	is	a	necessary	step	in	balancing	repeatability	with	real-
time	problem	solving.	Finally,	defining	an	operation	through	scripts	and
automation	tools	does	not	inherently	achieve	repeatability,	because	scripts	do
change	and	different	versions	of	the	scripts	may	run	at	different	times	under
different	contexts.	Making	sure	an	operation	is	indeed	repeatable	when	needed	is
nontrivial.	This	leads	to	the	next	section	on	version	control.

Version	Control	Everything
As	we	have	described,	DevOps	processes	have	at	least	two	levels.	Some	steps
are	performed	through	the	use	of	a	single	tool,	and	some	steps	involve	multiple
tools.	Both	of	these	levels	should	be	under	the	control	of	a	version	control
system	to	ensure	repeatability.	We	begin	by	discussing	the	reasons	why	those
steps	under	the	control	of	a	single	tool	(script)	should	be	controlled	by	a
versioning	system.	These	steps	are	the	scripts	that	operators	use.

1.	Scripts	change	over	time.	The	change	might	be	due	to	some	improvements
or	the	introduction	of	a	new	variant	to	do	a	slightly	different	job.	It	is	easy
to	lose	track	of	which	particular	version	of	which	script	was	run	on	which
systems	and	when.	Any	script	or	code	that	changes	the	infrastructure	or
environment	should	be	version	controlled	just	as	application	code	is
controlled	by	a	versioning	system.	This	is	an	example	of	treating
infrastructure-as-code.	In	this	way,	not	only	are	all	the	past	versions	of	the
scripts/code	available,	but	also	information	about	the	changes	is	available,
including	the	reasons	behind	the	changes,	the	persons	who	made	the
changes,	and	the	time	of	the	changes.

2.	A	script	often	takes	some	parameters	to	run,	and	these	parameters	operate
on	a	particular	environment	and	make	changes	to	that	particular
environment.	Tracing	or	repeating	a	run	or	understanding	a	run	requires
more	than	the	precise	version	of	the	script	that	was	run.	It	also	requires
retaining	the	values	of	the	parameters	as	well	as	a	trace	of	the	execution.

Tracing	or	repeating	a	run	can	be	accomplished	in	different	ways.	The	first
approach	is	to	log	all	the	steps	of	a	particular	run,	which	includes	what	a
particular	step	is	doing	to	what	states.	This	approach	relies	heavily	on	the	quality
and	granularity	of	the	logs	your	scripts	produce	and	those	produced	by	other
people’s	tools	and	scripts	(over	which	you	do	not	have	full	control).	Sometimes
you	have	to	deal	with	insufficient	information	in	logs	to	attempt	a	reconstruction
of	a	past	run.	A	second	approach	is	to	capture	the	state	changes	of	a	particular
run	regardless	of	how	and	whether	each	step	is	logged.	Some	states	(such	as	file-
based	configurations	and	artifacts)	are	amenable	to	version	control	since	you	can
simply	put	these	files	into	a	version	control	system	and	any	changes	to	them	(by
scripts	or	by	humans)	are	tracked.	Some	other	non-file-based	states	require
additional	work	for	periodic	state	capturing.	For	example,	the	states	of	the	virtual
instances	running	in	the	cloud	and	their	relationships	should	be	periodically
captured	and	stored	for	future	reference,	especially	if	a	DevOps	operation	has
changed	them.	There	are	already	tools,	like	Netflix	Edda,	that	were	developed	to
capture	state	changes	of	Amazon	cloud	resources	and	enable	queries,	including
correlation	with	recent	operations.
These	tracing	techniques	reduce	to	a	standard	dependability	technique	of

checkpointing	plus	logging.	Checkpoint	the	state	of	the	environment,	and	then
log	any	requests	for	changes	that	occurred	after	the	checkpoint	was	created.	If
the	log	becomes	too	long,	then	a	new	checkpoint	can	be	created	and	the	log
restarted.	The	state	of	the	environment	and	the	parameters	used	can	be
determined	by	examining	the	log	and	the	checkpoint.
This	last	point	of	responsibility	for	creating	a	checkpoint	and	a	log	of	changes

This	last	point	of	responsibility	for	creating	a	checkpoint	and	a	log	of	changes
ties	all	of	the	steps	together	into	a	repeatable	higher-level	process.	Several
possibilities	exist.

	Deployment	tools.	Maintaining	traceability	of	the	higher-level	process
could	be	accomplished	by	a	deployment	tool	since	it	is	the	last	stage	of
placing	an	instance	in	production.
	Configuration	management	database	(CMDB).	As	we	advocate	in	Chapter
2	and	as	we	see	in	the	case	study	in	Chapter	12,	the	configuration
parameters	are	stored	in	a	database.	This	database	can	also	record	accesses,
so	that	tools	and	scripts	that	access	configuration	information	will	be
known	later.
	Tagging	data	items.	Each	script	manipulates	some	entity.	Tagging	the
entity	with	the	identification	information	of	each	script	that	manipulated	it
will	lead	to	the	final	deployed	version	having	traceability	information.

In	all	this,	it	is	important	to	link	particular	(parts)	of	logs	and	state	snapshots
to	a	particular	run	of	a	versioned	script	so	that	your	operation	is	completely
repeatable	and	understandable	at	a	later	time.

9.3	Performance
A	DevOps	pipeline	is	like	a	piece	of	software	where	the	performance	is
characterized	by	the	amount	of	useful	work	it	accomplishes	and	the	time	and
resources	used	to	accomplish	that	work.	Like	performance	in	traditional
software,	this	can	be	measured	by	the	response	time	to	a	given	piece	of	work
such	as	a	build	task	or	a	deployment	task,	the	throughput	of	these	tasks	at
different	stages	of	the	pipeline,	and	their	utilization	of	the	underlying	resources
including	both	computing	and	human	resources.

Measuring	the	Important	Things
Before	you	can	improve	the	performance	of	your	pipeline,	you	should	first
measure	it.	In	Chapter	10,	we	discuss	some	high-level	business	performance
indicators	of	a	DevOps	pipeline.	More	detailed	measurements	are	required	in
order	to	improve	the	performance	of	a	pipeline.
At	a	high	level,	the	performance	of	interest	is	the	time	between	a	business

concept	and	its	successful	deployment.	As	the	business	concept	is	being	realized
and	deployed,	it	travels	through	the	subprocesses	of	the	pipeline,	sometimes
iteratively.	It	is	important	to	measure	the	time	it	spent	inside	each	subprocess.
This	includes	both	the	time	the	task	spent	waiting	in	a	queue	and	the	time	taken
for	the	actual	execution	of	the	task.	For	example,	the	integration	test	resources

for	the	actual	execution	of	the	task.	For	example,	the	integration	test	resources
may	be	blocked	by	a	commit	on	a	different	branch,	and	your	commit	is	placed	in
a	queue	for	some	time	until	the	resources	are	free	again.
Also	measure	the	different	types	of	errors	that	occur	and	the	reasons	behind

them.	For	example,	a	build	error	is	a	key	source	of	problems	slowing	down	the
delivery	pipeline.	A	recent	empirical	study	from	Google	shows	that	the	top	build
errors	are	related	to	dependency	issues	representing	52.68%	(C++)	or	64.71%
(Java)	of	all	build	errors.	Understanding	these	errors	can	guide	your	efforts	for
improvement.
A	third	type	of	measurement	focuses	on	compliance.	As	mentioned	earlier,	for

various	reasons	it	is	not	always	best	to	enforce	best	practices	proactively	and
mechanically.	Instead,	monitoring	compliance	provides	an	indication	of
problems.	Not	all	deviations	are	problems,	some	may	be	justified.	On	the	other
hand,	multiple	compliance	deviations	can	indicate	a	need	to	improve	a	process.
For	best	practices,	this	is	optional;	for	regulatory	rules,	it	may	be	mandatory.	For
instance,	the	financial	industry	is	often	required	to	ensure	that	a	code	review	is
done	before	any	release	into	production,	by	a	developer	who	was	not	involved	in
the	actual	development	of	a	feature	or	patch.	While	this	rule	should	be	enforced
by	the	tools	in	use,	it	is	also	good	to	monitor	the	compliance	at	release	time,	to
make	sure	the	enforcement	mechanism	has	not	been	bypassed	in	some	fashion	or
other.
Another	performance	measurement	can	focus	on	the	time	that	elapsed

between	when	a	problem	happened	and	when	it	was	detected	and	subsequently
repaired.	Delays	in	detection	and	repair	may	point	to	improvement	opportunities.
In	general,	our	advice	is:	Measure	the	performance	of	those	things	that	could

slow	down	the	pipeline	and	prioritize	improvements	based	on	the	relative	cost
and	benefit	of	each	one.

Improving	Resource	Utilization
The	provisioning	of	computing	resources	to	the	development	team	can	be
expensive	and	cumbersome.	A	developer	needs	to	have	access	to	a	high-
performing	development	environment.	The	provisioning	of	an	in-house	and
physical	development	environment	takes	both	significant	time	and	money.	A
potentially	extensive	set	of	build	and	test	servers	also	need	to	be	provisioned.
The	testing	and	staging	environments	need	to	resemble	the	production
environment	as	closely	as	possible,	which	can	require	expensive	replication.
Waste	can	happen	anywhere	in	this	scenario	as	developer	machines,	build/test
servers,	and	testing/staging	environments	are	often	provisioned	for	peak	times

and	thus	are	underutilized	during	off-peak	times.
Waste	can	be	reduced	using	several	different	strategies.
	Moving	all	the	above	environments	to	the	cloud,	thereby	switching	off
machines	that	are	currently	underutilized	and	only	paying	for	what	you
use.	This	not	only	improves	resource	utilization	but	also	helps	with
repeatability.	Tearing	down	an	environment	when	it	is	not	in	use	and
starting	it	up	again	when	needed	automatically	forces	a	repeatable	process
to	be	defined.	This	results	in	consistent	and	clean	environments	and	well-
tested	scripts.	It	further	alleviates	the	problems	caused	by	inconsistent
environments—the	“it	worked	on	my	machine”	problem.	With	the	flexible
scaling	of	the	cloud	and	a	pipeline	setting,	more	resources	can	be	allocated
and	utilized	through	parallelization.	These	extra	resources	might	be	used	to
remove	a	bottleneck	or	generally	increase	the	speed	of	various	pipeline
tasks.
	Using	containers	rather	than	virtual	machines	(VMs).	Containers	can	be
more	quickly	deployed	than	VMs.	The	use	of	containers	to	support	a
deployment	pipeline	is	only	in	its	infancy,	and	this	class	of	applications	is
certain	to	grow.

The	downside	of	completely	moving	your	pipeline	into	the	cloud	is	that	you
lose	full	control	of	and	visibility	into	your	environment	if	the	environment	is
hosted	on	a	third-party	cloud.	There	is	also	some	small	but	high-consequence
risk	of	an	outage	of	your	entire	development	and	testing	environment.

9.4	Reliability
Software	fails.	Reliability	refers	to	the	capability	of	the	overall	DevOps	pipeline
and	its	individual	pieces	to	maintain	service.	A	DevOps	pipeline	has	to	deal	with
a	large	number	of	different	types	of	tools.	Some	tools	are	local	to	the
development	environment,	such	as	code	editors	and	IDEs.	Some	services	are
provided	through	dedicated	servers	such	as	continuous	build/integration.	The
deployment	process	has	to	deal	with	infrastructure	services	either	through
specific	mechanisms	of	the	OS/middleware	or,	in	the	cloud	environment,
through	infrastructure	APIs	and	VMs.	Some	of	these	services	have	to	be
accessed	remotely	over	a	network.	The	DevOps	pipeline	can	be	seen	as	a
distributed	system	of	systems	dealing	with	various	distributed	services.	And
these	services	and	their	reliability	are	often	out	of	your	direct	control.	To
improve	the	reliability	of	the	pipeline,	you	can	apply	a	number	of	solutions.

Understanding	the	Reliability	Characteristics	of	Different

Understanding	the	Reliability	Characteristics	of	Different
Services
Empirically	understanding	the	reliability	of	various	services	and	software	in	your
pipeline	is	a	critical	first	step	in	improving	the	reliability	of	the	total	pipeline.
The	increase	in	frequency	of	software	release	and	deployment	means	many	of
these	services	and	software	are	now	accessed	tens	and	hundreds	of	times	a	day.
You	should	stress	test	these	services	and	build	reliability	and	timing	profiles	of
the	services.	It	is	important	to	note	that	the	reliability	of	these	services	cannot
necessarily	be	improved,	due	to	both	the	control	and	ownership	of	the	service
and	the	sheer	complexity	of	the	services.
Once	you	understand	the	reliability	of	individual	services,	you	can	use	several

techniques	to	improve	the	reliability	without	modifying	or	controlling	the
original	services.

	Use	a	wrapper	around	the	original	service	to	improve	reliability.	The
wrapper	can	employ	standard	fault-tolerant	mechanisms.	For	example,	you
can	use	the	timing	profile	to	implement	a	fail-fast	mechanism	so	that	you
do	not	wait	for	any	service	response	that	is	slower	than	the	95th	percentile.
You	can	hedge	your	requests	by	issuing	slightly	more	requests	than	you
need	to	anticipate	some	failed	or	slow	requests.	Although	this	may	incur
additional	cost,	it	can	dramatically	improve	the	reliability	of	your	pipeline
at	critical	points.	You	can	also	use	the	wrapper	to	intercept	some	requests
so	that	you	can	redirect	or	reprioritize	these	requests	to	checkpoint	critical
states	in	order	to	enable	more	efficient	undo	upon	failure.
	Use	local	mirrors	of	the	remote	services.	This	is	often	done	in	practice	for
dealing	with	remote	code/software	repositories	and	dependency
resolutions.	A	DevOps	pipeline	often	needs	to	access	third-party	libraries
and	software	packages	for	provisioning	new	instances.	Downloading	all
packages	over	the	Internet	can	be	unreliable	at	times	and	result	in	version
conflicts	when	a	new	version	is	downloaded	and	used	accidentally.	A	local
mirror	can	both	improve	the	reliability	of	the	repository	services	and
enforce	versioning	expectations.

Detecting	and	Repairing	Errors	Early
Just	as	with	regular	software	development	and	debugging,	a	lot	of	the	time	spent
on	a	DevOps	pipeline	is	not	the	time	spent	on	successful	builds,	testing,	and
deployments.	Instead,	when	things	go	wrong,	you	spend	a	significant	amount	of
time	analyzing	and	fixing	problems.	For	example,	the	time	spent	in	determining

build	errors	or	deployment	errors	and	the	time	spent	rolling	back	can	be	a
significant	negative	contributor	to	the	performance	of	your	pipeline.
One	solution	is	to	run	more	tests	at	early	stages	of	the	pipeline.	But	testing

takes	a	significant	amount	of	time,	especially	when	multiple	target	platforms	and
large	suites	of	integration/systems	testing	suites	are	involved.	And	some	subtle
errors	only	manifest	themselves	over	time	and	in	the	large-scale	production
environment.
Another	solution	is	to	judiciously	check	some	high-frequency	errors	earlier

through	better	tooling.	For	example,	as	a	result	of	the	Google	empirical	study
mentioned	earlier,	significant	research	is	being	done	to	have	better	dependency
resolution	servers	enabling	both	backward	and	forward	dependency	resolution
and	thus	to	detect	dependency-related	issues	earlier	(i.e.,	before	a	build	error	is
triggered).
Many	early	errors	are	subtle	but	they	do	leave	traces	in	various	places	such	as

logs	and	monitoring.	You	can	build	mechanisms	to	examine	logs	and	assert
expected	states	earlier	rather	than	react	to	failure	alarms.	Some	other	errors	can
only	be	detected	by	comparing	with	historical	trends	over	time	or	past	successful
runs.	We	introduce	some	recent	research	results	in	Chapter	14	that	use	logs	and
assertions	to	detect	errors	earlier	than	would	otherwise	be	the	case.	Once	you
detect	these	errors	early,	you	can	improve	the	reliability	by	recovering	from
them,	which	leads	to	our	next	section	on	recoverability.

9.5	Recoverability
Like	many	quality	attributes,	recoverability	of	your	DevOps	operation	should
not	be	an	afterthought	but	a	built-in	quality	from	the	start.	The	goal	of
recoverability	is	to	enable	easy	recovery	after	a	failure,	whether	the	cause	is	an
internal	or	external	system,	or	human	operators.	There	are	a	number	of	ways	you
can	achieve	this.

1.	Include	extensive	exception	handlings	in	your	operation	logic.	This
includes	more	defensive	programming	techniques	in	checking	various	pre-
and	post-conditions	of	a	particular	step,	and	using	exception	handling	to
repair	or	gracefully	exit	to	a	desired	state,	such	as	a	consistent	state,	before
the	step	was	taken.

2.	Build	in	support	for	external	monitoring	or	recovery	systems.	As	many
operations	are	long-running,	it	is	not	always	easy	to	synchronously	check
the	outcome	of	an	operation	step	and	be	certain	the	desired	states	will	be
maintained	even	after	initial	success.	Imagine	your	task	is	to	launch	an

application	instance.	It	takes	several	minutes	for	a	typical	successful
launch,	with	the	instance	going	through	several	intermediary	states
indicating	the	successful	provisioning	of	the	VM,	the	middleware	stacks,
the	application,	and	its	correct	configuration.	You	will	only	know	some	of
the	intermediary	results	minutes	later	through	periodic	checking.
Meanwhile,	external	monitoring	and	health	checking	services	could	have
examined	some	of	these	conditions	and,	if	need	be,	recovered	from	certain
errors	such	as	a	failed	VM.	The	external	monitoring	and	recovery	services
should	work	in	conjunction	with	the	scripts	specifying	operations
processes.

3.	Design	your	software	with	operators	as	first-class	stakeholders.	Many
complex	recovery	tasks	have	to	be	done	by	human	operators	after
diagnosis	of	the	cause.	It	is	important	for	your	operation	software	to
produce	relevant	information	either	through	logs	or	state-capturing
facilities	to	make	it	easier	for	operators	to	make	informed	recovery
decisions.

4.	Make	each	individual	step	of	long-running	operations	able	to	recover	itself
so	that	there	are	only	a	few	situations	in	which	the	whole	operation	needs
to	be	rolled	back.

9.6	Interoperability
Interoperability	refers	to	the	degree	to	which	different	tools	can	usefully
exchange	information	via	interfaces	in	a	particular	context.	The	DevOps	pipeline
usually	consists	of	many	different	tools	from	different	commercial	vendors	and
open	source	projects.	This	is	the	expected	norm	for	such	pipelines,	where
individual	tasks	are	best	served	with	highly	specialized	software	and	the
interoperation	of	different	tools	is	achieved	through	best	effort	rather	than	top-
down	planning.	There	are	a	number	of	ways	one	can	achieve	better
interoperability	among	different	pieces	of	the	software.

Paying	Attention	to	Interoperation	of	Interfaces
Although	a	team	can	build	an	in-house	version	of	a	tool	or	customize	an	existing
tool	for	their	tasks,	most	of	the	time	they	have	to	enable	interoperation	between
existing	tools,	where	they	have	limited	control.	It	is	important	to	select	tools	that
have	stable	APIs,	flexible	scripting	facilities,	and	an	active	plug-in	ecosystem
that	contains	many	plug-ins	for	interoperating	with	other	tools.
For	example,	the	popular	source	control	system	Git	can	support	the

interoperation	with	static	analysis,	testing,	build,	and	notification/messaging

interoperation	with	static	analysis,	testing,	build,	and	notification/messaging
systems	through	event-based	hooks:	The	invocation	of	other	systems	using
appropriate	Git	outputs	can	be	carried	out	before	or	after	a	Git	event	such	as
commit	or	push.

Understanding	Existing	Data	Models
Good	interoperability	relies	on	the	data	models	implied	in	each	of	the	tools	in	the
pipeline.	It	is	important	to	determine	the	syntax	and	semantics	of	the	major	data
models	that	need	to	be	exchanged	among	the	interoperating	tools.	This	is	not
always	easy.
For	example,	continuous	integration	(CI)	practices	are	relatively	mature,	and

there	are	a	large	number	of	tools	supporting	CI.	The	data	models	in	these	tools
have	an	explicit	concept	around	build.	However,	when	we	extend	the	pipeline	to
continuous	deployment	(CD),	we	need	to	track	which	build	was	deployed	where
and	when.	Also,	not	all	builds	will	be	deployed	or	a	particular	deployment	may
need	to	link	back	to	information	coming	from	multiple	builds.	The	implied	data
model	in	CD	is	more	about	artifacts	and	mappings	to	infrastructures	and
environments.	The	gap	between	these	two	data	models	is	causing	some	problems
in	using	CI	tools	for	CD	purposes.	These	issues	are	particularly	important	when
feedback	is	needed	from	deployment	to	build	for	debugging	and	monitoring
purposes.	If	the	interoperation	is	simply	about	a	trigger	from	CI	to	CD	tools,
critical	information	will	be	lost.	Some	tools,	such	as	Go	continuous	delivery
software,	are	addressing	the	issue	by	having	richer	data	models	to	capture	the
needs	of	CI/CD	interoperation.	If	you	are	working	with	existing	tools,	you	may
need	to	have	additional	data	models	in	your	coordination	scripts	to	track	the
mappings.

9.7	Testability
Testability	concerns	the	effort	required	for	the	software	to	demonstrate	its	faults
through	testing.	For	application	software,	developers	practice	unit	testing,
integration	testing,	and	so	forth.	However,	a	DevOps	pipeline	poses	additional
challenges.	The	challenges	come	from	the	difficulty	of	testing	infrastructure
outcomes.	Recall	that	infrastructure-as-code	is	about	using	code	(rather	than
manual	commands)	for	setting	up	(virtual)	machines	and	networks,	installing
packages,	and	configuring	the	environment	for	the	application	of	interest.
However,	the	testability	of	infrastructure-related	code	is	difficult	as	the	real
execution	of	the	code	involves	long-running	tasks	such	as	spinning	up	VMs,
downloading	and	installing	pieces	of	software,	and	performing	all	tasks	reliably
on	a	large	number	of	nodes.	It	is	not	enough	to	know	your	command	has	been

on	a	large	number	of	nodes.	It	is	not	enough	to	know	your	command	has	been
received	and	started—you	also	need	to	know	if	the	expected	outcomes	were
achieved,	minutes	or	even	hours	later.
Consider	Chef	as	an	example.	Chef	is	a	popular	tool	to	configure	a	large

number	of	systems	for	both	infrastructure	provisioning	and	application
deployment.	You	write	Chef	cookbooks	to	express	what	you	would	like	Chef	to
do	to	nodes	(physical	machines,	VMs,	LXC	containers,	etc.),	such	as
installing/updating	packages	and	applying	configuration	changes.	The	Chef
system	will	try	to	apply	the	cookbooks	on	all	the	nodes.	How	do	you	test	your
Chef	cookbook	code	to	make	sure	that	it	will	do	what	you	expect,	and	that	the
code	quality	is	good?
Just	like	any	other	type	of	code,	you	can	do	unit	testing	on	your	cookbook.

ChefSpec	is	a	tool	for	running	unit	tests	of	Chef	cookbooks.	The	meaning	of
unit-testing	infrastructure	code	(such	as	a	Chef	cookbook)	is	slightly	different
from	traditional	unit	testing.	Remember	that	the	code	is	about	installing/updating
packages	and	configurations	in	real	nodes	through	convergence.	It	will	be	slow
and	costly	to	unit	test	if	you	actually	launch	a	large	number	of	test	instances	and
wait	for	the	installation/update	to	finish	with	them.	This	violates	the	key	goals	of
unit	testing—being	fast	and	running	locally	so	that	developers	get	quick
feedback.	Thus,	ChefSpec	actually	tests	whether	the	inputs	to	Chef	are	what	you
expect,	especially	when	the	logic	is	complex.	ChefSpec	runs	in	the	memory	of	a
development	machine	and	never	actually	executes	or	does	the	convergence.	This
type	of	unit	testing	can	still	tease	out	some	problems	early	on.
Once	you	have	passed	all	the	unit	tests,	you	can	run	integration	testing,	which

is	really	testing	the	outcome	of	a	Chef	run	in	a	test	environment.	Tools	for	this
purpose	include	Test	Kitchen	and	Serverspec.	Test	Kitchen	is	responsible	for
managing	the	integration	tests,	such	as	actually	launching	test	machines	(e.g.,
EC2	instances	or	LXC	containers)	and	converging	a	given	Chef	run	on	these
machines.	Test	Kitchen	then	runs	the	actual	tests	to	make	sure	the	machines	are
in	the	states	you	expect.	The	tests	themselves	are	written	in	Serverspec	using	the
RSpec	language,	which	uses	a	human-readable	form	that	links	back	to	business
scenarios,	to	make	specifying	integration	test	cases	easier.
If	you	follow	the	test-driven	development	practices	and	write	your	test	suite

first,	you	are	likely	to	produce	code	with	improved	testability.
Unit	and	integration	testing	give	you	confidence	about	your	code	quality	and

the	expected	behavior.	However,	running	large-scale	system	tests	mimicking	the
real	production	environment	is	still	difficult	to	achieve.
When	moving	to	integration	and	system	testing,	you	may	notice	that	the	test

cases	you	write	often	resemble	monitoring	rules	you	set	up.	This	is	not

cases	you	write	often	resemble	monitoring	rules	you	set	up.	This	is	not
surprising	as	monitoring	is	about	runtime	assertions	and	keeping	an	eye	on	a
successful	provisioning.	In	the	spirit	of	reuse	and	“once-and-only-once,”	you	can
consider	the	reuse	of	test	cases	in	your	monitoring	setup	or	express	them	as
monitoring	rules.	In	turn,	if	there	are	monitoring	rules	that	are	relevant	to	your
expected	outcome	for	a	deployment,	use	these	monitoring	rules	as	test	cases.
As	mentioned	in	earlier	chapters,	testing	in	the	production	environment	is

often	used	for	testing	large-scale	complex	applications	operating	in	complex
environments	where	certain	problems	can	only	be	discovered	in	the	production
environment.	Canary	testing—running	a	new	version	or	configuration	on	a	small
subset	of	the	servers	in	the	production	environment—can	minimize	the	risk	of
such	testing.	The	same	idea	can	also	be	applied	to	infrastructure-as-code	testing
where	the	infrastructure-affecting	code	is	executed	in	a	subset	of	the	production
environment	with	impact	on	a	small	part	of	the	overall	application	and	close
monitoring	of	the	behavior.

9.8	Modifiability
Modifiability	is	a	measure	of	the	ability	to	make	changes	in	existing	software.
When	applied	to	a	deployment	pipeline,	it	means	the	ability	to	change	either	the
interactions	with	one	of	the	stages	in	the	pipeline	or	the	conditions	for	moving
from	one	stage	to	the	next.	Designing	for	modifiability	means,	in	some	sense,
anticipating	the	types	of	changes	that	might	be	required.	We	divide	our
discussion	into	modifications	dealing	with	a	single	tool	in	the	pipeline	and	those
dealing	with	interaction	among	the	tools	in	the	pipeline.

Modifications	Within	a	Single	Tool
One	fundamental	technique	for	achieving	modifiability	within	software	is	to
encapsulate	related	activities	into	modules	and	make	the	individual	modules	as
loosely	coupled	as	possible.	The	idea	behind	keeping	related	activities	within	a
single	module	is	that	changes	in	one	activity	in	the	module	will	require	changes
in	other	activities	within	the	module,	but	changes,	hopefully,	do	not	extend
beyond	that	single	module.
This	general	advice	also	works	for	scripts	for	the	tools	in	the	pipeline.	What

encapsulation	means	and	what	it	means	for	two	modules	to	be	loosely	coupled
may	be	different,	however.	Tools	such	as	Chef	or	Puppet	are	declarative	rather
than	procedural.	Fundamentally,	a	cookbook	describes	the	desired	arrangement
of	a	collection	of	entities	that	is	the	result	of	executing	the	cookbook	rather	than
explaining	how	to	achieve	that	arrangement.

The	advice	for	encapsulation-related	activities	when	applied	to	cookbooks	is:
Keep	the	cookbooks	small	and	focused	on	a	single	task.	Changes	to	that	task	can
then	be	accomplished	by	modifying	a	single	cookbook	where	the	interactions
among	the	statements	are	clear;	in	a	larger	cookbook,	there	may	be	unexpected
interactions.
There	may	still	be	interactions	among	cookbooks,	and	these	can	be	difficult	to

control.	One	technique	is	to	use	the	sequencing	mechanisms	provided	in	Chef	or
Puppet	to	control	the	order	of	the	execution	of	the	cookbooks.	Use	of	the
sequencing	mechanism	will	provide	much	more	insight	and	control	over	the
interactions	among	the	cookbooks	than	allowing	Chef	or	Puppet	to	decide	on	the
order	of	execution.
A	second	fundamental	technique	for	achieving	modifiability	within	software

is	the	parameterization	of	variables	rather	than	building	the	variables	into	the
code.	This	creates	a	configuration	parameter	for	the	pipeline	tool.	We	discussed
the	management	of	configuration	parameters	in	Chapter	5.	A	configuration
parameter	provides	a	place	to	specify	values	for	activities	that	may	vary	among
users	or	context	but	these	parameters	also	must	be	managed.	Placing	the
configuration	parameters	in	a	CMDB	provides	a	central	location	where	the
parameters	can	be	controlled,	modified,	and	accessed.

Modifications	in	the	Interactions	Among	the	Tools
In	the	case	study	in	Chapter	12,	we	see	an	instance	of	the	fact	that	deployment
pipelines	can	vary	among	different	development	teams.	The	constituents	of	the
pipeline	can	also	vary	over	time.	The	types	of	changes	that	can	occur	to	a
pipeline	as	opposed	to	individual	tools	include:

	Replacement	of	one	version	of	a	tool	with	another.	Version	dependencies
can	exist	across	tools	just	as	version	dependencies	can	exist	within	a
software	application.	It	is	hard	to	predict	what	will	change	in	a	new
version.	We	discussed	how	to	isolate	one	section	of	a	system	from	changes
in	another	section	in	Chapter	6.
	Replacement	of	one	tool	with	another.	Typically,	replacement	of	a	tool	will
require	rewriting	the	connecting	script.	It	is	very	difficult	to	automatically
move	from	using	one	tool	to	another.	Sometimes	the	tool	vendor	will	have
a	migration	tool	to	assist	in	the	change	but	this	is	rare	in	the	DevOps
world.
	Changing	parameters	that	must	be	sent	from	one	tool	to	another.	Using	a
CMDB	reduces	the	scope	of	this	problem.	One	tool	writes	information	to

that	database,	and	the	other	reads	it.

9.9	Summary
Just	as	there	are	quality	concerns	about	any	piece	of	application	software,	there
are	similar	quality	concerns	about	the	DevOps	pipeline.	The	DevOps	pipeline
has	to	deal	with	different	types	of	software	ranging	from	desktop	IDEs	to	code
repositories,	build/testing	servers,	cloud	infrastructure	APIs,	and	potentially
complex	environments	for	testing/staging/production.	Given	the	increasing
frequency	of	software	delivery	and	deployment,	new	challenges	arise	for
achieving	the	ilities	discussed	in	this	chapter.	The	take-away	message	is	that
ilities	and	quality	concerns	should	be	considered	early	and	built	in,	rather	than
adding	them	in	as	an	afterthought.	This	is	not	easy	when	you	are	dealing	with
existing	tools	in	a	system	of	systems.
Table	9.2	summarizes	the	techniques	we	have	described	to	achieve	particular

qualities,	but	nothing	comes	for	free.	Every	technique	for	achieving	a	desired
result	for	one	of	the	ilities	that	we	mentioned	involves	tradeoffs	with	other	ilities.
Understanding	those	tradeoffs	is	important	to	achieving	a	pipeline	that	satisfies
your	needs.

TABLE	9.2	Summary	of	Techniques	to	Achieve	Particular	Qualities

9.10	For	Further	Reading
For	ilities	in	software	architecture,	[Bass	13]	contains	dedicated	chapters	for
many	of	them.
For	common	build	errors,	you	can	read	the	Google	study	published	in	[Seo

14].
For	more	about	testability	and	test-driven	development	for	infrastructure	code,

you	can	find	good	materials	in	[Nelson-Smith	13].

10.	Business	Considerations

If	you	want	to	make	God	really	laugh,	show	him	your	Business	Plan.
—Barry	Gibbons

10.1	Introduction
This	chapter	discusses	the	management	perspective	on	DevOps.	As	such,	it	is
oriented	toward	organizations	with	defined	processes.	If	you	are	in	a	startup,
your	management	structure	is	going	to	be	sparse,	with	low	levels	of	bureaucracy.
As	your	organization	grows,	the	structure	changes	in	all	but	the	rarest	of	cases.
Introducing	a	substantial	new	technology	in	an	established	enterprise	is

typically	both	a	bottom-up	and	a	top-down	process.	Only	the	simplest
technological	changes,	those	that	impact	only	a	single	team,	can	be	introduced
without	buy-in	from	management,	and	no	technological	change	can	be
introduced	without	buy-in	from	the	technologists—in	this	case,	Devs	and	Ops.
The	proponents	for	DevOps	are	asking	for	major	changes	in	organizational
structure	and	in	how	the	organization	interacts	with	external	stakeholders.	As
such,	for	management	to	be	on	board,	it	needs	to	believe	that	the	benefits
outweigh	the	costs.	We	begin,	therefore,	with	the	business	case	for	DevOps,
before	discussing	measurements	and	compliance	to	the	DevOps	practices.	We
close	this	chapter	by	touching	on	other	areas	within	an	organization	where	Dev
and	Ops	have	interactions.

10.2	Business	Case
A	business	case	must	convince	management	that	there	is	a	real	problem	being
attacked,	that	the	approach	is	reasonable,	that	the	benefits	outweigh	the	costs,
and	that	stakeholders	will	not	be	unduly	upset.	Management	also	wants	to	see	an
enumeration	of	risks	and	their	mitigation,	an	initial	rollout	plan,	and	success
criteria	for	the	project.	Table	10.1	shows	the	sections	of	a	typical	business	case
for	introducing	DevOps.	The	remainder	of	this	section	discusses	these	points.

TABLE	10.1	Sections	of	the	Business	Case	for	the	Introduction	of	DevOps

The	Problem	and	Benefits	from	Solving	the	Problem
The	overall	case	for	using	agile	is	to	reduce	the	time	between	a	business	concept
and	its	deployment	to	users.	To	make	this	more	concrete	for	DevOps,	which	is
arguably	inspired	by	agile,	refer	to	Chapter	1.	DevOps	is	about	reducing	the	time
between	committing	a	change	to	a	system	and	the	change	being	placed	into
normal	production,	while	ensuring	high	quality.	Ensuring	high	quality	implies
that	there	could	be	multiple	iterations	of	problem	detection	and	repair	before	the
final	high-quality	system	is	promoted	to	normal	production.	Reducing	the	time
between	problem	detection	and	its	repair	is	also	important.
The	two	important	measures	are,	therefore,	the	time	from	commit	to	initial

production	and	the	time	from	problem	detection	to	repair.	For	these,	the	current
state	of	the	organization	should	be	benchmarked.	What	is	the	current
(distribution	of/median/average)	time	from	business	concept	to	code	commit	and
then	to	deployment,	and	what	is	the	current	time	between	problem	detection	and
repair?	The	business	case	should	also	set	targets	for	these	values	that	are	to	be
achieved	by	the	introduction	of	DevOps	practices.
Setting	targets	is	a	difficult	exercise.	First,	there	are	a	limited	number	of

quantitative	reports	on	the	effectiveness	of	DevOps	practices.	Second,	as	we
identified	in	Chapter	1,	there	are	five	different	categories	of	DevOps	practices
and	each	practice	has	some	impact	on	achieving	the	target	values.	We	return	to
the	categories	of	DevOps	practices	in	the	section	on	rollout	plans.	Finally,	every
organization	is	different—so	although	having	industry	benchmarks	would	be
helpful,	such	benchmarks	still	would	need	to	be	adapted	for	local	circumstances.

The	difference	between	the	current	values	and	the	target	values	represents	the
benefit	of	DevOps.	The	values	do	not	necessarily	need	to	be	financial.	The
benefit	of	reducing	the	time	between	a	business	concept	and	its	deployment,	for
example,	may	be	expressed	in	terms	of	time.	The	financial	value	accruing	from
reducing	the	time	is	even	more	uncertain	than	the	estimate	of	the	reduction	in
time.	The	case	that	should	be	made	is	that	significant	stakeholders	would	benefit
from	this	reduction.
Organizational	change	requires	champions.	Ideally,	these	champions	exist	at

both	the	technical	level	and	the	managerial	level.	Again	ideally,	the	champions
should	include	representatives	of	both	primary	affected	groups—Dev	and	Ops.
These	champions	should	be	the	individuals	who	are	responsible	for	preparing	the
business	case.

Costs
The	costs	associated	with	DevOps	are	partially	continuing	and	partially	one-time
costs.	The	continuing	costs	are	associated	with	tools	and	people.	Introducing
DevOps	requires	the	acquisition	of	a	tool	collection.	Once	these	tools	are
acquired,	whether	open	source	or	commercial,	they	need	to	be	managed.
Someone	needs	to	be	responsible	for	acquiring	and	building	the	new	releases	and
making	them	available,	whether	at	the	team	or	organizational	level—see	also	the
discussion	in	Chapter	12.	This	responsibility	can	be	assigned	to	an	existing	team,
but	that	does	not	make	the	costs	less	real.	These	costs	must	be	identified.
Furthermore,	there	is	training	involved	in	the	use	of	the	tools	and	their
idiosyncrasies.	New	employees	must	learn	how	to	use	the	tools	and	the
processes	associated	with	them.	Where	the	new	tools	replace	existing	tools,	the
change	in	license	costs	and	maintenance	efforts	should	be	taken	into	account.	In
general,	the	continuing	costs	can	be	compared	with	respective	existing	costs	to
determine	whether	there	is	a	reduction	or	an	increase	in	these	costs.
A	one-time	cost	is	the	expense	of	the	introduction	of	DevOps	practices.	The

initial	execution	of	these	practices	is	inherently	less	efficient	than	subsequent
uses.	Tools	need	to	be	introduced,	and	people	need	to	be	trained.	These	tasks	can
be	accomplished	either	internally	or	externally.	Your	organization	could	hire
consultants	that	guide	you	through	the	introduction	of	DevOps	practices,	or	your
organization	could	decide	to	introduce	DevOps	totally	with	internal	personnel.
Our	case	study	in	Chapter	12	gives	an	example	of	consultants	guiding	the
adoption,	whereas	another	case	study	in	Chapter	13	gives	an	example	of
executing	the	adoption	with	internal	personnel.	The	business	case	should	make	a
recommendation	and,	in	either	case,	should	provide	a	rationale	for	the	choice.

Another	one-time	cost	is	the	modification	of	existing	systems	to	support
DevOps	practices.	These	existing	systems	could	be	software	tools,	existing
processes,	or	existing	products.	The	business	plan	should	explore	two	aspects:
How	extensive	are	the	modifications	required	to	these	existing	systems?	What	is
the	impact	on	future	development	plans	of	diverting	resources	to	modify	existing
systems?

Stakeholder	Impact
Stakeholders	can	be	impacted	by	the	shift	to	DevOps.	If	not,	why	do	it?	The
stakeholders	can	be	divided	into	internal	and	external.

Internal	Stakeholders
Two	categories	of	internal	stakeholders	that	are	affected	by	the	introduction	of
DevOps	are,	obviously,	Dev	and	Ops.	In	addition,	a	new	category	of	stakeholder
—those	individuals	performing	the	DevOps	role—will	be	created.	In	general,	the
Dev	group	gains	additional	responsibilities	and	control,	the	Ops	group	loses
responsibilities	and	control,	and	the	DevOps	role	will	be	new.	How	many
responsibilities	and	how	much	control	is	shifted	depend	on	which	DevOps
processes	are	adopted.	We	discuss	additional	and	shifting	responsibilities	in
terms	of	the	five	categories	of	DevOps	processes	we	identified	in	Chapter	1.

1.	Treat	Ops	as	first-class	stakeholders.	In	this	case,	Dev	has	additional
responsibilities	of	eliciting	requirements	from	Ops,	and	Ops	has	additional
responsibilities	of	providing	requirements.	In	addition,	Dev	and	Ops	both
have	additional	responsibilities	of	ensuring	that	the	requirements	are
satisfied.

2.	Involve	Dev	more	directly	in	incident	handling.	In	this	case,	Dev	assumes
responsibilities	for	more	intimate	association	with	handling	incidents	that
include	a	single	system.	Ops	and	Dev	assume	responsibility	for	defining	a
process	to	identify	which	incidents	are	referred	first	to	Dev	and	which	are
referred	first	to	Ops.

3.	Enforce	a	consistent	process	for	placing	software	changes	into	production.
In	this	case,	both	Dev	and	Ops	are	involved	in	defining	the	process.	Most
likely,	the	DevOps	role	is	responsible	for	ensuring	that	the	process	is
enforced.

4.	Develop	infrastructure	code	with	the	same	set	of	practices	as	application
code.	Since	infrastructure	code	is	primarily	developed	by	Ops	or	by	the
DevOps	role,	the	responsibilities	for	defining	and	enforcing	the	practices

should	be	accomplished	by	them.
5.	Implement	a	continuous	deployment	pipeline.	The	Dev	group	has
responsibility	for	allocating	resources,	for	release	planning,	and	for	making
deployment	decisions	insofar	as	these	items	affect	systems	developed	by
Dev.	The	Ops	group	loses	those	responsibilities	when	they	are	associated
with	a	single	system	or	deployment.	The	DevOps	role	has	overall
responsibility	for	the	DevOps	tools.	This	includes	not	only	installing	and
maintaining	the	appropriate	versions	of	the	tools,	but	also	training	the	other
teams	to	use	the	tools.

Disaster	recovery	is	a	shared	responsibility.	The	Dev	group	has	responsibility
for	the	extent	to	which	replication	is	built	into	the	architecture	for	the	system.
The	DevOps	role	has	responsibility	for	the	portion	of	disaster	recovery	that	is
managed	through	deployment	decisions,	such	as	in	the	case	study	in	Chapter	11.
Collecting	and	reporting	overall	availability	measures	is	a	shared	responsibility
between	the	DevOps	role	and	the	Ops	team.	The	Ops	team	has	responsibility	for
triggering	a	shift	to	a	backup	site	if	a	disaster	occurs.
Coping	with	changes	in	the	DevOps	tools	may	cause	some	heartburn	within

the	Dev	team.	If	the	DevOps	role	is	continually	improving	the	processes	for
using	the	tools	then	the	changes	may	overwhelm	the	Dev	team.	Improving	the
processes	is	a	portion	of	the	charter	of	the	DevOps	role,	but	the	DevOps	team
needs	to	be	sensitive	to	the	limits	of	other	teams	in	absorbing	continual	change.

External	Stakeholders
Using	a	formal	release	process,	such	as	described	in	Chapter	1,	provides	the
business	and	management	stakeholders	with	a	high	degree	of	visibility	into	the
progress	toward	releasing	particular	features.	Determining	progress	in	releasing
a	feature	can	get	difficult	when	features	require	multiple	development	teams	to
all	have	released	their	portion,	but	an	individual	team	decided	when	to	release	its
portion.
However,	the	main	goal	of	the	DevOps	practices	is	to	reduce	the	time	between

committing	a	change	to	a	system	and	the	change	being	placed	into	normal
production	(while	ensuring	high	quality).	Business	and	management
stakeholders	need	to	understand	that	they	are	making	a	tradeoff	when	adopting
DevOps	deployment	practices:	They	are	giving	up	the	visibility	afforded	by	a
formal	release	process	in	order	to	achieve	faster	cycle	times.	While	quality	and
speed	may	be	high	for	each	of	the	teams,	their	independence	comes	at	the	cost	of
lowered	coordination	in	terms	of	releases.

Risks	and	Their	Mitigation

Risks	and	Their	Mitigation
The	risks	associated	with	the	introduction	of	DevOps	practices	are	both
organizational	and	technical.

Organizational	Risks
Much	of	the	discussion	about	DevOps	in	blog	posts	and	other	forums	is	about
breaking	down	barriers	between	Dev	and	Ops.	Barriers	exist	because	these	two
organizational	units	have	different	missions,	different	cultures,	and	different
incentives.	Aligning	these	different	organizational	units	requires	that	each	unit
gains	at	least	a	high-level	understanding	of	the	other	unit’s	mission,	culture,	and
incentive.	Furthermore,	different	reporting	chains	provide	one	barrier,	and
physical	distance	yet	another	one.	Social	science	research	has	identified	that	a
physical	distance	of	more	than	30	meters	creates	a	barrier	to	coordination
between	people.
The	creation	of	a	new	role	of	DevOps	engineer	also	causes	stress	within	an

organization.	The	role	must	be	staffed,	and	a	reporting	line	must	be	developed
for	the	role.	Staffing	and	reporting	a	new	role	can	cause	tension	among	those	not
involved	in	the	new	role.
In	addition,	placing	scripts	and	configurations	under	version	management	and

controlling	how	new	versions	of	systems	are	deployed	may	represent	a	change
from	current	practice.	As	such,	the	affected	personnel	may	resist	this	change.
Mitigating	these	risks	involves	dealing	with	the	aspects	we	mentioned—

different	missions,	cultures,	incentives,	reporting	chains,	as	well	as	physical
distance	between	the	affected	personnel	and	changes	in	existing	practices.
Managing	such	changes	is	a	subject	of	both	academic	research	and	the

expertise	of	multiple	consultants.	In	the	business	plan	for	DevOps,	you	should
identify,	within	your	organization,	similar	efforts	to	the	introduction	of	DevOps
and	how	these	efforts	were	managed	and	with	what	degree	of	success.	One
suggested	solution	to	mitigate	these	risks	is	to	adjust	the	key	performance
indicators	(KPIs)	of	each	group	to	reflect	overall	rather	than	individual	success
in	deployment.	That	is,	current	Dev	KPIs	emphasize	the	coding	of	new	features,
and	current	Ops	KPIs	emphasize	the	stability	of	the	system.	Instead,	you	want	to
reward	both	units	for	new	features	successfully	placed	into	production,	without
affecting	the	stability	of	the	system.

Technical	Risk
From	a	management	perspective,	there	are	two	fundamental	technical	questions
the	business	plan	should	answer:	What	changes	are	required	to	existing

the	business	plan	should	answer:	What	changes	are	required	to	existing
production	architectures	of	applications?	How	is	the	integrity	of	the	production
database	going	to	be	maintained?	If	production	architectures	are	going	to	be
modified	to	support	continuous	deployment,	then	the	affected	architectures
should	be	identified	as	a	risk.	Also,	an	organization’s	production	database
represents	one	of	its	most	valuable	assets.	Threats	to	the	integrity	of	the
production	database	should	also	be	identified	as	a	risk.

Changes	Required	to	Existing	Production	Applications
Two	types	of	changes	to	existing	production	application	architectures	may	be
required	to	support	continuous	deployment—see	Part	Two	for	details	of	the
concepts.

	State	management.	Components	should	be	stateless	if	at	all	possible.
Stateless	components	are	more	resilient	to	failure	because	replacing	a
failed	component	is	not	difficult.	Continuous	deployment	practices	also
build	on	replacing	of	components	and	services,	which	is	often	done
frequently.	Those	components	that	contain	state	need	to	be	identified	and
then	modified	to	remove	the	state	maintenance	from	them.	Removing	state
from	a	component	can	be	done	by	storing	state	in	a	database,	by	having
clients	maintain	state,	or	by	using	a	state	coordination	service	such	as
ZooKeeper.
	Feature	toggles.	If	a	blue/green	deployment	model	is	being	used,	then
feature	toggles	are	not	required.	If	a	rolling	upgrade	deployment	model	is
being	used,	then	feature	toggles	should	be	used	to	control	new	features,
and	a	feature	toggle	manager	should	be	introduced	to	control	the	feature
toggles.

Maintaining	the	Integrity	of	the	Production	Database
The	integrity	of	the	production	database	can	be	compromised	in	one	of	two
fashions.

	Data	from	a	test	can	be	mistakenly	included	in	the	production	database.
Ensuring	that	the	staging	environment	is	kept	distinct	from	the	production
environment,	and	hence	the	production	database,	can	be	accomplished
through	the	use	of	automated	scripts,	credentials,	and	firewall	rules.
	A	deployment	into	production	compromises	the	database.	Recovery	from
erroneous	data	in	the	database	is	no	different	than	it	is	without	the	use	of
DevOps	practices.	The	business	plan	should	include	a	discussion	of	the
current	rollback/roll	forward	plans	to	correct	erroneous	data.

Rollout	Plan
Any	rollout	plan	depends	on	where	your	organization	currently	is	and	what	your
final	target	is.	As	with	DevOps	tools,	you	could	implement	a	“big	bang”	delivery
where	everything	is	done	at	once,	or	an	incremental	delivery	where	practices	are
introduced,	allowing	some	time	to	both	get	the	bugs	out	and	enable	people	to
understand	and	get	accustomed	to	the	new	practices.	The	big	bang	delivers
results	more	quickly,	but	is	likely	to	introduce	more	resistance	and	be	subject	to
more	errors.	With	changes	to	existing	software	products	(e.g.,	adopting	a
microservice	architecture	to	facilitate	DevOps	practices),	incremental	delivery	is
usually	desirable.	In	the	case	study	in	Chapter	13,	we	discuss	how	such
incremental	changes	are	implemented.	The	case	study	in	Chapter	12	suggests
setting	up	an	onboarding	team,	whose	sole	job	is	to	help	other	Dev	teams	move
their	applications	onto	the	new	DevOps	tool	set.	As	such,	this	mandates	an
incremental	approach—there	are	only	so	many	projects	the	onboarding	team	can
handle	at	any	given	time.
Maturity	models	have	become	quite	popular	as	a	means	of	determining	both

where	your	organization	is	on	a	particular	scale	and	what	your	organization
would	need	to	accomplish	to	become	more	“mature”	on	that	scale.	The	DevOps
maturity	model	cited	in	Section	10.6	defines	five	different	categories	that
represent	the	key	aspects	to	consider	when	implementing	continuous	delivery.
These	categories	are:	culture	and	organization,	design	and	architecture,	build	and
deploy,	test	and	verification,	and	information	and	reporting.
For	the	purposes	of	the	rollout	plan	section	of	the	business	plan,	for	each	of

these	categories	identify	where	you	want	the	organization	to	be	after	a	period	of,
for	example,	two	weeks,	one	month,	two	months,	and	six	months.	Identify	the
steps	that	you	need	to	take	to	get	started	in	each	activity,	as	well	as	the	specific
goals	for	each	of	the	periods	you	choose.
For	example,	in	the	design	and	architecture	category,	you	can	identify	which

applications	have	which	percentage	of	components	made	stateless	in	each
period.	In	the	build	and	deploy	category,	you	can	identify	which	tools	are	used	in
production	in	which	of	the	stages	of	the	deployment	pipeline,	and	who	uses
those	tools	initially	and	after	each	period	of	time.
In	Chapter	1,	we	identified	five	different	aspects	of	DevOps.	They	can	be	used

as	a	guide	to	rolling	out	a	set	of	DevOps	practices.
	Have	Dev	treat	Ops	as	a	first-class	stakeholder	when	developing
requirements	for	a	system.	On	the	one	hand,	this	is	the	easiest	practice	to
implement.	Every	organization	has	a	process	for	developing	requirements

for	a	system,	whether	these	requirements	are	specified	as	user	stories	or	in
some	more	formal	form.	Stakeholders	should	be	involved	in	some	fashion
in	developing	the	requirements,	so	implementing	this	practice	is	a	matter
of	involving	Ops	like	any	other	stakeholder.	On	the	other	hand,	viewing
Ops	as	a	first-class	stakeholder	represents	a	cultural	shift	for	some
organizations.	Cultural	shifts	are	among	the	most	difficult	changes	that	an
organization	can	make.	One	technique	is	to	have	an	influential	member	of
the	Dev	community	take	the	lead.	Organizations	have	hierarchies	of
influence	that	are	independent	of	the	management	structure.	Having	an
influential	member	of	the	Dev	community	be	involved	in	the	rollout	and	in
gathering	requirements	from	Ops	has	a	ripple	effect	on	the	rest	of	the	Dev
community.
	Involve	Dev	more	directly	in	incident	handling.	This	topic	is	more	difficult
than	treating	Ops	as	first-class	stakeholders.	It	not	only	involves	a	cultural
shift	but	it	also	involves	changes	in	duties	and	processes.	For	the
applications	being	used	as	pilots,	the	first	step	is	to	define	the	incidents	that
are	being	handled	by	the	development	group.	These	incidents	should	be
specific	to	the	pilot	applications.	Generalizing	across	applications	to
characterize	incidents	can	wait	until	you	have	gained	some	experience	with
characterizing	incidents.	Once	a	set	of	incidents	have	been	defined,	then	a
procedure	for	funnelling	those	incidents	to	Dev	must	be	defined.	This
procedure	depends	on	the	type	of	incident	and	how	knowledge	of	the
incident	arrives	at	the	organization.	If	it	is	a	bug	report	from	outside,	then
it	can	be	directed	to	both	Ops	and	Dev	and	the	point	of	contact	for	Dev	can
decide	the	next	step.	If	it	is	an	internal	report	such	as	a	monitoring	tool–
based	alert,	then	the	monitor	can	assign	the	point	of	contact	based	on	rules.
See	Chapter	11	for	an	example.	Each	source	of	an	incident	requires	its	own
method	of	informing	either	Dev	or	Ops	of	the	incident.	Finally,	a	point	of
contact	within	the	Dev	group	has	to	be	found.	In	this	case,	personality	is
more	important	than	influence.	The	individual	who	acts	as	a	point	of
contact	should	be	quick	at	solving	problems	because	their	first	task	is	to
remedy	what	caused	the	incident	report.	The	individual	should	also	be
assertive	(if	not	abrasive)	because	one	of	their	next	tasks	is	to	recommend
changes	to	the	Dev	processes	in	order	to	prevent	this	class	of	incident	from
reoccurring.
	Enforce	a	consistent	process	for	placing	software	changes	into	production.
For	this	case,	start	at	the	end.	That	is,	define	a	consistent	set	of	gates	for
deploying	a	system	into	the	production	environment.	These	gates	include

checking	that	the	architecture	is	such	that	deploying	a	new	version	does
not	disrupt	the	operations	of	the	currently	operating	version.	Next,	you	can
define	a	set	of	gates	for	modifying	a	system	to	be	used	in	deployment.	This
set	of	gates	should	be	applied	to	any	change	to	the	system,	whether
patching	an	existing	virtual	machine	(VM)	(if	you	choose	to	allow	that)	or
baking	a	new	image.	This	set	of	gates	is	applied	to	both	Dev	and	Ops.
Rollback	is	an	important	consideration	when	placing	software	into
production,	and	so	a	rollback	process	should	be	a	portion	of	the	consistent
process.	Once	the	gates	have	been	defined	and	are	working	well,	then	it	is
possible	to	consider	the	steps	leading	up	to	the	modification	of	the	system
and	additional	automation.	The	first	step,	however,	is	to	begin	with
defining	the	gates.
	Develop	infrastructure	code	with	the	same	set	of	practices	as	application
code.	In	this	case,	our	recommendation	is	to	begin	with	early	stages	of	the
software	development	cycle	rather	than	the	last	stage	as	we	recommended
for	placing	changes	into	production.	Configuration	management	and
version	control	are	well-established	practices	for	the	development	of
application	code.	Ensure	that	these	practices	are	followed	during	the
development	of	infrastructure	code.	Automated	testing	of	infrastructure
code	can	be	accomplished	through	the	use	of	independent	environments,	as
well	as	through	specialized	test	frameworks	for	the	specific	code	type.
	Implement	a	continuous	delivery	pipeline.	Our	case	study	in	Chapter	12
describes	a	continuous	delivery	pipeline	implemented	by	Sourced	Group.
One	fundamental	decision	to	make	when	implementing	a	continuous
delivery	pipeline	is	the	extent	to	which	different	development	teams	need
to	coordinate	to	generate	a	release.	The	more	coordination	required,	the
less	independence	each	team	gets.	We	discussed	this	in	Chapters	4	and	6.

Success	Criteria
The	success	criteria	are	based	on	both	the	rollout	plan	and	the	rationale	for
adopting	DevOps.	The	rollout	plan	provides	metrics	for	the	categories	in	each	of
the	periods	identified.	Even	if	these	metrics	are	met,	progress	should	also	be
made	in	achieving	the	overarching	goals	of	a	DevOps	adoption:	reducing	the
time	between	committing	a	change	to	a	system	and	the	change	being	placed	into
normal	production,	while	ensuring	high	quality.	This	has	an	impact	on	the
higher-level	goals	of	getting	business	concepts	to	end	users	and	depends	on	more
concrete	ways	of	reducing	the	time	between	error	detection	and	repair.
An	important	element	from	the	perspective	of	a	business	case	is	to	have

An	important	element	from	the	perspective	of	a	business	case	is	to	have
measurable	success	criteria.	Focus	your	efforts	on	metrics	that	you	can	collect,
both	before	the	introduction	of	DevOps	and	after.	You	do	not	want	to	be	in	the
position	of	arguing	that	a	project	is	successful	without	having	sufficient	data	to
back	you	up.

10.3	Measurements	and	Compliance	to	DevOps	Practices
In	Chapter	7,	we	stated	that	the	measurement	should	be	designed	with	specific
goals.	In	this	section,	we	discuss	the	kinds	of	measurements	that	are	of	interest	to
the	business	with	respect	to	DevOps	and	its	adoption.	Three	categories	to
measure	are:	how	well	the	DevOps	practices	are	succeeding,	what	are	the	cases
of	noncompliance	to	DevOps	practices,	and	what	is	the	level	of	stakeholder
satisfaction	with	the	DevOps	practices.

Measuring	the	Success	of	DevOps	Practices
The	goals	of	the	DevOps	practices	and	the	stages	of	the	pipeline	dictate	the	types
of	measurements	that	should	be	taken.	In	particular,	the	two	main	measurements
for	the	success	of	DevOps	are	the	times	from	commit	to	production	and	from
error	to	fix.
Reducing	the	time	between	commit	and	deployment.	Figure	10.1	repeats	the

deployment	pipeline	from	Chapter	5.	The	time	between	a	commit	and	its
successful	deployment	is	the	sum	of	the	time	waiting	in	the	queue	at	each	stage
of	the	deployment	pipeline	and	the	time	spent	processing	at	each	server	in	the
pipeline.	At	the	continuous	integration	server,	measurements	should	be	taken	of
the	number	of	branches	active	over	time,	the	time	between	the	creation	of	a
branch	and	its	merge	into	the	trunk,	and	the	time	it	takes	to	run	tests.	Since	best
practice	discourages	the	usage	of	branches	or,	at	least,	demands	their	merge	back
into	the	trunk	as	quickly	as	possible,	measuring	the	number	of	branches	and	their
lifetime	enables	you	to	assess	the	degree	to	which	best	practice	is	followed.
Extensive	testing	time	is	another	source	of	delays,	although	this	is	traded	off
against	the	number	of	errors	that	slip	through	the	test	suites.

FIGURE	10.1	A	deployment	pipeline	(Repeated	from	Fig.	5.1)	[Notation:
BPMN]

Measurements	that	are	taken	in	the	staging	environment	document	the	time
spent	in	this	phase.	How	long	does	it	take	to	perform	the	tests?	What	is	the	dwell
time	of	an	image	on	the	staging	server?	If	a	human	gatekeeper	is	involved,	how
long	does	it	take	to	get	approval	for	deploying	the	changes?
Not	all	commits	result	in	a	successful	deployment.	Some	commits	fail	tests

and	generate	rework	and	reentry	into	the	pipeline.	Damon	Edwards	advocates
measuring	rework	separately.	Since	breaking	the	build	keeps	every	team
member	from	successfully	promoting	code	through	the	pipeline,	monitoring
broken	builds	and	their	repair	is	also	important.	In	particular,	such	repairs	should
be	the	first	priority,	and	measurements	can	determine	if	this	guideline	is
followed.
Finally,	you	should	be	able	to	determine	the	number	and	types	of	errors	and

the	actual	time	spent	on	fixing	them	when	placing	an	image	from	the	staging
environment	into	service.	That	is,	measure	the	errors	that	occur	during	the
deployment	process,	itself.	These	errors	are	distinct	from	the	errors	in	the	system
being	deployed,	which	are	discussed	in	the	next	section.	These	measures	could
be	taken	by	the	deployment	tool	and	the	production	environment.
The	aggregate	of	these	measures	gives	you	a	good	picture	of	the	performance

of	the	deployment	pipeline.	You	want	to	understand	where	the	longest	delays	in
the	pipeline	are	and	focus	your	energies	on	reducing	these	delays.
Reducing	the	time	between	the	discovery	of	an	error	and	its	repair.	Errors	in

this	context	mean	errors	in	the	production	version	of	a	service.	There	are	actually
two	different	facets	to	this	goal.	First,	does	the	automation	of	the	various	stages
of	the	pipeline	increase	or	decrease	the	number	and	severity	of	errors	that	escape
into	production?	Secondly,	has	the	time	between	discovery	and	repair	of	a
problem	changed	as	a	result	of	introducing	DevOps	practices?	Your	ticket
system	records	production	errors	and	their	consequences,	and	these	records	can

be	mined	to	determine	answers	to	these	two	questions.

Measuring	Compliance	to	DevOps	Practices
It	is	naïve	to	think	that	people	always	follow	prescribed	practices.	People	might
not	follow	a	practice	out	of	ignorance,	out	of	obstinacy,	because	the	practice
introduces	overhead,	or	just	because	they	do	not	wish	to	change.	We	identify
two	practices	where	compliance	might	be	an	issue.

1.	Launching	VMs.	If	everyone	is	following	the	deployment	practices,	then
the	tools	used	can	maintain	a	history	and	the	pedigree	of	an	instance	can	be
discovered.	An	example	of	noncompliance	with	the	practices	is	when	an
operator	launches	a	VM	from	the	console	during	some	incident.	In	order	to
discover	VMs	that	did	not	go	through	the	documented	processes	for
placing	modifications	into	production,	it	is	necessary	to	scan	running	VMs.
Every	running	VM	should	have	been	created	from	a	fully	tested	image	that
has	passed	all	the	gates.

2.	Removing	feature	toggle	code.	Feature	toggle	code	should	be	removed
from	the	source	code	when	the	feature	has	been	committed	into	production
and	has	remained	stable.	The	feature	toggle	manager	knows	when	a	feature
has	been	committed	into	production.	Stability	can	be	assumed	after	some
period	of	time	has	passed.	At	this	point,	an	entry	can	be	created	in	the	issue
tracking	database	that	identifies	the	removal	of	the	feature	toggle	code	as
an	activity	to	be	performed.	The	removal	of	the	feature	toggle	code	can
then	be	tracked	and	prioritized	as	any	other	entry	in	the	issue	tracking
database.

Measuring	Stakeholder	Satisfaction
One	method	for	measuring	stakeholder	satisfaction	is	through	asking
stakeholders	to	fill	out	short	questionnaires.	Another	method	is	to	identify
disruptive	events	under	the	assumption	that	disruption	leads	to	dissatisfaction.

	Short	questionnaires.	Internal	stakeholders	can	be	asked	to	rate	their
satisfaction	on	a	scale	of,	say,	1	to	5.	Different	classes	of	stakeholders	have
different	concerns,	and	so	the	questions	can	be	tailored	to	particular	types
of	stakeholders.	Stakeholders	should	be	instructed	that	their	ratings	are
from	their	perspective.	For	example,	Dev	and	Ops	personnel	could
comment	on	the	usefulness	of	monitoring	information.	Ops	personnel	can
comment	on	the	configuration	management	policy	for	changes	to	scripts.
Business	stakeholders	can	comment	on	overall	cycle	time	for	placing	ideas

into	production.
	Crises.	One	of	the	goals	of	any	process	improvement	effort	is	to	remove
the	necessity	for	heroic	efforts	on	the	part	of	those	who	actually	carry	out	a
process.	Heroic	efforts	in	the	DevOps	context	can	be	sparked	by	outages	or
by	inadequate	lead	time	for	events.
	Outages.	When	an	outage	occurs,	there	is	usually	no	time	for	performing
a	deep	analysis	of	the	cause.	The	initial	focus	is	on	mitigating	the	impact
of	the	outage.	Once	the	system	has	been	restored	to	production,	however,
there	should	be	a	postmortem.	Those	outages	whose	underlying	cause	is
in	the	interaction	between	Dev	and	Ops,	in	the	inadequacy	of	the	DevOps
practices,	or	in	the	noncompliance	to	these	practices	should	become	a
means	for	measuring	user	satisfaction	with	the	rollout	of	DevOps.
Ideally,	the	number	of	such	items	decreases	as	the	use	of	these	practices
increases.
	Inadequate	lead	time	for	events.	Events	such	as	a	security	audit,	a	rollout
of	a	change	to	an	existing	system,	or	an	installation	of	a	patch	have	the
potential	to	be	disruptive.	As	with	outages,	disruptions	caused	by	these
events	should	become	a	means	for	measuring	user	satisfaction	with	the
DevOps	practices.

10.4	Points	of	Interaction	Between	Dev	and	Ops
Several	points	of	interaction	occur	between	Dev	and	Ops	that	we	have	not	yet
discussed	in	detail.	The	two	points	this	section	is	concerned	with	are	licensing
and	incident	handling.

Licenses
A	software	license	is	a	legal	agreement	governing	the	use	or	redistribution	of
software.	Our	interest	is	in	those	licenses	for	which	your	organization	pays	or
should	have	paid	a	fee	and	the	resulting	implications	on	DevOps	practices.	We
begin	by	describing	how	licenses	work.
A	license	can	be	viewed	as	a	token	providing	access	to	the	licensed	software

package.	Licenses	can	be	enterprise-wide	or	intended	for	a	specific	number	of
applications	or	users.	Licenses	are	issued	for	a	particular	version	of	the	licensed
software	package.	They	can	have	a	specific	expiration	date,	or	not.
Licenses	are	dynamically	verified	by	the	licensed	software	package.	At	some

point	in	its	initialization,	the	licensed	software	package	checks	to	see	if	it	has
been	provided	with	a	valid	license.	The	license	can	be	located	in	a	known
position,	provided	by	the	application,	or,	most	commonly,	provided	by	a	license

position,	provided	by	the	application,	or,	most	commonly,	provided	by	a	license
server.	A	license	server	is	a	location	on	a	network	where	licenses	are	stored	and
can	be	accessed.
We	identify	three	situations	where	both	Dev	and	Ops	are	involved	in	issues

associated	with	licenses.
1.	Expiration.	If	the	licenses	for	an	application	have	expired,	the	application
can	no	longer	run.	Typically,	the	responsibility	for	renewing	licenses	lies
with	Ops,	and	there	should	be	procedures	in	place	to	detect	upcoming
license	expirations	and	determine	which	ones	should	be	renewed.	Any
lapse	in	this	procedure,	however,	can	result	in	the	failure	of	an	application
and	will	be	reported	to	Dev.	The	application	should	have	a	specific	failure
message	that	identifies	which	version	of	which	software	system	was
unable	to	get	a	license,	so	that	you	do	not	spend	additional	time
determining	what	caused	the	application	to	fail.

2.	License	unavailable.	Some	licenses	are	“floating	licenses.”	That	is,	a
maximum	number	of	application	instances	can	simultaneously	use	the
licensed	software	package.	If	a	new	VM	is	created	that	utilizes	the	licensed
package	in	excess	of	the	maximum,	it	will	fail.	Again,	it	should	fail	with
an	explicit	error	message.	At	this	point,	it	is	a	problem	for	Ops.	They
should	be	able	to	determine	which	running	VMs	are	currently	using	which
licenses,	and	whether	these	VMs	are	still	needed.

3.	Software	audit.	In	rare	circumstances,	a	software	vendor	may	request	an
audit	of	an	organization	to	ensure	that	all	copies	of	their	software	are
appropriately	licensed.	Some	organizations	perform	their	own	software
audits	to	ensure	they	are	in	compliance	with	all	of	their	license
requirements.	Ops	can	perform	the	audit,	but	they	need	to	be	able	to
enumerate	all	of	the	executing	VMs	at	any	point	in	time	and	to	determine
which	licensed	packages	are	included	in	those	VMs	and	whether	those
packages	were	appropriately	licensed	at	that	time.	All	of	these
requirements	are	satisfied	if	Dev	maintains	traceability	for	running
software,	so	that	the	components	included	in	a	running	VM	and	their
history	can	be	determined.	License	servers	typically	keep	a	history	of	the
starting	and	stopping	of	VMs	using	their	licenses.	Failures	may	make	the
history	inaccurate,	and	so	one	of	the	consequences	of	detecting	a	failed
VM	should	be	to	update	the	license	history.

Incident	Handling
One	of	the	virtues	of	Dev	“throwing	a	release	over	the	wall”	to	Ops	for	moving

One	of	the	virtues	of	Dev	“throwing	a	release	over	the	wall”	to	Ops	for	moving
an	application	into	production	is	that	roles	and	responsibilities	for	incidents	are
clear:	Ops	handles	any	incidents	that	occur	involving	that	application;	if	it	is	a
problem	they	cannot	handle,	then	Dev	gets	involved	through	an	escalation
procedure.	The	situation	becomes	much	more	complicated	once	Dev	is	in	control
of	the	deployment	process.
Once	an	incident	occurs,	there	are	three	possible	cases.
1.	The	incident	is	clearly	related	to	an	application.	In	this	case,	the	Dev
group	is	the	initial	point	of	contact	for	managing	the	incident.	We
discussed	the	role	of	reliability	engineer	in	Chapter	1.	This	role	would	be
responsible	for	any	activities	that	result	from	the	incident.

2.	The	incident	is	related	to	a	hardware	or	infrastructure	failure.	In	this	case,
Ops	is	responsible	for	diagnosing	and	repairing	the	failure.	The	incident
could	be	raised	with	Dev,	who	refer	it	to	Ops,	but	whether	this	is	an	option
is	up	to	your	organization	to	decide.

3.	The	cause	of	the	incident	is	not	clear.	Suppose,	for	example,	the	network
slows	noticeably.	This	could	be	due	to	a	hardware/infrastructure	cause,	or
it	could	be	due	to	an	application	incorrectly	flooding	the	network.	Other
examples	can	be	more	subtle,	such	as	those	involving	“long-tail”	effects
we	discussed	in	Chapter	2.	The	first	challenge	is	to	diagnose	the	cause	of
the	problem.	Once	the	diagnosis	has	been	made,	the	responsibility	for
rectifying	the	problem	brings	us	back	to	the	prior	two	cases.
Fundamentally,	your	organization	needs	to	have	a	clear	escalation	policy
that	answers	these	questions:	Who	is	responsible	for	the	initial	examination
of	a	problem?	How	long	before	the	problem	is	escalated?	To	whom	is	the
problem	escalated?

10.5	Summary
Implementing	DevOps	practices	requires	management	buy-in,	which,	in	turn,
requires	champions	who	can	convince	management	that	DevOps	practices	are	of
benefit.	The	normal	method	for	convincing	management	to	adopt	new
technological	practices	is	through	the	creation	of	a	business	case.	A	business
case	for	DevOps	covers	costs,	benefits,	risks	and	their	mitigation,	a	rollout
schedule,	and	success	criteria.
Once	a	DevOps	adoption	process	is	under	way,	it	is	important	to	measure	the

success	of	the	adoption,	the	compliance	with	the	associated	practices,	and	how
well	stakeholders	are	responding	to	the	changes	to	their	environment.
In	addition,	Dev	and	Ops	must	interact	within	an	organization	in	dealing	with

licenses	and	with	incident	response.

licenses	and	with	incident	response.

10.6	For	Further	Reading
You	can	find	more	information	about	business	considerations	at

	The	blog	“DevOps	Considerations”	at
http://techopsexec.com/2013/09/10/devops-considerations/
	The	book	Communications	Networks	in	R&D	Laboratories	[Allen	70]
	Wikipedia’s	entry	on	change	management:
http://en.wikipedia.org/wiki/Change_management#Managing_the_change_process

Just	like	software	development	maturity	models,	you	can	find	more
information	on	maturity	models	for	DevOps	at	[InfoQ	13].
For	understanding	more	about	measuring	rework,	Damon	Edwards’	article	is

helpful	[InfoQ	14].

http://techopsexec.com/2013/09/10/devops-considerations/
http://en.wikipedia.org/wiki/Change_management#Managing_the_change_process

Part	Four:	Case	Studies
In	this	part,	we	describe	three	case	studies	intended	to	solidify	what	we	covered
in	many	of	the	previous	chapters.	All	of	our	case	studies	are	from	organizations
actively	involved	in	implementing	DevOps	practices,	and	each	has	been	chosen
to	exemplify	a	particular	aspect	of	DevOps.
One	option	that	many	organizations	choose	in	order	to	achieve	business

continuity	is	to	maintain	multiple	datacenters.	Such	an	option	requires
synchronizing	the	datacenters	not	only	with	the	data	they	maintain	but	also	with
the	software	and	hardware	installed	in	each	datacenter.	Chris	Williams	of	Rafter
walks	us	through	how	to	achieve	the	synchronization	of	two	datacenters	in
Chapter	11.
Many	enterprises	would	like	to	adopt	DevOps	practices	but	do	not	have	the

expertise	to	do	it	directly.	John	Painter	and	Daniel	Hand	explain	to	us	how
Sourced	Group,	a	consulting	company,	guides	enterprises	through	the
implementation	in	Chapter	12.
In	Chapter	4,	we	advocated	the	use	of	microservices	as	a	means	of	improving

the	velocity	of	deployment.	Most	organizations	have	legacy	systems	that	must	be
re-architected	in	order	to	move	them	to	microservice	architecture.	Sidney	Shek
of	Atlassian	walks	us	through	the	implementation	of	one	such	microservice	in
Chapter	13.

11.	Supporting	Multiple	Datacenters

With	Chris	Williams

Rafter	is	making	course	materials	(and	higher	education	as	a	whole)	more
affordable	for	students.

—http://www.rafter.com/about-rafter/

11.1	Introduction
For	many	years,	students	have	been	frustrated	by	the	high	cost	of	new	textbooks
and	their	low	value	as	used	textbooks.	Rafter	(originally	BookRenter.com)	saw
this	as	a	business	opportunity	and	created	a	business	in	2008	renting	textbooks	to
students.	The	premise	is	simple:	A	student	determines	the	textbooks	needed	for
the	new	semester	and	orders	these	textbooks	from	the	BookRenter	website.
Rafter	ships	the	chosen	books	to	the	student.	At	the	end	of	the	semester,	the
student	returns	the	books	and	the	books	are	available	for	other	students	for	the
next	semester.
As	you	may	have	deduced,	this	business	is	seasonal.	If	the	BookRenter.com

website	is	down	at	the	beginning	of	the	semester,	customers	are	lost.	Business
continuity	during	the	high-activity	portions	of	the	year	is	sufficiently	important
to	Rafter	that	they	implemented	various	measures,	the	foremost	of	which	is
running	two	datacenters	in	parallel	for	redundancy.
With	two	datacenters,	Rafter	has	the	capability	not	only	of	moving	service

from	one	datacenter	to	another,	in	the	case	of	an	outage	of	the	primary
datacenter,	but	also	maintains	a	testing	site	that	replicates	the	production
environment.	Keeping	two	datacenters	synchronized	poses	the	challenge	of	not
only	keeping	the	data	synchronized	but	also	keeping	the	environment	replicated
and	making	sure	that	applications	are	architected	appropriately.	In	this	chapter,
we	explore	how	Rafter	accomplishes	these	different	forms	of	synchronization.
Two	fundamental	use	cases	exist	for	moving	servicing	requests	from	one

datacenter	to	the	other—controlled	and	uncontrolled.	A	controlled	move	means
that	the	primary	datacenter	is	still	available	and	there	is	time	for	a	variety	of
preparatory	measures	before	switching	to	the	secondary	datacenter.	This	type	of
move	is	used	to	test	the	measures	involved	in	switching	datacenters	as	well	as	to
allow	for	maintenance	of	the	primary	datacenter.	An	uncontrolled	move	occurs

http://www.rafter.com/about-rafter/
http://BookRenter.com
http://BookRenter.com

allow	for	maintenance	of	the	primary	datacenter.	An	uncontrolled	move	occurs
as	a	result	of	a	disaster—whether	natural	or	manmade.	We	return	to	these	use
cases	after	we	describe	the	solutions	that	Rafter	has	put	in	place.

11.2	Current	State
Rafter	currently	runs	two	datacenters	with	exactly	the	same	hardware.	They	run
their	own	datacenters	because,	at	the	time	the	multiple	datacenter	decision	was
made,	Rafter	could	not	get	the	necessary	input/output	performance	from	a	public
cloud.	This	decision	is	currently	being	reevaluated.	While	Rafter	has	the	option
to	switch	to	the	public	cloud,	many	organizations	are	required	to	operate	their
own	datacenters	for	regulatory	reasons.	These	two	datacenters	are	on	opposite
sides	of	the	North	American	continent	but	the	users	do	not	see	a	difference	in
response	time.	Each	datacenter	contains	about	300	virtual	machines	(VMs)	using
VMware.	A	typical	VM	has	16GB	of	RAM	and	four	virtual	CPU	cores.	The
front-end	tier	throughput	averages	about	30,000	to	50,000	requests	per	second.
The	workload	is	approximately	evenly	split	between	reads	and	writes,	with	about
80%	of	the	requests	coming	from	application	programming	interfaces	(APIs)	and
the	remainder	from	web	browsers.	Approximately	another	150	VMs	are	used	for
analytical	and	staging/testing	purposes.	These	run	in	a	combination	of	onsite
private	cloud	(Eucalyptus)	and	public	cloud	(Amazon	Web	Services).	Because
the	service	level	agreements	(SLAs)	on	these	servers	are	more	relaxed	than	the
servers	in	Rafter’s	datacenters,	real-time	disaster	recovery	is	not	necessary.
Rafter	has	about	35	Ruby	on	Rails	applications,	about	50	back-end

applications	in	Ruby,	and	a	couple	of	applications	in	other	languages	(Clojure,
R).	Rafter	uses	a	standard	three-tier	architecture—web	tier,	business	logic	tier,
and	database	tier.	We	describe	the	business	logic	tier	and	then	the	supporting
database	tier.

11.3	Business	Logic	and	Web	Tiers
We	discuss	two	aspects	associated	with	the	business	logic	and	web	tiers.	The
first	aspect	is	the	logic	of	the	applications,	and	the	second	aspect	is	the
infrastructure	that	Rafter	uses	to	support	the	applications.

Application	Logic
If	an	application	needs	to	store	state	that	persists	across	multiple	requests,	then	it
must	use	either	datastores	that	can	switch	(e.g.,	Rafter’s	SQL	database)	or	a
resource	that	is	externally	available	from	both	datacenters	(e.g.,	AWS	S3).	This
restriction	even	applies	to	a	single	datacenter	in	a	load-balanced	environment.	As

discussed	in	Chapter	4,	storing	application	state	on	a	local	server	is	not	a	good
practice	because	a	subsequent	request	that	needs	this	data	might	get	sent	to
another	server	that	does	not	contain	the	data.	Rafter	follows	the	practice	of
keeping	the	application	state	in	the	database	tier,	which	is	external	or	replicated.
Additionally,	no	application	configuration	changes	are	necessary	to	support

datacenter	switching,	as	all	external	resources	are	accessed	through	Domain
Name	System	(DNS)	hostnames	that	do	not	change	during	a	switch.
Every	time	Rafter	deploys	a	new	version	of	an	application	to	production,	it	is

deployed	to	both	datacenters	at	the	same	time.	This	ensures	that	both	of	the
datacenters	are	running	the	same	version	of	the	applications.	The	deployment
system	uses	an	infrastructure	library	to	figure	out	which	servers	an	application	is
deployed	to,	so	there	is	no	need	to	maintain	separate	lists	of	servers	in	the
deployment	system.	This	is	how	Rafter	achieves	the	traceability	that	we
discussed	in	Chapter	5.
One	issue	in	deploying	a	new	version	to	the	secondary	datacenter	is	that	a

physical	server	and,	consequently,	application	VMs	might	be	offline	and
unavailable	for	deployment.	This	problem	is	resolved	by	storing	the	information
about	the	latest	version	of	every	application	in	Chef	Server.	Once	the	operations
team	finishes	their	maintenance	and	starts	the	VM	up	again,	Chef	will	detect	that
the	application	on	the	server	is	out	of	date	and	deploy	the	latest	version	of	the
application.	This	ensures	that	application	code	stays	in	sync	across	VMs,	even	in
the	situation	where	VMs	may	not	always	be	available	for	every	code
deployment.

Infrastructure
The	infrastructure	support	exists	as	a	library.	The	library	is	packaged	as	a	gem	in
RubyGems,	a	package	manager	for	the	Ruby	language	that	provides	a	standard
format	for	distributing	Ruby	programs	and	libraries.	The	library	is	used	inside
many	of	the	infrastructure-related	applications	and	provides	a	framework	for
both	adding	new	applications	and	discovering	information	about	the
infrastructure.	We	discuss	these	aspects	and	maintaining	synchronization	next.

Adding	an	Application
Every	application	in	the	Rafter	platform	has	a	small	JSON	(JavaScript	Object
Notation)	file	that	serves	as	a	blueprint	containing	instructions	on	how	to
properly	install	the	application	on	the	infrastructure.	Examples	of	attributes	in
these	JSON	files	would	be:

	Name	of	the	application
	Type
	Git	repository
	Hostname
	Cronjobs
	Daemons
	Log	rotations
	Firewall	rules
	Database	grants
	Secure	sockets	layer	(SSL)	certificates
	Load	balancer	virtual	IPs

The	infrastructure	library,	which	can	run	inside	Chef,	reads	these	JSON	files
and	determines	how	to	set	up	the	application.	The	library	contains	many	defaults
for	the	platform	(which	can	be	overridden	if	desired),	so	the	JSON	files	tend	not
to	be	too	large.
For	example,	consider	a	simple	Ruby	on	Rails	application	named	“cat”	that

lives	in	a	repository	on	GitHub.	The	JSON	for	this	app	might	look	like:
Click	here	to	view	code	image

{

		"id"	:	"cat",

		"repo_url"	:	"git@github.com:org/cat.git",

		"type"	:	"rails"

}

On	the	Chef	Server,	the	“cat”	application	is	assigned	to	a	VM	(or	set	of	VMs)
either	via	a	role	or	node	attribute.	Chef	then	runs	on	this	VM	and	uses	the	library
to	query	the	latest	JSON	for	the	cat	application	and	apply	the	appropriate	setup
steps,	such	as:

1.	Check	out	the	“cat”	application	from	GitHub.
2.	Deploy	the	“cat”	application	to	the	local	VM.
3.	Set	up	nginx	and	unicorn	(Ruby	on	Rails	app	server)	with	the	proper
virtual	host	for	the	application	at	cat.rafter.com,	and	set	up	the	proper	SSL
certificate.

4.	Set	up	default	log	rotations	for	the	app.
This	is	just	a	simple	example,	but	the	library	can	handle	more	complex

application	setups,	like	installing	cronjobs	and	daemons,	creating	database

http://cat.rafter.com

application	setups,	like	installing	cronjobs	and	daemons,	creating	database
accounts,	managing	database	grants,	controlling	which	developers	have	access	to
the	application	on	the	VM,	handling	development	and	staging	environments,	and
so	forth.	It	can	also	create	separate	tiers	for	an	application	on	different	sets	of
VMs.	For	example,	an	application	can	be	set	up	to	only	serve	web	traffic	on	one
set	of	front-end	VMs,	and	only	run	cronjobs	and	back-end	daemons	on	another
set	of	VMs	so	the	two	instances	of	the	application	do	not	compete	for	resources.

Discovering	the	Infrastructure
Chef	stores	information	about	the	entire	infrastructure	in	Chef	Server.	The	Chef
Server	exposes	a	set	of	APIs	for	both	querying	this	data	and	storing	additional
data	about	the	infrastructure	(via	JSON-based	documents	called	data	bags).	The
Rafter	library	utilizes	the	Chef	Server	as	a	database	for	information	about	the
infrastructure.
Here	are	some	examples	of	the	use	of	the	infrastructure	library.	Note	that

some	of	the	variables	are	reused	in	examples	following	their	definition.
	Get	a	list	of	all	applications	on	the	entire	infrastructure	by	calling:

DevOps::Application.all

	Get	detailed	information	about	a	particular	application	(everything	from
where	its	GitHub	repository	lives	to	the	database	it	uses):

Click	here	to	view	code	image

myapp	=	DevOps::Application.load("myapp")

myapp.repo_url

						>git@github.com:org/repo.git

myapp.application_database

						>myapp_production

	Find	the	first	VM	an	application	is	deployed	to:

node	=	myapp.nodes.first

node.name

>web01

	Get	detailed	information	about	the	VM,	such	as	the	datacenter	hosting	the
VM:

node.datacenter.name

>dc1

	Get	the	state	of	the	datacenter:

node.datacenter.active?

>true

Different	applications	use	this	library	for	accomplishing	different	tasks:
	When	Chef	is	running	on	VMs	to	apply	a	configuration,	the	library	is	used
extensively.	Everything	from	which	cronjobs	to	set	up	for	an	application,
which	daemons	to	set	up,	which	firewall	rules	to	add,	and	so	forth,	is
determined	by	the	library.	For	example,	here	is	part	of	a	Chef	cookbook
that	adds	a	firewall	rule	to	the	VM,	based	on	the	state	of	the	datacenter	the
VM	is	in:

Click	here	to	view	code	image

if	node.datacenter.active?

					iptables_rule	"block_api"	do

															enable	false

					end

		else

						iptables_rule	"block_api"

		end

	The	deployment	system	uses	this	library	to	discover	to	which	VMs	it
should	deploy	a	particular	application.	It	may	also	need	to	make	special
considerations	if	a	VM	resides	in	a	particular	datacenter.	For	example,	two
such	deployment	constraint	are
	Do	not	run	database	migrations	from	the	inactive	datacenter	on	deploy,
since	this	is	too	slow,
	Skip	deployment	to	any	VM	in	an	offline	datacenter.

	The	testing	and	staging	systems	use	the	infrastructure	library	to	get
information	about	all	applications	that	can	be	deployed	to	testing	and
staging	VMs	and	to	determine	inter-application	dependencies.

Keeping	the	Infrastructure	in	Sync
The	secondary	datacenter	is	set	up	exactly	as	the	primary	datacenter.	It	contains
the	same	number	of	VMs	as	the	primary	datacenter,	and	all	application	VMs	are
intended	to	be	configured	identically.	So	any	time	a	new	VM	is	created	in	the
primary	datacenter,	it	is	also	created	in	the	secondary	datacenter	at	the	same
time.	Chef	keeps	all	of	the	VMs	configured	the	same	way	across	both
datacenters.	There	are,	of	course,	some	minor	configuration	differences	between
the	two	datacenters	due	to	naming	(different	IP	space	and	domain),	but

the	two	datacenters	due	to	naming	(different	IP	space	and	domain),	but
otherwise	they	are	identical.	Whenever	a	configuration	change	is	pushed	to
Chef,	it	gets	applied	to	VMs	in	both	datacenters.

11.4	Database	Tier
While	replication	of	stateless	VMs	in	the	upper	tiers	is	relatively	straightforward
—exact	duplication	is	the	goal—this	is	somewhat	more	complex	for	the	database
tier.	Three	different	databases	are	used	in	this	tier,	each	with	a	specialized
purpose.

Transactional	Data
The	majority	of	the	data	for	Rafter	is	stored	in	a	transactional,	ACID-compliant,
SQL-backed	database	called	Clustrix.	Clustrix	is	a	clustered	database	appliance
and	a	drop-in	replacement	for	MySQL.	There	are	three	Clustrix	nodes	in	each
datacenter,	although	they	behave	as	a	single	database.	About	half	a	terabyte	of
data	is	stored	in	this	database,	and	there	are	usually	several	gigabytes	a	day	of
changes.
The	Clustrix	databases	in	each	datacenter	are	configured	in	a	master-master

replication	scheme.	However,	the	databases	in	the	secondary	datacenter	have	a
READONLY	flag	set	on	them,	so	no	applications	can	accidentally	write	data	to
them—see	Figure	11.1.	Rafter’s	goal	is	to	keep	the	replication	delay	between	the
two	datacenters	as	small	as	possible.	Most	of	the	time	it	is	under	1	second—but
this	is	a	metric	that	demands	close	monitoring,	since	application	changes	can
introduce	new	queries	or	data	constraints	that	increase	delay.

FIGURE	11.1	Clustrix	database	management	systems	(DBMSs)	in	master-
master	replication	mode	[Notation:	Architecture]

This	form	of	replication	has	the	same	sort	of	pain	points	as	standard	MySQL
replication.	The	replication	is	single-threaded	and	asynchronous,	so	both	the
complexity	and	rate	of	incoming	write	queries	can	cause	the	secondary	database
to	get	behind	the	active	database.	Luckily,	there	are	lots	of	tools	for	dealing	with

to	get	behind	the	active	database.	Luckily,	there	are	lots	of	tools	for	dealing	with
both	of	these	issues,	and	database	vendors	are	coming	up	with	new	solutions
every	year	(e.g.,	hybrid	replication,	multithreaded	slaves,	slave	prefetching,	etc.).
One	way	Rafter	uses	to	tackle	complex	queries	is	by	rewriting	the	query	so	it
runs	faster	or	is	broken	into	smaller	chunks	(e.g.,	LIMIT	10000).	Another	way	is
to	switch	to	row-based	replication	(RBR),	so	the	slave	does	not	have	to	run
complex	queries	and	can	simply	update	any	changed	rows.	Tackling	sheer	write
volume	can	be	more	difficult	though.	One	particular	application	was	responsible
for	half	of	the	total	write	volume.	This	data	was	not	necessary	for	any	real-time
application	data,	so	instead	of	writing	the	data	to	Clustrix,	Rafter	changed	the
application	to	write	out	flat	files.	These	files	are	then	picked	up	by	a	specialized
application	on	an	hourly	basis	and	imported	into	the	data	warehouse,	which	does
not	have	the	same	SLAs	that	the	production	infrastructure	has.	Although	not
currently	used,	Clustrix	also	allows	setting	up	multiple	replication	streams	for
different	databases,	so	that	is	another	tool	available	for	dealing	with	high	write
volume.

Infrastructure	Support
Redis	is	a	key-value	cache	and	store.	Rafter	uses	it	in	their	infrastructure	for	both
job	queuing	systems	(Resque	and	Sidekiq),	caching,	and	as	a	fast	key-value	store
database.	In	each	datacenter,	there	are	two	separate	Redis	clusters—set	up	as
shown	in	Figure	11.2.	One	Redis	node	serves	as	the	“master”	where	all
applications	send	their	reads	and	writes.	It	can	then	fail	over	to	any	of	the	slaves
in	the	event	of	a	failure.	As	the	Redis	usage	increased,	the	Redis	slaves	could	not
keep	up	with	the	master	due	to	the	rate	of	writes	being	sent.	Rafter	started	to
notice	the	delay	because	the	master	server’s	memory	was	slowly	growing,	yet
the	data	being	stored	inside	Redis	was	not	growing.	Rafter	diagnosed	this	to	find
Redis	was	buffering	all	pending	commands	for	the	slaves	in	memory,	but
because	the	replication	to	the	slaves	could	not	keep	up,	this	number	kept
growing.	Other	organizations	had	also	diagnosed	this	problem.	The	underlying
problem	was	that	Rafter	was	generating	more	Redis	traffic	across	the	datacenters
than	the	available	bandwidth	would	allow.	The	solution	utilized	was	to	run	Redis
replication	inside	of	an	SSH	(Secure	Shell)	tunnel	with	compression	enabled.
The	compression	in	the	tunnel	allows	for	substantially	less	bandwidth	to	transmit
the	data	across	the	WAN	(wide	area	network)	at	about	a	20%	CPU	utilization
increase.	This	change	enabled	the	replication	to	the	slaves	to	keep	up	with	the
master.

FIGURE	11.2	Redis	DBMSs	[Notation:	Architecture]

Session	Data
Rafter	uses	Couchbase’s	implementation	of	Memcached	for	storing	session	data
and	caching	throughout	their	platform.	This	is	an	example	of	one	database	in	the
platform	where	the	data	is	not	synchronized	between	the	datacenters.	See	Figure
11.3	for	a	representation	of	Couchbase	in	the	datacenters.	Both	Couchbase
clusters	are	completely	separate,	so	when	the	secondary	datacenter	is	activated,
the	cache	will	be	stale.	This	does	not	cause	a	problem,	since	it	is	either
temporary	(session	data)	or	it	is	cached	data	that	the	applications	automatically
repopulate	from	other	data	sources	on	a	cache	miss.

FIGURE	11.3	Couchbase	(Memcached)	[Notation:	Architecture]

11.5	Other	Infrastructure	Tools
Several	other	tools	are	used	in	the	Rafter	infrastructure.	These	include	gem

repository	servers	and	Elasticsearch.	The	management	of	DNS	is	also	an
important	element	of	failing	over	from	one	datacenter	to	another.	See	Chapter	2
for	a	discussion	of	DNS	management	and	TTL	(time	to	live).	We	discuss
Rafter’s	use	of	DNS	servers	below.

Gem	Repository	Servers
Ruby	applications	use	“gems”	as	a	way	of	packaging	external	libraries.
Typically,	Rafter	packages	shared	code	between	their	applications	into	such
gems.	Particular	gems	and	their	versions	are	bound	as	dependencies	inside
applications.	Rafter	built	a	gem	repository	cluster	in	both	datacenters	as	a	place
to	publish	private	gems.	Figure	11.4	gives	a	representation	of	the	gem	repository
servers.	Rafter	began	with	an	open	source	gem	server	called	Geminabox,	which
provides	a	simple	user	interface	(UI)	for	developers	to	upload	a	new	version	of	a
gem	to	the	server.	However,	it	does	not	provide	support	for	high	availability	and
simply	uses	the	local	file	system	as	its	repository	to	store	gems.	In	order	to	build
high	availability	around	this,	Rafter	first	created	multiple	gem	servers	in	each
datacenter	and	put	them	behind	a	load	balancer.	However,	this	did	not
automatically	synchronize	the	data	between	all	of	the	gem	servers.	Rafter	then
built	a	script	that	runs	on	each	gem	server.	This	script	synchronizes	the
underlying	gem	repository	with	its	two	neighbors	(one	in	the	local	datacenter
and	one	in	the	other	datacenter).	Under	the	hood,	they	utilized	Unison,	an	open
source	bidirectional	file	synchronization	tool	similar	to	rsync,	which
synchronizes	the	gem	repository	files	every	minute.	They	also	built	a	monitoring
script	to	query	each	of	the	gem	servers	and	alert	for	any	inconsistencies.

FIGURE	11.4	Gem	repository	servers	[Notation:	Architecture]

Elasticsearch

Elasticsearch
Rafter	has	a	single	six-node	Elasticsearch	(a	search	and	analytics	engine)	cluster
that	spans	both	datacenters.	Elasticsearch’s	shard	(a	horizontal	partitioning	of
data)	allocation	feature	can	ensure	that	all	shards	are	fully	replicated	to	the
secondary	datacenter.	Elasticsearch	can	also	be	taught	datacenter	awareness,	so
it	prefers	nodes	in	the	same	datacenter	for	queries.	When	Rafter	first	deployed
Elasticsearch,	they	had	connectivity	problems	between	the	datacenters	since
Elasticsearch’s	cluster	features	were	developed	for	stable,	low-latency	links
between	all	of	its	cluster	nodes.	Rafter	resolved	these	issues	by	tuning	several
TCP	kernel	parameters	and	Elasticsearch’s	own	timeout	settings,	so	as	to	avoid
having	nodes	in	the	other	datacenter	constantly	leave	and	join	the	cluster	due	to
timeouts.	There	are	not	a	lot	of	users	running	Elasticsearch	clusters	over	a	WAN
link	yet,	so	this	is	somewhat	new	territory—but	besides	the	easily	solvable
points	above,	Rafter	has	not	encountered	any	significant	issues	thus	far.

Domain	Name	Systems
Rafter	maintains	two	DNS	servers	in	each	datacenter	that	provide	local	DNS
service.	One	DNS	server	behaves	as	the	master	for	the	other	three.	All	DNS
servers	are	standard	BIND	DNS	servers	running	the	Webmin	management
interface.	Webmin	provides	a	simple	web-based	UI	for	updating	and	deleting
DNS	records	and	more	advanced	settings,	like	promoting	a	DNS	slave	to	master
or	changing	a	slave’s	designated	master.	Rafter	built	a	Ruby	library	that	interacts
with	this	UI	so	that	DNS	changes	can	be	automated.	Rafter	set	a	60-second	TTL
on	most	DNS	records	and	a	1-second	TTL	on	DNS	records	that	point	to	database
virtual	IPs.	The	choice	of	times	is	a	tradeoff	between	speed	of	change	and
Internet	traffic	created	by	querying	the	DNS	at	short	intervals.

11.6	Datacenter	Switch
A	datacenter	can	be	in	one	of	three	different	states—active,	inactive,	or	offline.
Active	means	there	are	no	restrictions	on	servers	that	reside	in	this	datacenter.
Inactive	means	that	cronjobs,	daemons,	and	back-end	applications	are	stopped
and	disabled.	Offline	means	a	datacenter	is	inactive	and	will	not	receive	any	new
code	deploys.	Offline	mode	is	typically	used	for	maintenance.	Rafter	makes	use
of	the	first	two	states	when	performing	a	datacenter	switch.	A	controlled	switch
happens	for	maintenance	or	testing	purposes.	The	primary	datacenter	remains
active	during	a	controlled	switch.	During	an	uncontrolled	switch,	the	primary
datacenter	is	inactive.	We	present	the	steps	that	Rafter	uses	in	both	of	these	cases
below.
When	Rafter	first	started	performing	datacenter	switching,	some	of	these	steps

When	Rafter	first	started	performing	datacenter	switching,	some	of	these	steps
were	done	manually	and	there	was	no	process	tying	them	all	together.	They
simply	wrote	down	all	the	steps	in	a	Word	document	and	executed	them	one	by
one.	Once	they	were	confident	in	the	process,	they	began	automating	it.	Rafter
started	by	building	a	Ruby	library	that	uses	a	domain-specific	language	(DSL)
for	defining	steps	in	the	switching	process.	After	discussing	the	steps	for
controlled	and	uncontrolled	switches,	we	explain	their	automation.

Controlled	Switch	Steps
A	controlled	switch	consists	of	18	steps,	from	initial	checks	temporarily
disabling	monitoring	alerts	to	switching	all	tiers	over	to	the	other	datacenter.	For
the	purposes	of	these	steps,	assume	the	following	key:

	DC1:	Datacenter	to	switch	from
	DC2:	Datacenter	to	switch	to
1.	Verify	the	Clustrix	databases	have	a	low	replication	delay.	First	check	that
the	replication	delay	is	less	than	60	seconds.	This	check	is	done	because	it
happened	once	that	Rafter	took	all	of	their	sites	down	for	a	datacenter
switch,	only	to	find	out	that	their	database	replication	was	30	minutes
behind	due	to	a	large	query.	They	had	to	wait	for	the	database	to	catch	up
before	continuing	the	switch,	which	incurred	additional	downtime.

2.	Disable	alerts	on	the	monitoring	system	(Scout).	Scout	is	a	monitoring
system	similar	to	Nagios	that	is	used	by	Rafter	for	monitoring	servers
(CPU,	disk,	network,	URL	healthchecks,	etc.).	Rafter	disables	alerts
temporarily	in	order	to	prevent	getting	pages	and	e-mails	during	the
switch.

3.	Put	up	a	“Website	going	down	soon”	banner.	Rafter	puts	a	small	banner
on	their	website	telling	customers	the	website	will	be	going	down	for
maintenance	in	10	minutes	and	warning	them	to	finish	up	their	purchases.
The	deployment	system	does	this	automatically	by	placing	a	special	file	in
a	directory	on	each	application	server.

4.	Mark	DC1	as	“inactive”	in	the	Chef	Server.	Since	the	Chef	Server	is	used
as	a	deployment	database,	a	new	JSON	document	is	pushed	to	the	Chef
Server,	marking	DC1	datacenter	as	“inactive.”	Any	clients	using	the
infrastructure	library	will	be	able	to	see	this	change.	At	this	point	in	the
process,	both	DC1	and	DC2	are	now	in	the	inactive	state.

5.	Start	Chef	Client	on	all	VMs	in	DC1.	Chef	provides	a	command	called
“knife	ssh”	that	allows	one	to	run	commands	in	parallel	across	a	set	of

VMs	matching	a	particular	search.	The	command:	knife	ssh	“roles:dc1”
“sudo	chef-client”	starts	Chef	client	on	all	VMs	in	DC1.

Because	Chef	uses	the	infrastructure	library,	it	will	detect	that	the	VM
it	is	running	on	is	now	in	an	inactive	datacenter—so	the	Chef	client	takes
the	appropriate	steps	to	reconfigure	the	VM.	This	has	the	effect	of
removing	any	application-specific	cronjobs	and	stopping/disabling	any
back-end	daemons.

6.	Send	a	“TERM”	signal	to	any	running	cronjobs	or	back-end	scripts	in
DC1.	A	significant	number	of	applications	run	in	the	back	end	via	cron,
and	they	are	stopped	by	sending	a	TERM	signal.	This	step	is	accomplished
with	a	command	similar	to	the	following:

Click	here	to	view	code	image

knife	ssh	"roles:dc1"	"ps	hww	-C	ruby	-o	pid,user,cmd

|	grep	app_user	|	awk	‘{print	\\$1}’	|	xargs	-i	kill

–TERM	{}"

7.	Send	a	“-9”	signal	to	any	stubborn	scripts	that	refuse	to	stop	in	DC1.
Sometimes	a	TERM	signal	is	not	enough	to	make	the	script	stop.	For
example,	an	application	may	mistakenly	catch	all	exceptions	(including	the
TERM	signal).	By	now,	most	of	these	problem	scripts	in	Rafter’s
applications	have	been	fixed,	but	this	step	covers	the	case	where	some	new
application	appears	that	is	not	a	good	citizen.

8.	Put	up	a	maintenance	page	on	several	web	properties	that	have	external
customers.	Rafter	puts	up	a	maintenance	page	with	a	message	like	“We’re
currently	performing	scheduled	maintenance,	we’ll	be	back	in	15
minutes.”	The	deployment	system	can	do	this	automatically	by	placing	a
special	file	in	a	directory	on	each	application	server.	This	is	done	in	both
datacenters.

9.	Promote	a	new	Redis	master	server	in	DC2.	Redis,	by	default,	does	not
have	any	automated	switch	technique,	so	Rafter	had	to	build	their	own
system	for	doing	this.	It	operates	as	follows	(see	Figure	11.5):

FIGURE	11.5	Redis	promotion	[Notation:	Architecture]

a.	Configure	all	applications	to	connect	to	hostname	“redis-master01.”
This	resolves	to	a	local	IP	alias	in	the	datacenter.

b.	Release	the	IP	alias	from	the	current	Redis	master,	which	has	the	effect
of	severing	any	open	Redis	connections.	Then	write	the	current	time	as	a
heartbeat	key	into	the	master	Redis	server,	and	check	that	this	key	has
the	same	value	on	the	slave	in	DC2	to	be	promoted.	This	ensures	the
slave’s	replication	has	caught	up	to	the	master.

c.	Promote	the	chosen	a	Redis	slave	to	master,	demote	the	previous
master,	and	reconfigure	all	slaves	to	use	the	new	master	server.

d.	Bind	the	IP	alias	to	the	new	Redis	master	server.	Send	a	gratituous	ARP
(Address	Resolution	Protocol)	message	to	ensure	all	ARP	caches	are
flushed.

e.	Update	the	redis-master01	DNS	record	to	resolve	to	the	new	IP	alias.
Relying	on	DNS	has	been	one	area	of	concern	with	this	solution,	since
clients	can	cache	it.	However,	Rafter	had	no	such	problems.	The
conjecture	is	that	this	is	because	client	connections	to	the	old	master	are
interrupted	when	the	IP	alias	is	released,	which	forces	the	Redis	client
library	to	reconnect—only	then	it	connects	to	the	new	master.	Set	a	1-
second	TTL	on	the	DNS	record.

10.	Promote	a	new	clustrix	master	in	DC2.	Because	the	Clustrix	databases	in
each	datacenter	are	configured	in	a	master-master	scheme,	there	is	no	need
to	reconfigure	the	replication	on	a	switch.	As	for	Redis,	pointing	to	the
currently	active	Clustrix	database	is	achieved	through	DNS.	These	are	the
steps	in	detail:
a.	Add	a	READONLY	flag	to	the	Clustrix	database	in	DC1.
b.	Ensure	that	both	databases	are	completely	in	sync	by	checking	the
binary	log	positions	on	each	database.	Check	that	DC2	has	received	all
of	DC1’s	binary	logs	and	vice	versa.

c.	Remove	the	READONLY	flag	from	the	Clustrix	DC2	database.
d.	Update	the	Clustrix	master	DNS	record	to	point	to	the	virtual	IP	address
for	Clustrix	in	DC2.	Simply	updating	the	DNS	record	is	not	sufficient,
as	connections	from	applications	will	continue	to	stay	open	to	the	DC1
database.	To	close	these	connections,	loop	through	all	of	them	on	the
DC1	Clustrix	using	“show	processlist,”	and	killing	all	open	sessions
using	the	“kill”	command.	This	forces	applications	to	open	a	new
connection	to	the	database,	and	they	end	up	connecting	to	the	database
in	DC2	now.

11.	Mark	DC2	as	“active”	in	Chef	Server.	This	follows	the	same	process	as
Step	4.	At	this	point	in	time,	DC1	is	now	inactive	and	DC2	is	now	active.

12.	Start	Chef	Client	on	all	VMs	in	DC2.	Similar	to	Step	5,	the	“knife	ssh”
command	is	used	to	start	the	Chef	client	on	all	servers	in	DC2.	Now	that
DC2	is	in	an	active	state,	Chef	will	perform	all	necessary	configuration
changes	in	order	to	convert	the	VMs	to	an	active	state.	This	essentially
means	installing	cronjobs	for	all	back-end	applications,	installing	and
starting	up	application	daemons,	and	reconfiguring	application-specific
firewall	rules.

13.	Remove	maintenance	pages	and	banners	on	all	customer-facing	web
applications.	This	is	done	using	the	deployment	system.

14.	Update	Akamai	CDN	(content	delivery	network).	Akamai	sits	in	front	of
Rafter’s	main	shopping	cart	application	as	a	proxy	providing	CDN
services.	Using	a	provided	SOAP	API,	Akamai	is	updated	to	send	traffic	to
DC2.	Over	the	course	of	about	5	minutes,	Akamai	will	start	sending	traffic
to	the	new	datacenter.

15.	Update	public	DNS	for	all	applications.	For	applications	that	do	not	use
Akamai,	the	public	DNS	records	are	updated	to	point	to	IP	addresses	in
DC2	using	AWS	Route	53.	Because	of	the	1-minute	TTL	for	the	public

DNS,	within	a	few	minutes	of	these	changes	most	customers	start	hitting
applications	in	DC2.	The	RubyGem	infrastructure	library	assists	in	this
task.	The	pseudo-code	for	this	looks	something	like	this:

Click	here	to	view	code	image

DevOps::Applications.all	do	|app|

		update_public_dns(app.fqdn,	app.external_ip)

end

16.	Update	local	DNS	for	all	applications.	The	local	DNS	servers	are	updated,
so	URLs	of	internal	services	point	to	IP	addresses	in	DC2.	Again,	the
library	assists:

Click	here	to	view	code	image

DevOps::Applications.all	do	|app|

		update_local_dns(app.fqdn,	app.internal_ip)

end

17.	Update	escalation	priorities	in	Rafter’s	monitoring	system	(Scout).	In	the
monitoring	system,	the	priority	of	alerts	generated	from	servers	in	DC1	is
changed	to	“normal.”	This	means	that	operators	continue	to	receive	alerts
via	e-mail	from	servers	in	this	datacenter,	but	not	pages.	Update	the
escalation	priority	for	servers	in	DC2	to	“urgent”.	This	means	that	critical
alerts	for	servers	in	DC2	can	open	alerts	on	Pagerduty,	which	in	turn	sends
out	pages.	Rafter	has	found	that	monitoring	servers	in	the	inactive
datacenter	is	still	important,	since	one	does	not	want	to	find	out	about
potential	server	problems	on	the	day	of	a	switch.	However,	e-mail-based
alerts	instead	of	pages	are	sufficient.	This	step	is	accomplished	via	Ruby
code	that	interacts	with	Scout’s	website	via	the	“Ruby	mechanize”	library.

18.	Reenable	alerts	on	Rafter’s	monitoring	system	(Scout).	After	updating	the
priorities,	it	is	still	necessary	to	reenable	the	alerts.

Uncontrolled	Switch
The	need	for	an	uncontrolled	switch	arises	when	the	currently	active	datacenter
is	completely	unavailable	(e.g.,	through	a	power	outage	at	the	datacenter).	There
are	fewer	steps	for	this	type	of	switch,	since	it	is	not	possible	to	do	a	clean
shutdown	of	the	active	datacenter.	In	this	situation,	there	is	significant	potential
for	data	inconsistency.	Most	likely,	some	data	cleanup	will	be	needed	after	the
initially	active	datacenter	comes	back	online.	Even	with	only	a	1-second
database	replication	delay,	it	is	likely	the	inactive	datacenter	will	be	missing
some	data	at	the	time	of	the	outage.

some	data	at	the	time	of	the	outage.
As	before,	we	use	the	following	key:
	DC1:	Datacenter	to	switch	from
	DC2:	Datacenter	to	switch	to

The	nine	steps	taken	to	implement	the	uncontrolled	switch	are
1.	Mark	DC2	as	“active”	and	DC1	as	“inactive”	in	Chef	Server.	Publish	a
new	JSON	document	to	Chef	Server	to	that	effect.	All	applications	using
the	infrastructure	library	can	now	find	out	what	the	correct	state	of	the
datacenters	is.

2.	Promote	a	local	DNS	server	in	DC2	to	master	and	reconfigure	slaves,	if
necessary.	If	DC1	contains	the	current	master,	then	no	local	DNS	updates
can	be	processed.	Thus,	one	of	the	DNS	slaves	in	DC2	must	be	promoted
to	master	and	the	other	server	should	become	a	slave	of	the	new	master.
This	is	done	with	a	Ruby	“mechanize”	script	using	the	Webmin	web-based
UI.

3.	Promote	a	new	Clustrix	master	in	DC2.	A	subset	of	the	steps	performed
for	a	controlled	switch	need	to	be	done	here,	namely:
a.	Remove	the	READONLY	flag	on	the	database	in	DC2.
b.	Update	the	Clustrix	master	DNS	record	to	point	to	DC2.

4.	Promote	a	new	Redis	master	in	DC2.	A	subset	of	the	steps	performed	for	a
controlled	switch	need	to	be	done	here,	namely:
a.	Promote	a	Redis	slave	in	DC2	to	master,	and	reconfigure	the	other
Redis	slave	in	DC2	to	be	a	slave	of	the	new	master.

b.	Bind	the	IP	alias	to	the	new	master.
c.	Update	the	redis-master01	DNS	record.

5.	Update	local	DNS	for	all	applications.	This	is	the	same	step	as	in	the
controlled	switch.

6.	Update	public	DNS	for	all	applications.	This	is	the	same	step	as	in	the
controlled	switch.

7.	Update	Akamai	CDN.	This	is	the	same	step	as	in	the	controlled	switch.
8.	Start	Chef	clients	on	all	servers	in	DC2.	This	is	the	same	step	as	in	the
controlled	switch.

9.	Update	escalation	priorities	in	Rafter’s	monitoring	system.	This	is	the
same	step	as	in	the	controlled	switch.

Defining	and	Automating	Switch	Steps

Defining	and	Automating	Switch	Steps
Switch	steps	fall	into	two	use	cases:	they	launch	either	an	external	shell
command	(e.g.,	“knife	ssh”	commands)	or	Ruby	code	(such	as	checking
database	delay).	Here	is	an	example	of	Step	1	in	the	controlled	switch:
Click	here	to	view	code	image

step	"Check:	Ensure	replication	delay	is	low	on	Clustrix"	do

		prereqs	:clustrix_databases,	:datacenters

		ruby_block	do

				result	=	nil

				puts	"Checking	Slave	Delay	in	each	datacenter"

				@datacenters.each	do	|datacenter|

						client	=		Mysql2::Client.new(:host	=>

@clustrix_databases[:vips][datacenter],	:username	=>

"root",	:password	=>	@clustrix_databases[:password])

						row	=	client.query("show	slave	status").first

						puts	"Slave	delay	in	#{datacenter}:

#{row["Seconds_Behind_Master"]}"

						if	row["Seconds_Behind_Master"]	>	60

								result	=	failed("Slave	delay	must	be	less	than

60.")

						end

						client.close

				end

				result	?	result	:	success

		end

end

In	the	preceding	step,	the	infrastructure	library	automatically	runs	the	Ruby
code	in	the	ruby_block	(from	line	3)	during	the	datacenter	switch.	The	block	will
return	either	failure	or	success	using	the	provided	success/failed	helper	methods.
Every	step	in	the	datacenter	process	has	a	corresponding	step	defined	in	the
DSL.
The	DSL	also	contains	the	concept	of	“prereqs”	since	most	steps	needed	a

common	set	of	data	inputs	(e.g.,	the	datacenters	being	swapped,	database
information,	and	gathering	credentials).	Instead	of	gathering	the	same	data	over
and	over	again,	each	step	defines	which	prerequisite	data	it	needs.	The
prerequisites	are	defined	in	another	DSL.	At	the	beginning	of	the	datacenter
swap	scripts,	before	any	steps	are	executed,	code	is	inserted	to	query	the
information	needed	to	fulfil	the	prerequisites.	For	example,	here	is	what	the
clustrix_databases	prereq	looks	like:

Click	here	to	view	code	image

prereq	"clustrix_databases"	do

		if	ENV['CLX_PASS']

					db_info	=	{:password	=>	ENV['CLX_PASS']}

		else

					puts	"Please	enter	the	root	password	for	the	database:"

					db_info	=	{:password	=>	STDIN.noecho(&:gets).chomp!}

		end

		db_info[:vips]	=	DevOps::Clusters.load("clustrix")[:vips]

		db_info

end

Next,	the	DSL	was	expanded	to	logically	group	steps	together	into	lists	to
match	the	two	types	of	datacenter	switch.	For	example,	here	is	the	list	of	steps
for	a	controlled	switch:
Click	here	to	view	code	image

list	"Controlled	Switch"	do

		step	"Check:	Ensure	replication	delay	is	low"

		step	"Disable	Scout	Notifications"

		step	"Put	up	‘Site	Going	Down	Soon’	message"

		step	"Set	current	datacenter	to	inactive"

		step	"Run	chef	in	DC	to	swap	from"

		step	"Run	killer	with	-TERM"

		step	"Run	killer	with	-9"

		step	"Put	up	‘Maintenance’	pages"

		step	"Swap	redis"

		step	"Swap	DB"

		step	"Set	new	DC	to	active"

		step	"Run	chef	in	DC	to	swap	to"

		step	"Remove	‘Maintenance’	pages"

		step	"Swap	Akamai"

		step	"Swap	Route	53	DNS"

		step	"Swap	Datacenter	DNS"

		step	"Update	Scout	Notification	Groups"

		step	"Enable	Scout	Notifications"

end

For	each	step	used	in	the	list,	the	library	finds	a	step	implementation	with	the
corresponding	name.
Based	on	this	framework	for	defining	steps	and	grouping	these	steps	in	a

specific	order,	Rafter	built	a	console-based	application	for	running	these	lists

interactively.	Upon	startup,	it	displays	all	the	lists	that	have	been	defined	by	their
names.	For	example:
Click	here	to	view	code	image

Pick	a	set	of	Steps	to	perform:	<enter	defaults	to	#1>

1.	Controlled	Switch

2.	Uncontrolled	Switch

Choose:	1

In	the	console,	the	operator	chooses	a	list	to	run.	The	UI	then	displays	the
names	of	all	steps	in	the	list	and	asks	for	confirmation.	It	also	allows	skipping
over	steps	or	starting	from	a	different	step	if	so	desired.
Click	here	to	view	code	image

The	following	steps	will	be	run:

1.	Check:	Ensure	replication	delay	is	low

2.	Disable	Scout	Notifications

[...]

Press	Enter	if	satisfied	with	order,	or	type	in	alternative

order	of	steps,	comma	delimited,	ranges	allowed:<enter>

Next,	the	console	application	runs	any	prereqs	code	for	the	selected	steps	and
then	begins	running	each	step,	displaying	any	output	of	the	step	in	the	console.
The	degree	to	which	the	“auto	pilot”	is	used	is	up	to	the	operator.	Either	the
operator	can	run	each	step	requiring	an	“enter”	in	order	to	proceed	to	the	next
step,	or	the	list	can	run	automatically	by	going	to	the	next	step	once	the	previous
step	finishes.	In	the	case	of	a	step	failing,	the	operator	can	choose	to	skip	to	the
next	step	or	retry	the	step	again.
The	console	application	can	be	run	from	either	a	developer’s	machine	or	a

utility	server	that	has	network	access	to	servers	in	both	datacenters	and	Internet
access	in	order	to	access	Chef	Server.	All	commands	are	run	using	the	operator’s
own	provided	credentials	(sudo	password,	SSH	keys,	Chef	key,	etc.),	so	even	if
unauthorized	users	gained	access	to	the	console	application,	they	would	not	have
the	required	level	of	access	to	run	the	steps.

11.7	Testing
As	with	all	other	processes	and	software,	the	infrastructure	and	switch	control
must	be	tested.

Datacenter	Switching	Application

Unit	tests	are	written	in	RSpec	for	each	step	from	the	previous	section,	the
underlying	DSL	library,	and	the	console	application.	This	provides	a	good	sanity
check	for	obvious	bugs	in	the	code	or	logic.	However,	not	everything	can	be
fully	tested	since	connections	to	resources	like	databases	and	external	commands
are	stubbed	out	in	the	tests.	In	order	to	help	find	bugs	that	the	unit	tests	might	not
be	able	to	catch,	the	entire	console	application	can	be	run	in	a	dry-run/debug
mode	by	default.	This	will	execute	every	step	in	the	process	but	skip	over	parts
of	steps	that	perform	potentially	unsafe	tasks	like	changing	state.	A	helper
method	“debug?”	is	used	in	the	steps	for	checking	if	the	step	is	running	in	the
debug	mode.	This	allows	a	safe	run	through	an	entire	datacenter	switch	in	a	dry-
run	mode	ahead	of	time.

Infrastructure	Testing
A	lot	of	the	“heavy	lifting”	being	done	during	the	datacenter	switch	is	actually
outside	of	the	entire	datacenter	switching	application	and	is	performed	by	the
infrastructure	library	and	Chef	when	reconfiguring	a	server.	The	infrastructure
library	and	Chef	cookbooks	are	constantly	changing,	and	so	they	require	more
rigorous	testing.	In	order	to	verify	that	a	change	does	not	break	existing
functionality,	unit	tests	using	RSpec	are	run.	In	addition	to	unit	tests,	Rafter	also
built	a	suite	of	integration	tests.	These	tests	first	boot	up	a	brand	new	server	on
the	staging	server	platform,	and	then	use	Serverspec	to	verify	that	Chef	and	the
infrastructure	library	configured	the	server	properly.

Continuous	Deployment	Pipeline
All	changes	to	Rafter’s	infrastructure	and	datacenter	switching	applications	go
through	a	continuous	deployment	pipeline	using	TeamCity.	Any	new	changes
are	committed	to	a	branch	named	“test.”	TeamCity	then	runs	syntax	checking,
lint	(coding	style	checker),	and	unit	tests	on	this	test	branch.	If	everything
passes,	it	then	boots	up	a	VM	and	runs	the	suite	of	integration	tests	against	it.
Finally,	if	no	tests	have	failed,	TeamCity	automatically	merges	the	changes	into
a	“staging”	branch	and	then	automatically	publishes	all	infrastructure	changes	to
the	staging	environment.	After	everything	is	working	well	in	staging,	the
changes	are	manually	merged	into	a	production	branch,	tests	are	run	again	on	the
production	branch,	and	then	the	new	version	is	automatically	published	to	the
production	environment	if	no	tests	fail.

11.8	Summary
Having	two	datacenters	with	the	ability	to	fail	over	smoothly	from	one	to

Having	two	datacenters	with	the	ability	to	fail	over	smoothly	from	one	to
another	involves	the	applications,	the	database	systems,	and	the	infrastructure
management	system.	In	this	chapter	we	described	how	Rafter	achieves	this
ability.
At	the	application	level,	applications	had	to	be	designed	using	the	following

principles:
1.	Applications	should	store	state	only	in	approved	datastores.
2.	The	data	storage	needs	of	an	application	must	be	considered	at	the	design
phase.	Application	changes	and	new	features	can	cause	significant	delays
in	replication,	which,	in	turn,	harm	the	ability	to	fail	over	quickly.	Usually
some	concessions	can	be	made;	for	example,	if	the	data	is	not	business
critical	it	may	not	need	to	be	replicated	to	both	datacenters.	Alternatively,
an	application	can	store	data	differently,	so	that	the	data	volume	gets
reduced	(e.g.,	by	storing	aggregate	data	instead	of	every	record).

3.	Back-end	applications	must	be	designed	to	stop	gracefully.	Most	of
Rafter’s	back-end	applications	are	safe	to	be	killed	at	any	point,	but	some
applications	may	cause	inconsistencies	if	killed	at	the	wrong	moment.	For
example,	imagine	an	application	that	charges	a	customer	and	then	records
the	charge	in	the	database.	If	the	application	is	killed	after	charging	the
customer,	but	before	recording	the	charge	in	the	database,	the	customer
could	be	charged	again	later.	In	order	to	prevent	this,	applications	that	are
sensitive	to	being	killed	are	built	to	intercept	the	TERM	signal	(using
Ruby’s	trap	callback),	finish	up	only	their	current	iteration,	and	then	exit
gracefully.

At	the	infrastructure	level,	Ruby	on	Rails	and	Chef	are	important	tools,	but
they	had	to	be	made	datacenter	aware	through	the	construction	of	an
infrastructure	library	that	manages	both	the	infrastructure	and	the	deployment	of
various	applications	to	the	appropriate	datacenter.
At	the	database	level,	a	key	ingredient	is	a	database	system	that	understands

distribution	and	can	be	configured	to	support	distributed	data.	Rafter	had	to
make	special	provisions	to	enable	the	systems	to	perform	appropriately.
Even	with	the	appropriate	architecture	at	each	level,	managing	the	switch

from	one	datacenter	to	another	involves	a	sequence	of	steps	that	can	be
automated	but	that	must	be	performed	in	a	particular	sequence.

11.9	For	Further	Reading
We	mentioned	many	technologies	in	this	chapter.	You	can	find	more	details	at
the	following	links:

the	following	links:
	Chef:	http://docs.opscode.com/chef_overview.html
	Ruby	on	Rails:	http://rubyonrails.org/
	Ruby	Gems:	https://rubygems.org/
	GitHub:	https://github.com/
	Clustrix:	http://www.clustrix.com/
	Redis:	http://redis.io/
	Couchbase:	http://www.couchbase.com/
	Memcached:	http://memcached.org/
	Elasticsearch:	http://www.elasticsearch.org/
	Unison:	http://www.cis.upenn.edu/~bcpierce/unison/
	Scout:	https://scoutapp.com/
	RSpec:	http://rspec.info/
	Serverspec:	http://serverspec.org/
	TeamCity:	http://www.jetbrains.com/teamcity/
	Resque:	https://github.com/resque/resque
	Sidekiq:	http://sidekiq.org/
	Akami:	http://www.akamai.com/

Virtual	IP	addresses	(VIPs)	are	discussed	on	the	Wikipedia	site
http://en.wikipedia.org/wiki/Virtual_IP_address
The	replication	problem	in	Redis	is	discussed	in	[3Scale	12].

http://docs.opscode.com/chef_overview.html
http://rubyonrails.org/
https://rubygems.org/
https://github.com/
http://www.clustrix.com/
http://redis.io/
http://www.couchbase.com/
http://memcached.org/
http://www.elasticsearch.org/
http://www.cis.upenn.edu/~bcpierce/unison/
https://scoutapp.com/
http://rspec.info/
http://serverspec.org/
http://www.jetbrains.com/teamcity/
https://github.com/resque/resque
http://sidekiq.org/
http://www.akamai.com/
http://en.wikipedia.org/wiki/Virtual_IP_address

12.	Implementing	a	Continuous	Deployment
Pipeline	for	Enterprises

With	John	Painter	and	Daniel	Hand

Sourced	Group	is	an	enterprise	consulting	organization,	working	on
bringing	the	benefits	of	Cloud-based	solution	architecture	and	automation

to	the	enterprise.
—http://www.sourcedgroup.com.au/

12.1	Introduction
Over	the	past	few	years,	enterprises	have	been	increasingly	utilizing	cloud
computing	services	from	providers	such	as	Amazon	Web	Services	(AWS).	With
the	move	to	cloud	computing,	enterprises	are	generally	looking	to	achieve	two
primary	outcomes:	cost	efficiency	gains	and	increased	agility	and	velocity	of
their	products	or	business	outcomes.	One	of	the	core	characteristics	of	cloud
computing	platforms	is	the	widespread	availability	of	programmatic	interfaces
and	automation	frameworks.	These	interfaces	were	initially	used	to	manage	base
infrastructure	(such	as	servers	and	storage),	but	have	quickly	evolved	to	include
the	deployment	and	management	of	the	application	itself,	and	are	now	used	by
an	overarching	continuous	deployment	system,	such	as	a	continuous	deployment
pipeline	(CDP).	As	described	in	Part	Two,	the	CDP	monitors	an	application’s
source	control	status.	When	changes	to	the	source	code	have	been	committed,
they	are	retrieved	by	the	CDP,	the	application	is	built	and	packaged,	and	then	a
number	of	tests	in	various	environments	and	with	various	goals	are	run.	Once	the
application	is	“production-ready,”	the	CDP	calls	specific	programmatic
interfaces	to	deploy	an	updated	copy	of	that	application.	Automated	control	of
the	infrastructure	and	application	deployment	allows	teams	to	focus	on	the
application	code—not	application	deployment—and	leads	to	achieving	the
agility	and	velocity	targets	for	development	projects	in	an	enterprise.
This	case	study	introduces	the	CDP	reference	architecture	developed	and

refined	by	Sourced	Group	while	working	with	leading	Australian	enterprises
within	the	financial	services,	media,	telecommunications,	and	aviation	sectors.
Sourced	Group	is	an	enterprise	consulting	organization	founded	in	2010	by	a	set
of	individuals	with	financial	services	backgrounds.	Currently,	Sourced	Group’s

http://www.sourcedgroup.com.au/

of	individuals	with	financial	services	backgrounds.	Currently,	Sourced	Group’s
team	comprises	engineers	who	fall	into	one	of	two	core	skill	areas—data
management	(databases	and	data	warehousing)	or	solutions	architecture	and
automation.
In	this	chapter,	we	discuss	different	facets	of	implementing	a	CDP	within	an

enterprise:	the	organizational	context,	the	CDP	itself,	and	how	security	is
managed.	Then	we	introduce	advanced	concepts	and	new	services	provided	by
AWS,	before	concluding	the	chapter.

12.2	Organizational	Context
For	CDP	projects,	Sourced	Group	is	typically	engaged	with	an	enterprise	via
midterm	strategic	consulting	engagements	to	design	and	deliver	a	CDP
framework	into	an	organization.	Any	such	implementation	must	fit	within	the
customer’s	organization	and	its	culture.	Since	Sourced	Group’s	engagement	is
for	a	limited	period,	one	activity	is	to	identify	and	train	personnel	who	will	be
responsible	for	the	CDP	after	the	engagement	is	completed.	Figure	12.1	presents
the	organizational	structure	that	Sourced	Group	typically	aims	for.	Two	groups
should	be	formed:	a	CD	onboarding	group,	which	is	responsible	for	interfacing
with	developers	to	get	their	applications	onto	the	CDP,	and	a	CD	engineering
team,	which	designs	and	manages	the	pipeline	and	its	components.	The	CD
engineering	team	and	the	tools	it	maintains	together	form	a	CDP	center	of
excellence	(COE).	In	smaller	organizations,	CD	onboarding	and	CD	engineering
may	be	a	single	team.	It	is	common	for	developers	themselves	to	become	part	of
the	CDP	onboarding	team.	These	groups	remain	responsible	for	the	CDP	after
Sourced	Group’s	engagement	is	complete.

FIGURE	12.1	Project	team	structure	[Notation:	Architecture]

Education	and	knowledge	transfer	are	key	to	the	success	of	adopting	any	new
technology.	To	this	end,	Sourced	Group	organizes	an	onboarding	team	to	consist
of	virtual	or	seconded	members	of	the	CD	engineering	team	early	in	an
engagement.	The	onboarding	group	helps	DevOps	teams	develop	or	migrate
their	existing	applications	onto	the	CDP.	In	addition	to	smoothing	the	transition
of	the	deployment	process,	the	onboarding	team	provides	real-time	feedback	to
the	CD	engineering	team	from	the	digital	portfolio	managers	and	their
application	teams.	Feedback	typically	consists	of	a	mixture	of	platform
requirements	and	consumer	feedback.
A	typical	Sourced	Group’s	customer	has	multiple	development	teams,	each

with	their	own	projects,	skill	set,	and	utilization	of	the	cloud	(if	any)	for	their
applications.	This	organizational	diversity	complicates	the	task	of	introducing	a
CDP.	It	is	common	for	an	enterprise	organization	to	successfully	conduct	one	or
more	small	application	pilot	projects	on	a	cloud	platform,	with	varying	degrees
of	human	involvement	and	automation	in	their	deployment	techniques.	These
pilot	projects	are	a	good	starting	point	for	the	introduction	of	the	CDP.	See

Chapter	10	for	a	general	discussion	of	rolling	out	DevOps	practices.
The	effort	required	to	design	and	implement	a	new	CDP	and	train	an

organization	around	it	depends	on	a	number	of	factors,	including	the	existence	of
one	or	more	existing	platforms,	availability	of	personnel,	skills	and	prior
experience,	and	the	support	and	commitment	from	the	wider	business.	Another
important	factor	is	the	degree	to	which	the	customer’s	environment	is	regulated
or	constrained	by	one	or	a	number	of	governing	bodies,	for	example,	the
Australian	Prudential	Regulatory	Authority	(APRA)	or	the	Payment	Card
Industry	(PCI).
In	addition	to	the	onboarding	team,	observe	the	role	of	security	operations

(SecOps)	as	shown	in	Figure	12.1.	Since	SecOps	already	has	interactions	with
the	development	teams	and	since	security	is	such	an	essential	consideration	for
any	enterprise,	the	SecOps	team	becomes	a	natural	adjunct	to	the	introduction	of
a	CDP.	As	a	result,	SecOps	is	always	a	key	stakeholder	throughout	each
engagement.	As	we	discussed	in	Chapter	8,	SecOps	has	a	challenging	role	to
fulfill	and	needs	to	balance	the	desire	for	speed	and	agility	against	business	risk.
Security	is	a	core	concern	for	the	CDP,	both	the	security	of	the	CDP	itself	and

the	applications	it	deploys.	The	use	of	a	common	CDP	not	only	maintains	the
current	security	mechanisms	but	in	most	cases	significantly	improves	on	them,
in	part	because	the	CDP	is	able	to	enforce	policy	and	procedure	against	all
components	that	it	deploys.	Another	improvement	is	the	reduction	of	the	number
of	privileged	users	and	systems.	Although	SecOps	teams	typically	start	out	by
questioning	the	CDP,	with	time	and	experience,	they	tend	to	become	enthusiastic
advocates.	This	is	partially	because	their	concerns	are	automatically	incorporated
into	the	builds,	as	we	discuss	in	the	section	on	the	stages	of	the	application	life
cycle.
Executive	sponsorship	and	cross-portfolio	project	management	are	also

critical	during	each	engagement.	Enterprise-level	deployment	of	any	technology
needs	senior	executive	sponsorship	and	an	experienced	program	manager	to
navigate	internal	challenges,	organize	resources,	mediate	between	teams,	assist
with	stakeholder	management,	and	generally	ensure	smooth	delivery.	We
discuss	these	issues	more	generally	in	Chapter	10,	as	well.
At	the	start	of	a	CDP	implementation	engagement,	it	is	common	for	each

application	DevOps	team	to	have	its	own	CDP.	These	CDPs	tend	to	be	discrete
and	disparate.	In	order	to	achieve	centralized	security,	compliance,	and
economies	of	scale,	ownership	of	common	tools	and	technologies	is	assigned	to
the	CD	engineering	team.	This	team	has	enterprise-wide	responsibility	for	the
support	of	the	involved	tools.	The	typical	tools	introduced	by	Sourced	are

support	of	the	involved	tools.	The	typical	tools	introduced	by	Sourced	are
Splunk,	Atlassian	Confluence,	Sonatype	Nexus,	Atlassian	Bamboo,	Atlassian
Stash,	and	Atlassian	JIRA.	The	tool	teams,	which	are	part	of	the	CDP	COE	and
hence	the	CD	engineering	team,	are	populated	from	members	of	existing
DevOps	teams.	Ideally,	the	members	want	to	specialize	in	the	respective
technology,	and	either	already	have	developed	or	want	to	develop	the	skills
necessary	to	support	an	enterprise-wide	platform.

12.3	The	Continuous	Deployment	Pipeline
The	CDP	provides	a	standardized	method	for	an	enterprise	to	manage	the	life
cycle	of	an	application.	Larger	enterprises,	particularly	those	in	the	financial
sector,	have	strong	risk	management	frameworks	and	are	generally	willing	to
trade	small	amounts	of	agility	in	exchange	for	assurance	and	risk	reduction.
Standardization	of	the	application	life	cycle	reduces	risk	by	isolating	change	into
feature	branches,	testing	that	change,	and	providing	a	moderated	path	into
production.
This	section,	which	is	by	far	the	most	detailed	in	the	chapter,	discusses	the

CDP	with	respect	to	tooling	and	the	standardized	application	life	cycle,	as	well
as	management	of	state	and	persistence.

CDP	Tooling
Figure	12.2	gives	an	overview	of	the	tools	that	form	the	CDP	and	their
interactions.	Information	from	Atlassian	JIRA	(the	ticketing	system)	is	fed	both
to	Atlassian	Stash	(the	source	code	revision	system)	and	to	Atlassian	Bamboo
(the	continuous	deployment	system).	Stash	provides	application	and
configuration	source	code	for	Bamboo	to	build	images,	which	Bamboo	then
deploys	onto	AWS.	Since	Bamboo	does	not	natively	interact	with	AWS,	it
utilizes	the	commercial	plug-in	“Tasks	for	AWS.”

FIGURE	12.2	The	complete	CDP	tool	set	[Notation:	Architecture]

Two	essential	elements	of	any	CDP	are	a	source	repository	and	the	continuous

Two	essential	elements	of	any	CDP	are	a	source	repository	and	the	continuous
integration/deployment	(CI/CD)	tool.	A	wide	range	of	open	source,	hosted,	and
commercial	source	repositories	exist	in	the	market,	but	enterprises	generally
have	regulatory	concerns	or	IP	protection	requirements	that	dictate	the	use	of
behind-the-firewall	solutions	such	as	Atlassian	Stash	or	GitHub	Enterprise.
Sourced	Group	uses	Atlassian	Bamboo	as	the	CD	tool	of	choice,	which	forms
the	backbone	of	the	CDP.	Atlassian	Bamboo	offers	several	key	features	that	are
important	to	an	enterprise	CDP,	such	as	tight	integration	with	ticketing	and	audit
trails	systems,	but	its	unique	branch	management	is	critical	to	the	objectives	of
the	CDP	as	we	discuss	next.
A	core	feature	of	the	CDP	is	its	enforcement	of	a	standardized	application	life

cycle,	along	with	the	assurance	benefits	that	leads	to.	That	life	cycle	is	defined	as
a	(software)	plan	that	is	executed	in	conjunction	with	the	source	control	system.
In	order	to	provide	assurance,	it	is	essential	that	the	same	life	cycle	(or	plan)	is
used	on	a	feature	or	testing	branch	and	on	the	mainline	or	integration	branch.
Atlassian	Bamboo	achieves	this	by	supporting	branch	awareness	in	plans,
allowing	the	execution	of	copies	of	the	plan	against	an	arbitrary	number	of
source	branches.	The	branches	are	automatically	detected	and	cleaned,	further
reducing	human	effort.	Figure	12.3	shows	the	use	of	the	virtual	plans	for
branches.

FIGURE	12.3	Virtual	CDP	plan	for	each	branch	[Notation:	Architecture]

This	is	in	contrast	to	many	CD	systems	that	manage	each	branch	as	a	different
plan.	As	demonstrated	in	Figure	12.4,	managing	each	branch	as	a	different	plan
creates	a	point	of	administration	and	inevitably	leads	to	drift	between	the	plans,
which	in	turn	results	in	the	loss	of	standardization	and	assurance.

FIGURE	12.4	Many	CD	tools	need	discrete	plans	for	each	branch,	leading	to
drift.	[Notation:	Architecture]

While	not	critical	to	the	success	of	the	CDP,	it	is	common	to	use	a	ticket
management	solution	such	as	Atlassian	JIRA.	This	greatly	improves	cross-
referencing	of	code	changes	against	issues	or	feature	requests	that	have	been
logged	by	the	business.	The	integration	can	go	as	far	as	the	automated	generation
of	release	notes	based	on	the	tickets	that	were	closed	in	the	latest	application
build.
The	CDP	reference	architecture	can	be	adapted	to	multiple	public	and	private

cloud	environments.	For	the	purposes	of	this	chapter,	AWS	is	the	target
platform.	The	remainder	of	this	case	study	assumes	a	foundational	understanding
of	a	number	of	AWS	services	and	products.	Readers	should	refer	to	Chapter	2
for	general	cloud	concepts	and	AWS’s	detailed	documentation	for	specific
information.

Environment	Definition	Using	AWS	CloudFormation
The	CDP	depends	heavily	on	Amazon’s	CloudFormation	(CF).	CF	provides	the
ability	to	define	a	complete	virtual	environment,	including	resources	and
security	components,	as	a	declarative	configuration	file	written	in	JSON.
Environments	can	be	replicated	consistently	and	benefit	from	the	same	level	of
unit	testing	commonplace	with	application	code.	If	a	particular	resource	request

unit	testing	commonplace	with	application	code.	If	a	particular	resource	request
fails,	possibly	due	to	a	misconfiguration,	the	whole	stack	is	simply	torn	down.
This	is	done	to	spare	the	customer	the	cost	of	keeping	a	faulty	stack.
Developing	and	maintaining	Amazon	CF	templates	for	a	small	number	of

applications	is	reasonably	easy.	However,	as	the	number	of	applications
increases,	it	becomes	increasingly	inefficient	to	maintain	an	individual	template
for	each	application.	Furthermore,	the	CDP	makes	use	of	a	separate	CF	script	for
most	of	its	steps	and	for	each	tier	in	the	application.
AWS	frequently	releases	updates	and	best	practices	that	users	want	to	take

advantage	of.	However,	introducing	change	to	the	templates	can	be	time-
consuming	and	complex,	as	different	code	bases	must	be	managed.	Sourced
Group	addresses	this	challenge	by	managing	a	common	set	of	generic	operation
templates,	which	are	dynamically	merged	with	an	application-specific	template
at	bake	or	deployment	time—as	shown	in	Figure	12.5.	This	ensures	that	changes
and	updates	are	effectively	permeated	throughout	all	environments	under	the
control	of	the	CDP.	Another	benefit	of	providing	a	centrally	managed	set	of
templates	is	that	it	significantly	reduces	the	time	and	effort	required	by	teams	to
add	a	new	application	to	the	CDP.	This	is	particularly	important	when	a	team
has	little	or	no	prior	experience	in	deploying	to	AWS	as	it	removes	much	of	the
heavy	lifting.

FIGURE	12.5	Merging	operations	templates	and	application	configuration
into	a	single	CF	script	[Notation:	Architecture]

Figure	12.5	shows	the	CF	merging	process.	A	template	for	the	application	at
hand	is	merged	with	independent	operations	templates	to	create	a	single	template
that	is	used	in	the	baking	process.	The	operations	templates	include	the
perimeter	security	group	(responsible	for	preventing	external	access	to	the
organization’s	virtual	private	cloud	(VPC))	and	the	network	security	group
(responsible	for	security	within	the	network	inside	the	VPC	perimeter).	These
and	other	templates	are	merged	in	a	priority	fashion,	so	that	an	application
template	cannot	override	settings	specified	by	one	of	the	operations	templates.
Operations	templates	are	stored	in	one	Git	repository,	and	application

templates	are	stored	in	another.	This	provides	greater	levels	of	control	and
separation.	Atlassian	Bamboo	merges	the	various	templates	into	a	single	CF
template.
The	merge	of	separate	CF	templates	also	enables	the	implementation	of

controls	outlined	in	the	enterprise	security	policy.	In	particular,	the	requirements
on	different	components	based	on	the	security	policy	can	be	specified,	and	the
fulfillment	of	those	requirements	can	be	implemented	centrally,	as	so-called
“units	of	consumption.”	For	example,	if	the	enterprise	has	a	requirement	that	all
S3	(Simple	Storage	Service)	buckets	are	logged	and	version	control	enabled,	and
if	the	application’s	CF	template	uses	S3	buckets,	then,	in	the	merged	CF
template,	the	standard	S3	buckets	are	replaced	with	a	version	that	has	been	built
on	top	of	the	standard	offering	but	fulfills	those	requirements.	This	extended
version	is	built	by	the	CD	engineering	team	in	cooperation	with	SecOps.
Therefore,	by	consuming	the	S3	“unit”	they	are,	by	definition,	compliant.

Overview	of	the	Standardized	Application	Life	Cycle	and
Its	Usage
The	primary	technical	outcome	of	the	CDP	is	the	standardization	of	the
application	life	cycle.	The	application	life	cycle	can	be	broken	down	into	five
main	stages,	as	shown	in	Figure	12.6:

FIGURE	12.6	The	stages	an	application	goes	through	in	the	CDP	[Notation:
Porter’s	Value	Chain]

1.	Building	and	testing.	Performing	functional	code	testing	and	producing
application	artifacts.	Both	topics	are	not	in	the	focus	of	this	chapter—see
Chapter	5	instead.

2.	Baking.	Bootstrapping	the	application	artifacts	and	configuration	onto	a
temporary	target	operating	system,	then	“baking”	the	image	by	taking	a
snapshot	from	which	new	VMs	can	be	created.	In	AWS,	this	is	called	an
Amazon	Machine	Image	(AMI).

3.	Deployment.	Deploying	a	new,	independent	“stack”	of	the	application,
comprising	newly	launched	VMs	as	copies	of	the	AMI	through	an	AWS
autoscaling	group	(ASG),	as	well	as	supporting	infrastructure	and
configuration	such	as	load	balancing,	scaling,	monitoring,	networking,	and
—potentially—databases.

4.	Release.	Releasing	the	new	stack	by	changing	the	domain	name	system
(DNS)	entry	that	points	to	the	existing	stack	to	now	point	to	the	new	stack.
Prior	to	release,	the	new	stack	needs	to	be	modified	to	match	the	capacity
and	scale	of	the	existing	stack,	so	as	to	ensure	continuation	of	service	when
rolling	out.	This	stage	optionally	includes	patching	or	modification	of
persistent	data.

5.	Teardown.	Once	all	traffic	has	been	moved	to	the	new	stack,	the	previous
stack	is	torn	down	as	it	is	no	longer	required.	It	is	prudent	to	perform
safety	checks	on	the	stack	prior	to	teardown	to	ensure	that	all	traffic	has
been	moved	away	from	the	environment.	It	would	be	embarrassing	to	tear
down	an	environment	that	is	still	serving	production	requests.

In	the	next	section,	we	discuss	each	stage	in	detail—here	we	describe	the
overall	workings	and	the	usage	of	them.	The	standardized	application	life	cycle
is	implemented	as	a	plan	in	the	CD	system	(Atlassian	Bamboo).	Bamboo
monitors	the	source	control	system	and	runs	the	plan	against	each	commit	on
any	of	the	branches.	The	coupling	of	a	standardized	application	life	cycle	and
source	control	system	provides	a	high	degree	of	assurance	to	both	the	application
developers	and	the	business.	If	the	life	cycle	successfully	runs	in	a	lower-order
branch,	such	as	a	feature	branch	or	a	testing	branch,	then	you	have	some
assurance	that	the	change	will	be	successful	in	a	higher-order	branch	such	as
production.
When	tasked	with	making	a	change,	say,	adding	a	new	feature,	an	application

developer	branches	the	source	code,	makes	the	change,	and	commits	to	the
branch.	This	triggers	the	standard	application	life	cycle	target	via	the	CDP.	The
CDP	will	build	discrete	and	independent	environments	for	that	feature	branch,
allowing	for	individual	testing	and	experimentation,	without	interrupting	other
feature	development.	In	this	environment,	the	functional	artifact	is	validated—
preferably	with	a	high	degree	of	automated	testing.	The	nonblocking,
independent	environment	approach	is	one	of	the	foundations	of	the	platform.

independent	environment	approach	is	one	of	the	foundations	of	the	platform.
Large	and	experimental	features	can	run	in	parallel	with	small	changes,	while
still	being	held	to	the	same	standards.	Developers	are	given	clear	guidelines	on
what	constitutes	a	complete,	releasable	feature,	and	the	business	gets	a	real-time
view	of	the	progress	of	a	sprint	or	individual	features.
When	a	feature	is	releasable,	or	production-ready,	the	developer	makes	a	Git

“pull	request”	to	get	the	respective	feature	branch	merged	into	the	higher-order
branch.	A	lead	developer	is	then	responsible	for	reviewing	the	build	results	for
that	feature	branch,	visiting	the	validation	environment	and	accepting	it	into	the
sprint	branch—see	also	Figure	12.7.	Once	the	sprint	is	complete,	the	team	lead
submits	the	entire	block	of	changes	to	the	testing	team.	Smaller	teams,	or	teams
with	less	governance	and	risk	management	requirements,	may	choose	to
simplify	this	model,	so	that	feature	branches	are	released	directly	into	the	user
acceptance	test	(UAT)	or	staging	environment.

FIGURE	12.7	Developing,	testing,	and	integrating	features	independently
[Notation:	left:	version	control	branches;	right:	timing	of	stages	with

development	sprints,	independent	testing,	and	releases]

You	may	have	noticed	that	the	CDP	as	introduced	in	Chapter	5	has	a	fairly
different	shape	from	the	CDP	discussed	here.	In	particular,	the	earlier	CDP	was
concerned	with	pre-commit	tests,	commits,	building/packaging/unit	testing,
integration	testing,	UAT/staging,	and,	finally,	production.	This	is	mostly	in	line
with	the	set	of	branches	discussed	here.	The	CDP	here	is	enacted	for	each
branch:	Feature	branches	check	local	tests;	a	sprint	branch	tests	the	integration
between	the	different	branches,	with	other	systems	and	third-party	services;	the
stacks	created	from	the	UAT	branch	are	used	for	acceptance	and	performance
tests;	and	the	production	branch	actually	corresponds	to	the	live	application.
The	use	of	higher-order	branches	other	than	production	is	specific	to	each

organization,	but	DevOps	generally	advocates	fewer	branches	over	more—see
the	discussion	in	Chapter	5.	Enterprises	often	have	large,	potentially
geographically	dispersed	teams	with	the	majority	of	teams	adopting	a	“sprint”
methodology	to	software	development.	Due	to	regulatory	and	risk	requirements
it	is	often	necessary	to	have	all	changes	assessed	through	a	separate	testing	team
prior	to	release.	The	CDP	caters	to	that	by	provisioning	discrete	nonblocking
environments	for	each	branch.	This	allows	development	to	continue	while	an
independent	team	completes	testing.	Using	this	method,	developments	are	not
blocked	for	long	periods	of	time,	awaiting	testing	and	signoff—while	the	time
between	feature	submission	and	release	may	still	be	long,	the	overall	velocity	of
the	project	is	not	impacted.
Figure	12.7	shows	the	flow	of	features	into	UAT	and	production.	Independent

branches	can	be	developed,	tested,	and	deployed	independently.

Stages	of	the	Standardized	Application	Life	Cycle
The	stages	of	the	standardized	application	life	cycle	we	discuss	here	are:	bake,
deploy,	release,	and	tear	down.

Bake
The	baking	stage	creates	a	self-contained	image	(AMI)	of	the	application	on	a
disposable	server.	The	server	is	“baked”	into	an	AMI,	which	can	then	be	copied
to	any	global	region	of	AWS.	In	Chapter	5	we	discussed	the	levels	of	baking	that
can	be	implemented.	The	CDP	creates	heavily	baked	images	as	well	as	one
AWS	ASG	per	AMI,	for	deploying	that	AMI	without	the	involvement	of	any

other	processes	or	systems.	The	AMI	is	immutable	and	directly	associated	with	a
commit	in	the	Git	repository,	leading	to	a	high	degree	of	visibility	and
confidence	as	to	the	contents	of	the	AMI.	Hence,	Git	forms	a	single	point	of
truth,	not	just	for	the	source	code	but	for	all	known	copies	of	the	application,	as
they	were	baked	from	that	source	code	at	a	given	commit	and	thus	at	a	given
point	in	time.	The	image	requires	no	further	bootstrapping—instances	of	it	can
be	launched	and	are	ready	to	go.	Note	that	VMs	are	called	instances	in	AWS
(i.e.,	instances	of	an	AMI),	but	we	use	both	terms	interchangeably	in	this
chapter.
While	this	process	leads	to	a	larger	number	of	AMIs	an	organization	has	to

manage,	it	has	a	number	of	benefits.	These	include	simplification	of	the
deployment	and	ongoing	operational	support	of	the	application,	reduced	VM
boot	times	on	scale	events,	reduced	failures	during	the	boot	process,	and
increased	consistency.
Figure	12.8	illustrates	each	of	the	steps	in	the	baking	process.	Each	tier	of	the

application	requires	a	separate	image.	If	a	business	application	consists	of	the
usual	three	tiers	(i.e.,	a	web	tier,	an	application	tier,	and	a	database	tier),	the	CDP
bakes	three	distinct	AMIs,	one	for	each	tier.	In	brief,	the	steps	for	baking	are

FIGURE	12.8	The	CDP	baking	process	[Notation:	Porter’s	Value	Chain]

1.	Check	out	Amazon	CF	template	and	build	scripts	from	Atlassian	Stash.
2.	Merge	application	and	operational	Amazon	CF	templates,	as	discussed
around	Figure	12.5.	The	resulting	CF	templates	prepare	the	environment
for	baking.

3.	Upload	Amazon	CF	templates	to	Amazon	S3.
4.	Run	pre-processing,	which	collects	all	available	build	artifacts	from
DynamoDB	(see	the	section	on	managing	the	pipeline	state).

5.	Create	the	environment	for	baking	from	the	combined	CF	template.	This

will	create	a	builder	instance	for	each	tier,	which	respectively	forms	the
base	for	each	image	to	be	baked.	This	step	also	loads	the	necessary
software	and	configuration	into	the	builder	instances,	through	the	use	of	a
bootstrapping	system	like	CF’s	cfn-init	as	detailed	in	the	next	paragraph.

6.	Bake	a	copy	of	each	builder	instance	into	an	AMI.
7.	Run	post-processing,	which	collects	the	new	AMI	IDs,	places	them	into
the	artifact	repository	(see	the	section	on	managing	pipeline	state),	and	tags
them	with	appropriate	identifying	information,	such	as	commit	ID.

8.	Destroy	and	clean	up	the	builder	instances.
The	baking	process	uses	CF	to	launch	an	instance	of	a	vanilla	or	predefined

enterprise	standard	operating	environment	AMI,	such	as	Amazon	Linux,	Red
Hat	Enterprise	Linux,	or	Microsoft	Windows	Server.	The	instance	independently
bootstraps	the	application	using	the	AWS	CF	bootstrapping	system,	cfn-init.	The
installation	of	packages,	files,	and	service	management	is	handled	via	the	cfn-
init	agent.	cfn-init	is	declarative	and	implements	atomic	behavior,	so	either	it
signals	that	all	declared	items	completed	successfully	or	it	signals	a	failure	and
aborts.	This	provides	a	high	level	of	assurance	that	the	configuration	is	correct
and	the	application	is	correctly	installed.	If	the	success	signal	is	not	received
after	a	specified	timeout,	the	instance	is	destroyed	and	the	build	is	marked	as
broken—recall	the	discussion	around	breaking	the	build	from	Chapter	5.	In	case
of	success,	Amazon’s	EC2	API	is	called	via	the	Bamboo	“Tasks	for	AWS”	plug-
in	to	bake	an	AMI	from	the	running	instance.	After	that,	the	instance	is	no	longer
needed	and	is	terminated.

Deploy
By	heavily	baking	images	in	the	previous	stage,	the	deployment	stage	of	the	life
cycle	becomes	fairly	simple.	For	each	tier,	the	baked	AMI	is	handed	to	a	newly
created	AWS	ASG	through	its	launch	configuration	(LC).	The	CDP	then
specifies	a	minimum	number	of	instances	in	the	ASG,	which	in	turn	launches
that	number	of	instances	of	the	AMI	straight	away.	Elastic	Load	Balancing
(ELB)	is	configured	for	each	ASG,	distributing	the	incoming	requests	over	the
available	VMs.	Node	registration	is	not	required,	since	the	ASG	and	load
balancer	maintain	this	information.	And	instances	need	no	further	configuration,
as	that	was	bootstrapped	during	the	baking	stage.
The	operations	repository	defines	the	base	standard	for	ASGs	through	its	CF

templates.	Therefore,	all	ASGs	are	set	up	with	the	best	practice	CloudWatch
alarms,	triggers,	and	autoscaling	policies.	Application	teams	do	not	need	to	be

autoscaling	experts	to	consume	the	service,	and	many	implementation	errors	can
be	avoided	via	this	standardization.
The	ASG	instances	are	provided	with	an	identity	and	access	management

(IAM)	role	to	allow	secure	access	to	other	AWS	services,	such	as	S3.	Because
the	role	is	part	of	the	independent	stack	and	defined	in	the	application	repository,
any	changes	to	the	role	are	tracked	and	audited	via	the	source	control	and
deployment	systems.	This	creates	secure	IAM	credentials,	avoiding	the	need	to
pass	credentials	to	the	instance	as	plain	text	strings	or	configuration	files.	The
IAM	profile	is	also	directly	associated	with	that	stack,	so	if	a	breach	were	to
occur	the	stack	can	be	updated	to	refresh	the	IAM	credentials.

Release
One	of	the	most	vital	parts	of	the	CDP	is	the	release	stage.	Unlike	the	previous
stages,	the	release	stage	impacts	current	production	systems.	In	this	section,	we
focus	on	release	into	production.	The	CDP	can	be	executed	for	any	branch,	and
most	stacks	this	way	will	be	created	for	testing.	While	release	still	is	a	step	that
may	be	relevant	for	testing	(i.e.,	to	point	UAT	testers	to	the	latest	build),	release
in	the	production	environment	is	where	it	gets	interesting:	How	do	you	redirect	a
constant	flow	of	requests	from	users	to	a	new	version	of	the	application?
Although	the	release	process	itself	is	automated,	the	CDP	can	pause	at	this

step	and	wait	for	a	gatekeeper	to	manually	approve	the	step	in	the	pipeline.	The
use	of	a	manual	trigger	at	this	point	also	allows	indefinite	time	for	further	testing
and	validation	prior	to	release,	where	the	newly	created	stack	is	already
available.	Alternatively,	if	there	is	a	high	degree	of	confidence	in	the	automatic
test	sets,	then	the	CDP	can	execute	this	step	as	soon	as	all	prerequisites	are	met.
Figure	12.9	shows	how	the	adjustment	of	a	DNS	entry	can	be	used	to	redirect

traffic	from	an	old	stack	to	a	new	one.	We	here	make	use	of	the	AWS	DNS
service	called	Route	53.

FIGURE	12.9	Application	release	stages	[Notation:	Architecture]

In	Stage	0	of	the	release,	only	the	old	version	(v1.0)	is	running.	Stage	1	is	the
point	in	the	process	where	we	have	two	application	stacks:	the	current
production	stack,	which	we	refer	to	as	the	“red”	or	active	stack,	and	the	newly
built,	“black”	or	inactive	stack.	The	release	is	achieved	in	Stage	2,	where	the	live
traffic	has	been	redirected	from	the	red	stack	to	the	black	stack.	As	shown	in	the
figure,	the	stateless	parts	of	the	stack	are	kept	completely	separate	between	the
two	versions—but	the	persistent	database	is	retained	from	one	build	to	the	next.
Therefore,	the	testing	shown	in	Stage	1	has	to	remain	nondestructive,	since	it	is
conducted	on	the	live	production	database.	More	details	on	how	persistence	is
handled	is	deferred	until	the	section	on	managing	persistence.
Figure	12.10	illustrates	the	DNS	structure	in	more	detail.	Using	Route	53,	a

DNS	entry	of	type	ALIAS	is	created	for	each	stack—that	is,	the	ALIAS	points	to
the	load	balancer	of	the	top	tier	in	the	stack.	Testers	are	sent	to	a	specific	build
(as	in	Stage	1	in	the	figures)	using	this	ALIAS.	The	users	of	the	system	typically
go	through	a	user-friendly	host	name	(CNAME)	as	a	point	of	entry.	This
CNAME	is	resolved	to	a	“floating	DNS	record,”	another	CNAME	that	always
points	to	the	active	stack.	Release	is	achieved	by	switching	the	floating	DNS
record	from	the	old	ALIAS	to	the	new	one.	We	discussed	DNS	in	general	in

Chapter	2	and	its	role	in	deployment	in	Chapter	6.	One	specific	aspect	here	is	the
layering	of	three	DNS	records	on	top	of	one	another.	A	second	point	to	note	here
is	that	ALIASes	and	CNAMEs	are	used,	which	refer	from	one	host	name	to
another,	instead	of	simple	“A”	records,	which	refer	from	one	host	name	to	one	or
more	IP	addresses.	For	the	CNAMEs,	it	is	clear	why	this	is	necessary.	The
ALIASes,	however,	are	used	because	AWS	ELB	provides	an	autogenerated
(non-user-friendly)	DNS	host	name.	This	is	done	so	that	AWS	can	scale	the
resources	for	load	balancing	transparently.

FIGURE	12.10	DNS	structure	and	changes	during	release	(stages	from
Figure	12.9)	[Notation:	Architecture]

Updating	the	floating	record	is	done	using	a	separate	CF	script	for	release.
Unlike	previous	stages,	where	a	discrete	CF	stack	was	created,	during	release	an
existing	CF	stack	is	updated.	This	leverages	the	native	update	feature	of	CF,
which	requires	setting	the	“update	stack	if	already	exists”	flag	in	the	AWS
Bamboo	plug-in.	With	this	feature	enabled,	Bamboo	will	first	attempt	to	find	a
stack	with	the	desired	name	and	update	it;	if	no	such	stack	is	found,	Bamboo
creates	it.	With	the	DNS	change	controlled	via	CF,	a	release	or	rollback	becomes
an	auditable	CF	stack	update.	Listing	12.1	shows	a	sample	CF	DNS	record	that
will	support	the	update.	The	CDP	feeds	the	current	build	number	in	via	the
“BuildNumber”	parameter.

LISTING	12.1	Example	of	a	release	CloudFormation

Click	here	to	view	code	image

"Resources"	:	{

		"Route53DNSRecord"	:	{

			"Type"	:	"AWS::Route53::RecordSet",

			"Properties"	:	{

				"HostedZoneName"	:	mydomain.com.,

				"Comment"	:	"Application	DNS	Record",

				"Name"	:	"myapplication.",

				"Type"	:	"CNAME",

				"TTL"	:	"10",

				"ResourceRecords"	:	"myapplication-",{"Ref:

"BuildNumber"},".mydomain.com"

				}

		}

	}

By	its	very	nature,	the	release	is	the	riskiest	stage	of	the	CDP,	as	it	has	a	direct
impact	on	the	production	application.	We	use	a	number	of	techniques	to	reduce
this	risk	and	allow	smooth	autonomous	deployments,	the	most	critical	ones
being	traffic	matching	and	rollback.

Traffic	Matching
Once	an	application	stack	is	confirmed	to	be	ready	for	production	release,	a
number	of	steps	still	need	to	be	taken	to	ensure	a	smooth	transition	between
stacks.	When	moving	traffic	from	the	current	production	stack	to	the	new	stack,
we	are	moving	traffic	from	a	busy,	“warm”	environment	to	a	“cold,”	unscaled
environment.	If	not	managed	correctly,	this	can	have	a	detrimental	impact	on
performance	and	may	result	in	an	application	outage.	Therefore,	it	is	important
that	we	prewarm	(scale	up)	the	new	environment	prior	to	rolling	live	traffic	over
to	it.	By	utilizing	AWS	APIs	we	can	programmatically	check	the	number	of
healthy	instances	currently	associated	with	the	current	production	load
balancer(s).	Obtaining	this	information	allows	us	to	scale	the	new	environment
to	match	the	same	number	of	instances	currently	required	in	production.	This	is
achieved	by	adjusting	the	desired	instance	number	of	the	relevant	ASG.	It	is
equally	important	to	ensure	the	newly	added	instances	reach	the	“InService”
state	on	the	load	balancer	prior	to	rolling	the	traffic	over.	Depending	on	the	ASG
settings,	the	new	environment	may	begin	to	scale	back	down	due	to	low	traffic.
Therefore,	either	this	task	is	undertaken	immediately	prior	to	rolling	the	traffic

over,	or	it	is	necessary	to	set	the	minimum	number	of	instances	to	the	same	value
as	desired,	and	change	that	back	after	rolling	the	traffic	over.
If	the	application	being	deployed	utilizes	an	instance-based	file	or	memory

cache	system,	it	can	be	advantageous	to	prewarm	the	cache	prior	to	traffic
rolling.	This	will	ensure	the	first	users	of	the	application	are	not	hindered	by	a
cache	(re-)creation	process.

Rollback
If	the	release	fails	for	some	reason,	it	may	become	necessary	to	roll	back,	that	is,
switch	back	to	the	old	version	of	the	application.	Utilizing	Route	53	and	CF	for
release	simplifies	the	rollback	process.	After	releasing	a	new	stack	into
production,	we	keep	the	previous	stack	up	and	running	until	all	post-release
testing	is	complete.	During	this	time,	if	an	issue	is	detected	with	the	new	release,
rolling	back	to	the	old	environment	is	a	simple	and	automated	process,	basically
the	inverse	of	release.	Rollback	can	be	manually	initiated	via	Bamboo,	which
then	updates	the	floating	DNS	record	to	point	back	to	the	old	stack,	again
through	CF.	During	this	process,	it	is	again	essential	that	the	CDP	instigates
traffic/load	matching—the	previous	production	stack	will	have	likely	scaled
down	during	the	time	when	it	did	not	actively	receive	load.	The	traffic	matching
step	can	be	skipped	for	critical	rollbacks,	where	a	period	of	lower	availability
and	performance	may	be	preferred	to	the	condition	that	made	the	rollback
necessary.

Teardown
Once	production	traffic	has	been	redirected	to	the	new	stack	and	the	rollback
opportunity	has	passed	(as	decided	through	risk	assessment	or	another	business
process),	the	old	stack	is	no	longer	needed.	But	before	the	old	stack	can	be	torn
down,	a	few	steps	need	to	be	taken.
First,	in	order	to	avoid	tearing	down	a	stack	that	is	currently	in	production,	the

CDP	is	configured	to	verify	the	stack	is	not	receiving	any	traffic	prior	to
teardown.	There	are	a	variety	of	checks,	including	polling	the	ELB	for
indications	of	traffic	and	measuring	the	CPU	utilization	for	each	associated	VM.
If	any	of	these	indicators	return	an	unexpected	value,	the	CDP	stops	the
teardown	activity	and	warns	the	operator.	Once	the	operator	verifies	the	stack	is
not	in	use,	she	can	rerun	the	task.	This	step	is	vital	to	protect	against	inadvertent
early	teardown,	for	example,	if	the	old	stack	is	still	processing	any	batch	or
queue-based	tasks	even	after	the	traffic	has	been	rolled	away	from	that	stack.
Second,	if	the	application	stack	includes	S3	buckets,	the	CDP	must	first

remove	all	objects	from	these	buckets	prior	to	teardown.	CF	will	only	permit	the

remove	all	objects	from	these	buckets	prior	to	teardown.	CF	will	only	permit	the
teardown	of	empty	S3	buckets	to	ensure	that	data	is	not	inadvertently	destroyed.
Finally,	because	each	stack	is	completely	discrete,	the	CDP	can	delete	the	old

stack,	which	in	turn	terminates	all	the	associated	resources.
One	of	the	main	benefits	of	the	CDP	is	the	simplification	of	creating	new

development	application	stacks	for	various	testing	environments.	This	simplicity
often	results	in	the	rapid	consumption	of	AWS	resources,	with	new	development
stacks	now	being	created	for	a	number	of	branches	and	environments.	To	ensure
AWS	costs	are	kept	at	acceptable	levels,	it	is	essential	that	development	stacks
be	torn	down	when	no	longer	required.	In	most	enterprises	this	is	achieved
through	a	combination	of	team	responsibility	and	a	set	of	automatically	enforced
rules.	Development	teams	become	responsible	for	ensuring	their	environments
are	cleaned	up	and	torn	down	after	use.	On	development	branches,	teardown	is
the	final	stage	of	the	CDP	and	is	manually	triggered.	Any	stack	that	has	not	been
torn	down	will	still	appear	as	“in	progress,”	and	this	becomes	visible	in	Bamboo
as	an	active	environment.	A	set	of	automated	tasks	can	help	to	ensure	unused
stacks	are	removed:

	Shutdown	of	all	non-production	environments	during	non-working	hours.
	Compulsory	teardown	of	all	non-production	stacks	over	weekends	and
holiday	periods.

By	tagging	all	CF	resources,	we	can	ensure	that	these	processes	apply	only	to
non-production	stacks.

Managing	Complex	Applications	and	Pipeline	State
Complex	applications	can	consist	of	tens	or	even	hundreds	of	components.	Even
if	DevOps	best	practices	are	followed	and	close	dependencies	between	large
numbers	of	components	are	avoided,	many	application	stacks	would	still	consist
of	a	handful	of	components.	Say,	for	instance,	an	application	consists	of	a	web
tier,	a	business	logic	tier,	and	MySQL	and	S3	on	the	data	storage	level.	Then	it	is
typically	necessary	to	create	the	datastores	before	creating	the	upper	tiers,	so	that
the	upper	tiers	can	be	configured	to	use	the	datastores.	Therefore,	the	CDP
agents—where	each	component	of	the	application	gets	its	own	agent—can	be
scheduled	to	be	part	of	distinct	phases.	This	is	shown	in	Figure	12.11:	The	CDP
agents	for	the	datastores	are	scheduled	in	Phase	1,	the	CDP	agents	for	the	web
and	business	logic	tiers	in	Phase	2.	This	scheduling	has	to	be	defined	per
application,	by	assigning	phase	numbers	to	each	component.	While	the	agents
generally	proceed	independently,	there	is	one	exception:	Release	is	happening

synchronously,	over	all	agents	in	the	same	phase.	This	is	required	so	that	live
traffic	can	be	redirected	consistently,	namely,	at	any	point	in	time	the	stack	from
one	single	build	is	used	for	handling	the	live	traffic.

FIGURE	12.11	Pipeline	state	[Notation:	Porter’s	Value	Chain	+	Architecture]

Another	aspect	is	that	not	each	component	actually	requires	each	stage	in	the
CDP	to	be	executed.	The	datastores	used	in	the	example	are	AWS	products,	and
as	such	can	be	deployed	directly	without	the	need	for	any	of	the	other	stages.	In
Figure	12.11,	this	is	depicted	by	the	light-gray	color	of	the	other	stages	in	both
datastore	agents	in	Phase	1.	Phase	3	contains	the	teardown	stage	for	all
components.	This	is	implicit	in	the	definition:	Teardown	is	done	synchronously
across	all	components.	Note	also	that	this	customization	of	the	CDP	for	a	given
application	does	not	have	an	impact	on	the	CDP	implementation	or	the	best
practices—all	of	it	is	done	in	the	application-specific	CF	templates,	which	are
merged	with	the	enterprise-wide	operations	CF	templates.	Thus,	changes	to	the
CDP	or	the	operations	CF	templates	can	be	implemented	with	relative	ease	and
can	be	tested	against	and	finally	applied	to	hundreds	of	applications
instantaneously.
The	final	component	of	the	CDP	is	a	pipeline	state	repository.	It	provides	a

highly	available,	consistent,	and	dependable	storage	service	to	store	CF	outputs
and	other	artifacts	that	may	be	consumed	by	later	stages	of	the	pipeline	or	the
application	itself.	The	CDP	uses	Amazon’s	DynamoDB	as	an	artifact	repository
to	manage	pipeline	state,	as	shown	on	the	right-hand	side	of	Figure	12.11.
DynamoDB	provides	a	fully	managed	NoSQL	datastore	that	is	highly	available,
distributed,	secure,	and	offers	consistent	low-latency	performance.
The	encircled	numbers	next	to	the	artifact	repository	in	Figure	12.11	outline

the	sequence	of	data	creation	and	consumption	for	the	example	of	the	build	and

test	stages	of	two	components.	When	a	CDP	agent	for	a	component	reaches	the
end	of	a	stage,	its	post-processing	system	collects	all	relevant	outputs	and	places
those	in	DynamoDB.	The	CDP	agent	moves	to	the	next	stage	and	retrieves	all
known	artifacts	for	the	build	from	DynamoDB,	giving	it	access	to	the	combined
information	from	all	previous	build	stages,	phases,	and	agents.	By	decoupling
data	handling	(DynamoDB)	and	control	(CDP),	the	CDP	becomes	more
scalable:	The	number	and	complexity	of	the	individual	phases,	components,	and
stages	become	irrelevant.	An	individual	stage	consumes	data	from	DynamoDB,
performs	its	task,	and	stores	the	newly	formed	information	back	to	DynamoDB,
ready	for	consumption	by	the	next	stage.

Managing	Persistence
The	preceding	discussions	were	mostly	concerned	with	the	transient	or	stateless
components	that	are	managed	via	the	CDP.	Most	applications	also	contain	a
number	of	persistent	resources	that	cannot	be	managed	via	the	same	life	cycle	as
the	transient	stacks.	To	specify	that	a	component	is	persistent,	on	a	particular
branch,	the	relevant	records	in	DynamoDB	are	tagged	as	persistent.	This	tagging
is	applied	by	setting	a	variable	in	the	build	plan	that	modifies	the	relevant	entries
in	DynamoDB.	The	pre-processing	script	that	collects	variables	at	the	start	of
each	stage	first	assesses	if	a	component	is	marked	as	persistent—if	so,	the
persistent	component	is	reused	and	shielded	from	both	re-creation	and	teardown.
The	DynamoDB	record	contains,	for	example,	the	URL	of	a	MySQL	database	or
an	S3	bucket.	All	subsequent	builds	will	receive	the	persisted	records,	such	as
the	S3	bucket	URL,	until	the	variable	is	unset.
Refer	to	Figure	12.11:	Say	the	S3	bucket	is	marked	as	persistent;	then	the

CDP	agent	for	S3	neither	performs	the	creation	in	Phase	1	nor	the	teardown	in
Phase	3.	Instead,	the	artifact	repository	retains	the	URL	to	the	existing	S3
bucket,	and	all	other	components	are	configured	to	use	that.
Since	the	persistence	flag	is	a	per-branch	setting,	most	components	outside	the

production	branch	will	not	make	use	of	it.	Consider	the	branches	shown	in
Figure	12.7.	By	setting	the	persistence	flag	on	the	production	branch,	the	live
production	database	is	protected	from	replacement	and	teardown.	However,	the
lower	branches	such	as	UAT	do	not	set	this	flag.	Therefore,	the	automated	test
suites	can	rely	on	a	clean,	consistent	database	to	start	with—even	if	the	last	build
was	broken	and	left	the	database	in	an	inconsistent	shape.
How	to	upgrade	the	persistent	datastores	(e.g.,	their	schema	or	database

engine)	is	another	complex	matter—which	is	outside	of	the	scope	of	this	chapter.

12.4	Baking	Security	into	the	Foundations	of	the	CD

12.4	Baking	Security	into	the	Foundations	of	the	CD
Pipeline
Security	is	addressed	at	a	foundational	level	within	the	CDP,	both	in	terms	of
operation	of	the	pipeline	itself	as	well	as	the	resources	associated	with	the
applications	it	manages.
Chapter	8	discusses	security	in	some	detail.	In	this	section,	our	focus	is	the

separation	of	duties	with	Amazon	CF,	as	well	as	authentication	and	authorization
using	AWS	IAM.

Implementing	Separation	of	Duties	with	Amazon
CloudFormation
As	previously	mentioned	when	discussing	CF,	enforcing	separation	of	duties
between	network	transport,	network	security,	operations,	and	applications
groups	is	achieved	using	a	combination	of	Amazon	CF	templates	and	a
destructive	(i.e.,	overriding)	merging	process	based	on	priorities.
The	network	transport	group	is	responsible	for	inter-datacenter	connectivity,

for	example,	ensuring	corporate	datacenter	to	AWS	transport	connectivity.	This
includes	configuration	of	AWS	Direct	Connect,	Border	Gateway	Protocol
(BGP),	and	IPsec/VPN,	as	well	as	redundant	link	setups	with	automatic	failover.
The	network	security	group	is	responsible	for	perimeter	networking	and	security.
These	two	groups	maintain	CF	templates	that	define	the	environment	in	which
the	CDP	manages	resources.	For	example,	the	network	transport	group’s	CF
templates	relate	to	VPCs,	peering	connections,	and	routing	tables.	In	contrast,
the	network	security	group’s	templates	are	concerned	with	VPC	subnets,
security	groups,	and	access	control	lists	(ACLs).
Operations	maintains	CF	templates	that	implement	best	practices	around	host

and	resource	logging,	effective	use	of	Amazon	availability	zones,	resource
tagging,	and	so	forth.	Similarly,	each	application	group	develops	and	maintains
an	application-specific	CF	template.	These	templates	focus	on	application	health
checks,	autoscaling	rules,	triggers,	and	thresholds.
When	deploying	a	particular	application,	the	CDP	starts	from	the	application

template,	first	overlaying	the	operational	template,	which	effectively	masks	or
overrides	any	unprivileged	configuration	settings	specified	by	the	application
developers.	The	merge	is	destructive	with	a	bias	toward	operations,	thereby
enforcing	best	practices	and	standards.	For	example,	say	an	application	owner
specified	that	all	application	components	should	reside	in	a	single	availability

zone	to	minimize	latency,	but	the	corporate	policy	requires	high	system
availability—then,	the	operational	CF	template	would	override	the	configuration
and	place	resources	in	multiple	availability	zones.

Identity	and	Access	Management
There	are	a	number	of	areas	where	identity	and	access	management	need	to	be
considered	within	a	CDP.	The	first	area	is	that	of	host	system	administration.
When	hosts	are	managed	outside	of	a	CDP,	it	is	common	and	generally
necessary	that	administrators	can	log	in	remotely	or	issue	remote	commands.	For
example,	if	an	application	server	stops	providing	a	service,	an	administrator	may
log	on	to	the	host,	investigate	the	problem,	and	potentially	restart	the	failed
service.	When	an	environment	is	deployed	efficiently	and	reliably,	logging	on	to
hosts	becomes	unnecessary—and	can	actually	lead	to	increased	issue	resolution
times.	Removing	administrator	access	reduces	the	overall	attack	surface	and
removes	the	need	to	manage	Secure	Shell	(SSH)	public	and	private	keys.
Amazon	IAM	roles,	profiles,	and	policies	can	be	used	extensively	to	restrict

access	to	and	permissions	of	EC2	instances,	users,	and	AWS	services	such	as
AWS	S3.	For	a	detailed	explanation	of	each	of	these	services,	consult	the
relevant	product	documentation,	which	is	referred	to	in	Section	12.7.
Operational	and	security	checklists	are	in	part	available	as	AWS	white	papers.
Where	possible,	EC2	instances	that	require	privileged	access	to	AWS

resources,	such	as	objects	located	in	an	S3	bucket	and	Amazon	Simple	Queue
Service	(SQS),	have	an	IAM	role	associated	with	them.	This	allows	access
permissions	to	be	managed	centrally	and	revoked	instantly	if	required.	IAM
roles	are	the	preferred	means	to	restrict	access	to	sensitive	AWS	resources
whenever	possible.	All	compatible	resources	deployed	via	the	CDP	are	issued
with	an	IAM	role	or	policy	by	default.
For	applications	that	do	not	provide	support	for	IAM	roles	but	require	IAM

credentials	(such	as	access	keys	and	secret	keys),	the	CDP	can	embed	IAM
credentials	into	each	VM	that	requires	them.	As	an	additional	security	measure,
the	credentials	are	rotated	upon	each	deployment	of	the	stack.	That	is,	during	the
bake	stage,	a	new	set	of	credentials	is	created	and	baked	into	AMIs	that	need	it;
during	teardown,	those	credentials	are	invalidated.	This	restricts	the	impact	of	a
security	breach	to	a	single	stack	and	prevents	the	same	credentials	being	used	to
gain	access	to	resources	belonging	to	another	application	or	environment.	In
addition,	the	credentials	are	rotated	at	least	every	three	months.

12.5	Advanced	Concepts
In	this	chapter	we	have	sketched	the	basic	design	of	the	Sourced	Group	CDP
framework.	As	enterprises	mature,	there	are	several	advanced	areas	that	can	be
explored

Minimizing	Drift	Between	Production	and	Non-
production	Environments
A	common	issue	in	the	enterprise	is	that	long-running	non-production
environments	continually	drift	away	from	production.	Sourced	Group	solves	this
problem	by	refreshing	all	aspects	of	the	non-production	environments	against
recent	production	snapshots	for	each	and	every	build,	as	depicted	in	Figure
12.12.

FIGURE	12.12	Using	production	database	snapshots	for	non-production
builds	[Notation:	Architecture]

Non-production	environments	utilize	nightly	snapshots	of	persistent	datastores
from	production.	Resources	are	created	on-demand	from	the	snapshots.	This
allows	development/testing/integration	against	persistent	datastores	that	are	only

allows	development/testing/integration	against	persistent	datastores	that	are	only
a	few	hours	behind	production.

Working	Around	Provider	Limitations
Some	of	the	common	cloud	platforms	impose	hard	limits	on	some	elements	of
their	services.	It’s	often	the	case	that	limitations	reflect	the	service	at	a	point	in
its	product	development.	Whether	limitations	are	short-lived	or	more	permanent,
a	CDP	needs	to	take	such	factors	into	account.	One	such	limitation	is	AWS’s
current	limit	on	the	number	of	security	groups	per	VPC—see	the	documentation
mentioned	in	Section	12.7.	The	default	limit	is	100	security	groups,	with	a	fuzzy
hard	limit	of	200	for	most	practical	enterprise	deployments.	This	limit	influences
the	deployment	of	resources	within	a	single	VPC	and	clearly	impacts	a	CDP.	In
response	to	those	challenges,	an	“autoscaled	VPC	model”	was	implemented	for
one	customer.	In	this	model,	VPCs	were	dynamically	created	or	deleted	in
response	to	availability	and	eventual	exhaustion	of	security	groups.	The	result	is
an	“autoscaled”	number	of	application-delivery	VPCs	that	scale	out	as	per
security	group	requirements.	The	high-level	process	flow	is:

1.	Receive	stack	build	command	from	user.
2.	Calculate	how	many	security	groups	the	stack	requires.
3.	Check	if	the	required	number	of	security	groups	can	be	fit	into	an	existing
application	delivery	VPC:

4.	If	yes,	provision	application.
5.	If	no,	call	the	VPC	build	job	to	build	a	new	application	delivery	VPC.
6.	Required	IP/subnet	details	are	retrieved	from	a	prepopulated	configuration
table	in	DynamoDB.

7.	Deploy	application	stack.	Register	the	stack	against	the	requisite	VPC	ID
in	DynamoDB.

A	janitor	process	continually	polls	DynamoDB	data	for	all	running	VPCs	and
active	applications.	If	no	running	applications	use	a	given	VPC,	it	terminates	the
VPC	container	and	relevant	components.
This	advanced	process	depends	on	the	ability	to	dynamically	provision	IP

address	spaces	and	features	such	as	VPC	peering.	In	an	interconnected	enterprise
environment,	it	is	essential	that	backhaul	datacenter	connections	can	be	managed
exclusively	via	an	API,	with	solutions	such	as	AWS	Direct	Connect	that	can
create	virtual	interfaces.	Some	prepopulation	of	cross-connected	elements	may
be	required	(such	as	virtual	local	area	networks	(VLANs)).	These	are	inserted
into	DynamoDB,	and	a	capacity	management	process	is	put	in	place	to	prevent

into	DynamoDB,	and	a	capacity	management	process	is	put	in	place	to	prevent
exhaustion.

Vendor	Lock-in
Sourced	Group’s	CDP	is	heavily	tied	into	AWS,	particularly	CF,	and	therefore
brings	with	it	migration	challenges	to	other	platforms	like	VMware,	OpenStack,
or	Cloud	Foundry.	Today,	this	is	due	to	a	lack	of	cross-platform	standards	at	the
Infrastructure	as	a	Service	(IaaS)	layer.	While	advances	in	Platform	as	a	Service
(PaaS)	compatibility	between	providers	will	increase	mobility	in	the	future,	it	is
reasonable	to	assume	that,	if	you	require	control	at	the	IaaS	layer,	there	will
always	be	a	certain	amount	of	initial	heavy	lifting	required	to	support	multiple
public	cloud	providers.

Outlook	on	New	AWS	Native	Services
A	number	of	new	products	were	released	at	the	AWS	global	conference	in
November	2014,	which	focused	on	the	configuration,	deployment,	and
management	of	the	application	life	cycle—a	clear	indication	that	continuous
deployment	techniques	and	processes	have	now	reached	the	point	of	maturity
and	standardization	that	they	can	be	offered	as	a	generalized	Software	as	a
Service	(SaaS)	offering.
One	of	the	recently	introduced	AWS	services	with	a	strong	potential	to

simplify	parts	of	the	CDP	is	AWS	CodeDeploy.	CodeDeploy	is	a	service	that
automates	code	deployments	to	Amazon	EC2	instances.	CodeDeploy	replaces
many	of	the	bootstrapping	activities	that	were	included	in	the	bake	process;	it
essentially	offers	a	more	advanced	version	of	cfn-init.	Sourced	Group’s
technique	of	merging	CF	templates	allows	for	a	rather	straightforward
integration	with	AWS	CodeDeploy,	resulting	in	reduced	complexity	in	the	CDP.

12.6	Summary
Sourced	Group	has	been	assisting	enterprises	in	installing	a	CDP	for	several
years.	Sourced’s	pipeline	is	built	around	a	five-stage	view	of	the	life	cycle:	build
and	test,	bake,	deploy,	release,	and	tear	down.	Each	of	these	stages	relies	on	a	set
of	tools	that	are	utilized	to	automate	the	process.	This	standardized	life	cycle	is
then	applied	to	all	of	the	branches	within	the	application	source	control	system,
providing	developers	and	the	business	with	a	high	degree	of	assurance	as	they
merge	features	into	production.	The	use	of	discrete	application	stacks	and
automated	release	management	greatly	reduces	the	risk	and	time	taken	to	release
software.
Security	is	a	major	concern	within	the	enterprise,	and	SecOps	supports	a	key

Security	is	a	major	concern	within	the	enterprise,	and	SecOps	supports	a	key
to	success	for	any	platform.	The	CDP	offers	a	single	point	of	entry	into	the	AWS
environment,	where	enforceable	CF	templates	from	operations	provide	the
governance	and	compliance	capabilities	that	SecOps	requires.
Education	and	culture	are	core	to	widespread	adoption	of	the	CDP.	While	the

CDP	engineering	team	supports	the	pipeline	itself,	the	CDP	onboarding	team
provides	support	for	new	development	teams.	This	support	covers	onboarding	as
well	as	conveying	knowledge,	both	on	continuous	deployment	techniques	in
general	and	on	the	specific	CDP	implementation.

12.7	For	Further	Reading
For	further	reading	or	extended	information	on	any	of	the	tools	listed	here,
please	see	the	following	links:

	Atlassian:	https://www.atlassian.com/
	Bamboo:	https://www.atlassian.com/software/bamboo
	Bamboo	branch	management:
https://confluence.atlassian.com/display/BAMBOO/Using+plan+branches
	Bamboo	“Tasks	for	AWS”	plug-in:
https://marketplace.atlassian.com/plugins/net.utoolity.atlassian.bamboo.tasks-
for-aws
	Stash:	https://www.atlassian.com/software/stash
	Stash	branch	permissions:
https://confluence.atlassian.com/display/STASH/Using+branch+permissions
	Stash	pull	requests:
https://confluence.atlassian.com/display/STASH/Using+pull+requests+in+Stash
	JIRA:	https://www.atlassian.com/software/jira
	JIRA	and	Bamboo	integration:
https://confluence.atlassian.com/display/JIRA/Viewing+the+Bamboo+Builds+related+to+an+Issue

	Amazon	Web	Services:	http://aws.amazon.com
	CD/CI	best	practices:
http://www.slideshare.net/AmazonWebServices/continuous-integration-
and-deployment-best-practices-on-aws-adrian-white-aws-summit-
sydney-2014
	CloudFormation	initialization:
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-

https://www.atlassian.com/
https://www.atlassian.com/software/bamboo
https://confluence.atlassian.com/display/BAMBOO/Using+plan+branches
https://marketplace.atlassian.com/plugins/net.utoolity.atlassian.bamboo.tasks-for-aws
https://www.atlassian.com/software/stash
https://confluence.atlassian.com/display/STASH/Using+branch+permissions
https://confluence.atlassian.com/display/STASH/Using+pull+requests+in+Stash
https://www.atlassian.com/software/jira
https://confluence.atlassian.com/display/JIRA/Viewing+the+Bamboo+Builds+related+to+an+Issue
http://aws.amazon.com
http://www.slideshare.net/AmazonWebServices/continuous-integration-and-deployment-best-practices-on-aws-adrian-white-aws-summit-sydney-2014
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-init.html

resource-init.html
	CloudFormation	helper	scripts	including	cfn-init:
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-
helper-scripts-reference.html
	Identity	and	Access	Management	(IAM):	http://aws.amazon.com/iam/
	DynamoDB:	http://aws.amazon.com/dynamodb/
	Security	documentation:	http://aws.amazon.com/security/
	White	papers,	including	operational	and	security	checklists:
http://aws.amazon.com/whitepapers/
	VPC	limits,	such	as	the	number	of	security	groups:
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html
	CodeDeploy:	http://aws.amazon.com/codedeploy/

	Splunk:	http://www.splunk.com/
	Sonatype	Nexus:	http://www.sonatype.com/nexus

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-helper-scripts-reference.html
http://aws.amazon.com/iam/
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/security/
http://aws.amazon.com/whitepapers/
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/VPC_Appendix_Limits.html
http://aws.amazon.com/codedeploy/
http://www.splunk.com/
http://www.sonatype.com/nexus

13.	Migrating	to	Microservices

With	Sidney	Shek

Our	products	help	teams	of	all	sizes	track	and	share	everything,	work
smarter,	and	create	better	software	together.

—https://www.atlassian.com/company

13.1	Introduction	to	Atlassian
Atlassian	produces	team	productivity	tools	such	as	JIRA	(for	issue	tracking	and
software	development),	Confluence	wiki,	HipChat	messaging,	and	JIRA	Service
Desk,	and	development	tools	such	as	Bamboo	continuous	integration	server	and
Bitbucket	hosted	repositories.	The	case	study	in	the	previous	chapter	describes
how	Sourced	Group’s	pipeline	makes	use	of	some	of	these	tools.	Many	of	these
tools	are	available	for	both	on-premise	server	installation	and	through
Atlassian’s	hosted	cloud	offering.
Atlassian	Cloud	currently	services	almost	20,000	customers	from	130

countries.	A	“customer”	represents	a	team	or	organization	that	has	signed	up	to
one	or	more	applications	and	may	have	a	handful	to	thousands	of	end	users;
there	are	currently	approximately	60,000	application	instances	handling	about
1TB	of	network	traffic	per	day.	To	support	this	load,	Atlassian	has	two
production	datacenters	in	the	United	States	(approximately	60	racks	serving
customer	requests,	with	8,200	CPU	cores	and	5,300	physical	disks).	The	case
study	in	Chapter	11	describes	an	example	of	how	to	keep	multiple	datacenters
synchronized.	Instances	of	a	customer’s	applications	are	currently	hosted	in
OpenVZ	containers.	See	Chapter	5	for	a	discussion	of	lightly	baked	versus
heavily	baked	and	the	use	of	containers.	Leveraging	state-of-the-art	containers
has	been	successful	and	has	helped	Atlassian	reduce	cost	by	customer	per	an
order	of	magnitude.	Going	forward,	Atlassian	is	transitioning	from	monolithic
applications	to	a	tenantless	microservice-based	architecture	where	end-user
requests	can	be	serviced	by	any	front-end	server,	typically	in	the	same
geographic	region	as	the	user,	with	common	business	logic	and	data	tiers	shared
across	applications	and	customers.	Atlassian’s	goals	in	this	transition	are	to:

	Provide	better	performance	for	customers	by	locating	data	and	services

https://www.atlassian.com/company

closer	to	end	users.
	Improve	the	scalability	of	Atlassian	Cloud	to	handle	increasing	numbers	of
customers	at	further	reduced	cost.	The	target	is	to	support	double	the
current	customer	base	with	the	existing	infrastructure	in	Atlassian
datacenters.
	Support	using	public	cloud	providers	where	appropriate	for	better
performance	and	cost.
	Support	easier	disaster	recovery	of	data	in	the	event	of	datacenter	outages.
	Improve	the	speed	at	which	features	can	be	deployed	to	serve	customers.

Atlassian	plans	to	deploy	many	of	these	microservices	in	public	cloud
providers	such	as	Amazon	Web	Services	(AWS),	with	a	virtual	private	network
(VPN)	infrastructure	such	as	Amazon	Direct	Connect	set	up	to	allow
bidirectional	communications	with	Atlassian	datacenters.	Application	instances
will	remain	in	Atlassian	datacenters	during	the	transition	period.
One	major	challenge	for	Atlassian	is	that	changes	must	not	result	in	outages	or

poorer	performance	for	end	users,	especially	during	the	transition	to
microservices.	As	a	result,	many	operational	concerns	are	at	the	forefront	of
requirements	for	new	microservices,	such	as:

	Ensuring	data	is	migrated	in	to	the	appropriate	format	and	location	without
risk	of	loss.
	Ensuring	applications	are	modified	as	required	to	support	new
microservices	without	potential	loss	of	functionality	while	the	new
microservices	are	rolled	out.
	Ensuring	new	functionality	in	microservices	can	be	rolled	out	with	no
downtime,	and	rolled	back	in	case	of	any	unexpected	failure.
	Providing	replacement	support	tools	for	support	teams.	For	example,
currently	support	personnel	can	log	in	to	customer	containers	to	debug	and
access	data	and	logs	as	required.	In	an	environment	where	services	are
shared,	new	tools	must	be	provided	to	facilitate	the	same	support	use	cases.
	Ensuring	sufficient	performance	monitoring	and	alerting	is	in	place.	Poor
performance	and	outages	for	microservices	can	impact	a	significant
number	of	customers,	so	issues	must	be	identified	as	early	as	possible	to
reduce	resolution	time.

13.2	Building	a	Platform	for	Deploying	Microservices
Many	infrastructure	components	such	as	the	deployment	platform,	network

connectivity	to	Atlassian	datacenters,	logging,	and	monitoring	are	common	to	all
microservices.	These	are	being	consolidated	into	a	single	highly	available
Platform-as-a-Service	(PaaS)	for	microservices	to	prevent	unnecessary
duplication	and	inconsistencies	in	technology	and	configuration	choices.
Currently,	the	PaaS	runs	on	AWS	infrastructure	and	builds	upon	AWS	tools
such	as	CloudFormation	while	providing	additional	functionality	where
necessary.	For	the	most	part,	the	underlying	cloud	service	provider	is	abstracted
away	from	microservice	developers.	The	architecture	diagram	shown	in	Figure
13.1	displays	the	main	components	of	Atlassian	PaaS	within	AWS.	These
include	Route	53	for	DNS	services,	Elastic	Load	Balancing	(ELB)	for	balancing
incoming	requests	across	services	deployed	to	EC2	instances	in	multiple
availability	zones	(AZs),	and	CloudWatch	for	metrics	and	alarms.	Services	can
access	various	AWS	resources	such	as	Relational	Database	Service	(RDS),
DynamoDB,	S3,	and	Simple	Queue	Service	(SQS).	Outgoing	requests	from
services	to	the	Internet	and	AWS	resources	outside	of	the	VPC	are	directed
through	an	ELB	in	front	of	Squid	proxies	deployed	to	multiple	AZs	for	high
availability.	Also,	log	messages	are	sent	to	Elasticsearch/Kibana	clusters
deployed	to	EC2	instances	in	multiple	AZs	fronted	by	ELB.

FIGURE	13.1	Components	used	in	the	Atlassian	microservice	PaaS
[Notation:	AWS	Simple	Icons]

Atlassian’s	microservice	PaaS	provides	the	following	functionality:

	Consistent	container	for	running	microservices.	Microservice	instances	are
run	on	individual	AWS	EC2	instances	with	a	baked	AMI	that	is	controlled
by	the	PaaS	team,	not	the	microservice	developers.	This	AMI	contains
necessary	runtimes	and	PaaS	infrastructure.	Instance	size	can	be	controlled
by	microservice	developers	(e.g.,	compute-optimized	instances	can	be
specified	for	CPU-intensive	microservices).	To	deploy	a	microservice	onto
the	PaaS,	developers	only	need	to	provide	a	service	descriptor	that	includes
service	configuration	and	metadata	(e.g.,	required	resources,	environment
variables),	and	an	artifact	to	be	run	(e.g.,	a	binary	JAR	file	for	JVM
services,	or	a	Docker	image).
	Resource	provisioning	and	management	such	as	creating	and	managing	S3
buckets,	DynamoDB	tables,	and	Simple	Notification	Service	(SNS)	topics.
The	intent	is	to	abstract	resource	implementations	(e.g.,	AWS	versus
Google)	away	from	microservice	developers,	and	to	support	better
management	for	specific	resources;	for	example,	AWS	SNS	topics
currently	cannot	be	updated	with	CloudFormation	templates	and	must	be
re-created.
	Autoscaling	and	load	balancing	between	microservice	instances.
Microservice	developers	only	need	to	specify	the	minimum	number	of
instances	required	in	the	service	descriptor	and	criteria	for	autoscaling.
Atlassian	PaaS	will	create	the	necessary	AWS	load	balancer/autoscaling
configuration	for	each	deployment.	Currently,	AWS	ELB	with	autoscaling
groups	is	used.
	Log	consolidation	and	searching.	Microservices	need	only	output	log
entries	to	the	console	(standard	output	or	standard	error),	ideally	in	JSON
format.	Log	entries	are	automatically	picked	up	and	parsed	by	fluentd	and
delivered	to	an	Elasticsearch	cluster.	Developers	and	support	teams	have
access	to	consolidated	logs	via	Kibana,	which	allows	searching	of	logs	and
graphing	of	statistics	(e.g.,	histogram	of	errors	over	time).
	Metric	collection,	consolidation,	reporting,	and	alerting.	Standard
infrastructure-level	metrics	such	as	CPU	load,	as	well	as	ELB	latency	and
error	rates,	are	supported	via	AWS	CloudWatch	and	Stackdriver.	Alerts
through	PagerDuty	are	triggered	when	thresholds	are	crossed	for	important
metrics.	Additional	microservice-specific	metrics	are	also	collected	via
logging	infrastructure	for	graphing	via	Kibana.
	Secured	network	infrastructure	between	microservices	in	AWS	and
existing	applications	in	Atlassian	datacenters.	There	is	bidirectional	and

high-speed	connectivity	between	applications	in	Atlassian	datacenters	and
microservices	deployed	to	AWS,	including	services	such	as	Atlassian-
internal	DNS.
	Zero-downtime	deployments	and	support	for	rapid	rollback.	Microservice
stacks	are	seamlessly	upgraded	by	creating	a	new	stack	(e.g.,	new	AWS
ELB,	autoscaling	group,	EC2	instances),	and	then	switching	the	DNS
entries	(currently	in	Route	53)	to	the	new	stack	once	microservice
instances	are	in	service.	If	the	upgrade	is	deemed	successful,	the	old	stack
is	removed,	otherwise	rollback	to	the	old	stack	can	be	performed	by
switching	DNS	entries	again.	This	process	is	described	in	more	detail	in
Chapter	2	and	the	case	study	in	Chapter	12.	DNS	TTLs	are	set	low	(60
seconds)	to	facilitate	rapid	switchover.	Also,	these	stacks	represent	only
the	microservices	themselves;	resources	such	as	RDS	tables	or	S3	are
managed	separately	through	the	resource	provisioning	mechanism
described	previously.
	Multiple	environments	to	support	different	levels	of	development	and
testing.	Four	separate	environments	are	provided	by	the	PaaS.	The	intent
of	these	environments	is	to	ensure	that	each	application	or	microservice
progresses	through	each	stage;	therefore	they	are	being	tested	against
software	that	will	be	run	in	the	next	environment.	The	environments	are	as
follows:
	Domain	development.	This	environment	is	used	for	testing	during
development	by	microservice	teams.
	Application	development.	This	environment	supports	testing	with
external	dependencies	such	as	applications	(e.g.,	JIRA,	Confluence)	and
other	microservices.	This	environment	is	available	to	all	application
developers	within	Atlassian.	Microservices	in	this	environment	are
typically	connected	to	all	Atlassian	Cloud–based	application
development	instances	to	support	“dogfooding.”
	Staging.	This	closely	resembles	production;	for	example,	there	are
deployments	in	multiple	AWS	regions.	Atlassian	dogfooding	instances
(i.e.,	production-grade	instances	used	internally	by	Atlassian)	are
hooked	up	to	these	environments.	This	environment	is	used	primarily	to
test	production	configuration.
	Production.	This	environment	supports	customer	Atlassian	Cloud
instances.	There	is	a	PaaS	deployed	in	two	separate	AWS	regions,
providing	high	availability	in	the	event	of	region	failure.

13.3	BlobStore:	A	Microservice	Example
The	selection	of	microservices	to	develop	has	been	driven	by	value	to	end	users
(e.g.,	improved	user	experience)	and	to	Atlassian	itself	(e.g.,	disaster	recovery
support).	To	date,	there	are	Atlassian-designed	microservices	for	single	sign-on,
consolidated	billing,	user	experience	experimentation,	document	conversion,
binary	object	storage,	and	application	instance	management,	with	many	more
microservices	in	the	pipeline.	As	a	canonical	example,	we	discuss	BlobStore,	a
microservice	for	storing	binary	data	(or	“blobs”)	from	applications,	such	as
attachments	in	JIRA	issues,	Confluence	pages,	or	even	software	binaries.
BlobStore	is	an	early-stage	microservice,	the	fourth	within	Atlassian,	and	the
first	to	be	run	in	production	on	the	Atlassian	PaaS.
The	primary	business	driver	for	BlobStore	is	to	enable	simpler	disaster

recovery	of	customer	data.	Currently,	a	customer’s	attachment	data	is	kept	in
storage	nodes	alongside	the	compute	node	running	customer	instances.	At	the
time	of	writing,	there	were	approximately	40TB	of	attachment	data	across	the
two	datacenters,	so	supporting	disaster	recovery	involves	a	time-	and	resource-
intensive	operation	of	transferring	this	data	between	the	datacenters.	In	addition,
there	is	also	a	challenging	“packing”	problem	as	copied	data	must	fit	into
available	gaps	in	the	destination	storage	nodes.	With	BlobStore,	application
binary	data	will	be	stored	in	AWS	S3	instead,	utilizing	S3	replication	between
AWS	datacenters,	so	the	custom	inter-datacenter	transfer	is	no	longer	required
and	failing	over	a	customer	instance	to	the	second	datacenter	becomes
significantly	easier.	Having	customer	data	in	a	store	such	as	S3	also	makes	it
feasible	to	move	customer	instances	between	datacenters	in	order	to	provide
colocation	of	end	users	with	their	data	and	allows	better	load	balancing	across
datacenters.
From	a	technical	standpoint,	BlobStore	also	represents	an	obvious	and

relatively	simple	component	that	can	be	abstracted	from	all	Atlassian
applications,	and	was	a	logical	early	step	toward	shared	microservices	across
applications.

Architecture
One	of	the	main	benefits	of	microservices	is	that	since	they	are	small,	they	can
be	developed	using	the	most	suitable	technology	stack	for	the	problem	at	hand
and	be	quite	varied	in	the	implementation	approach.	Indeed,	this	is	the	case
within	Atlassian,	where	microservices	are	currently	a	mix	of	Java,	Scala,	and
Node.js.	BlobStore	is	small	Scala-based	microservice,	approximately	2,500	lines

of	code,	developed	and	managed	by	a	small	team.	It	uses	the	lightweight	Finagle
RPC	framework	created	by	Twitter	to	expose	a	simple	HTTP	application
programming	interface	(API)	for	blobs.	The	key	components	of	BlobStore	are
shown	in	Figure	13.2.	A	collection	of	BlobStore	servers	are	deployed	to	the
Atlassian	PaaS	in	AWS,	storing	blobs	in	S3	and	key	mappings	in	DynamoDB.
There	is	a	small	BlobStore	client	plug-in	installed	in	application	instances	to	the
abstract	access	to	BlobStore	away	from	application	code	(e.g.,	to	add	necessary
HTTP	headers	to	requests)	and	to	ensure	blobs	are	streamed	without	in-memory
buffering	on	the	client	side.

FIGURE	13.2	Architecture	of	BlobStore	[Notation:	AWS	Simple	Icons]

BlobStore	at	its	core	is	a	“content-addressable”	store.	Consumers	(e.g.,	JIRA
or	Confluence)	send	binary	data	(or	blobs)	to	BlobStore	with	a	“logical	key,”
and	the	blobs	are	stored	in	AWS	S3	keyed	by	a	SHA-1	hash	of	the	blob’s
content	(known	as	a	“content	hash”).	BlobStore	maintains	a	mapping	between
the	consumer’s	logical	key	and	the	content	hash.	This	mapping	is	currently
stored	in	AWS	DynamoDB,	a	low-maintenance,	highly	available,	and	scalable
key-value	store.	Consumers	can	access	blobs	via	RESTful	resources	based	on
the	logical	key	or	content	hash.	Blobs	and	mappings	are	replicated	to	be
available	in	different	AWS	regions.	BlobStore	servers	are	run	in	active-passive
configuration	between	the	two	AWS	regions	as	this	provides	lowest	latency
from	the	Atlassian	datacenters.	A	BlobStore	DNS	CNAME	entry	in	the
Atlassian	datacenter’s	DNS	servers	directs	traffic	to	the	BlobStore	services	in
the	appropriate	AWS	region.

Safety	and	Performance	Through	Pure	Functional
Architecture	and	Programming
BlobStore	has	a	pure	functional	architecture;	the	key	principle	is	that	data	is
always	immutable.	This	means	that	no	data	(blobs	or	records	representing
changes	to	key	mappings)	are	destroyed	or	modified;	instead	“facts”	are	only

appended	to	the	system	in	order	to	change	the	current	representation	of	data.
Data	is	essentially	stored	in	a	single-ancestor	version	control	system.	An
underlying	immutable	datastore	also	makes	it	possible	to	expose	immutable
APIs—for	a	given	request,	the	response	will	always	be	the	same.	Immutable
APIs	support	caching,	composability	of	requests	for	simpler	business	logic,	and
easier	testing	where	responses	can	be	easily	mocked	out	with	little	knowledge	of
underlying	services.	Using	a	functional	architecture	led	to	two	key	design
decisions	with	many	resulting	benefits.
First,	blobs	are	stored	against	a	content	hash	in	S3.	This	means	that	for	a	given

piece	of	content,	the	location	in	S3	will	always	be	the	same.	A	piece	of	content
may	be	uploaded	multiple	times	to	BlobStore,	but	the	content	will	only	need	to
be	stored	once	in	S3	using	the	content	hash	as	the	key.	Using	the	SHA-1
algorithm	ensures	an	infinitesimally	small	chance	of	collision.	This	not	only
allows	data	deduplication,	but	also	simple	data	caching	for	a	blob:	A	consumer
can	request	a	blob	via	either	its	logical	key	or	the	content	hash;	a	request	via	a
logical	key	is	redirected	to	the	persistent	URL	for	the	content’s	hash	that	can	be
cached	as	it	remains	the	same	for	a	given	piece	of	content.	This	caching	is
important	for	minimizing	the	effect	of	network	latency	across	the	link	to	AWS;
although	there	is	a	high-speed	link	to	AWS	from	each	datacenter,	there	will	be
inevitable	network	latency	in	accessing	blobs	that	is	greater	than	the	latency	to
access	files	on	disk.	BlobStore	is	able	to	use	either	a	cache	local	to	the	HTTP
client,	or	a	caching	server	such	as	Varnish	in	the	Atlassian	datacenter	to	reduce
this	latency.	Deleting	a	blob	is	a	quick	and	nondestructive	operation	as	it	is	only
necessary	to	delete	the	corresponding	key	mapping	instead	of	the	blob	itself.
This	means	the	data	itself	is	recoverable	in	case	the	deletion	was	accidental;	and
at	some	later	point	old	data	without	mappings	can	be	garbage-collected.
Secondly,	key	mappings	are	stored	using	an	event	sourcing	model.	Instead	of

storing	mappings	themselves,	“events”	on	the	mappings	are	stored	(i.e.,	insertion
or	deletion	events).	To	recover	a	specific	key	mapping	at	a	given	point	in	time,
one	would	retrieve	all	events	up	to	that	point	in	time	and	replay	them	in	order.	In
this	model,	no	data	is	deleted,	so	mappings	that	may	have	been	inadvertently
deleted	can	be	recovered;	we	can	simply	query	the	key	mapping	store	for	a
mapping	at	a	given	point	in	time.	Also,	an	audit	trail	of	changes	to	mappings
comes	for	“free.”	In	addition,	event	sourcing	provides	basic	transactionality	even
with	a	simple	yet	highly	scalable	key-value	store	such	as	DynamoDB.
Specifically	it	does	not	require	a	traditional	RDBMS,	which	is	difficult	to	scale
in	a	cross-region	replicated	environment.	Another	benefit	is	that	schema
evolution	is	relatively	easy	to	implement.	Using	a	NoSQL	datastore	means	no
“stop-the-world”	activities	are	necessary	to	perform	schema	updates.	Also	new

“stop-the-world”	activities	are	necessary	to	perform	schema	updates.	Also	new
events	or	changes	to	attributes	can	be	handled	through	data	version–aware	object
marshallers	that	always	present	data	in	the	latest	schema	version;	no	existing
data	needs	to	be	updated	or	rewritten.
In	addition	to	a	functional	architecture,	BlobStore	embraces	functional

programming	concepts.	The	server	is	written	in	Scala	in	functional	style,	the
basic	concepts	being	that	variables	are	immutable	wherever	possible	and	new
types,	including	types	representing	logical	functions	or	operations,	are	created	as
necessary	instead	of	using	primitive	types	that	can	be	easily	mixed	up.	This
allows	Atlassian	to	test	code	via	compile-time	checks	instead	of	relying	on	unit
tests	or	runtime	checks	and	provides	the	following	benefits:

	Less	reliance	on	explicit	tests	as	the	compiler	can	assist	greatly	with
ensuring	correctness	of	code	through	compile-time	checks	of	types.
	Code	is	concise.
	Immutability	and	concurrency	concepts	such	as	futures	allow	you	to	more
easily	solve	concurrency	issues.
	Pure	functional	code	is	much	easier	to	unit	test	as	outputs	are	deterministic
for	given	inputs.	“Mocking”	is	rarely	required,	and	we	are	able	to	use
property-based	testing	(via	ScalaCheck	with	Specs2)	to	automatically
generate	test	data	to	help	cover	corner	cases.

One	of	the	biggest	challenges	in	applying	functional	concepts	to	microservice
development	has	been	developing	the	appropriate	skill	set	for	developers.	While
functional	programming	and	functional	concepts	have	been	around	for	quite
some	time,	they	are	generally	unfamiliar	to	most	developers	(although	that
situation	is	changing	with	languages	such	as	Scala,	Clojure,	and	Haskell	gaining
popularity).	The	BlobStore	team	was	bootstrapped	by	developers	with	more
functional	programming	experience,	allowing	other	team	members	to	learn
quickly.	Also,	the	culture	of	sharing	knowledge	within	Atlassian	is	helping	to
build	functional	programming	and	architecture	experience	across	the	company.

Solving	the	“Ilities”
We	have	already	hinted	at	how	some	of	the	design	and	implementation	decisions
for	BlobStore	address	scalability	and	availability	considerations.	Table	13.1
discusses	how	some	important	desirable	architectural	characteristics	are
achieved.

TABLE	13.1	Addressing	the	Ilities	for	BlobStore

13.4	Development	Process
Most	teams	in	Atlassian	are	small,	up	to	about	five	developers,	and	use	some

Most	teams	in	Atlassian	are	small,	up	to	about	five	developers,	and	use	some
form	of	agile	or	lean	development	methodology	determined	by	the	team	itself.
As	an	example,	the	BlobStore	development	team	consists	of	five	developers
using	Scrum	with	one-week	sprints.
Teams	typically	also	have	some	involvement	from	a	quality	assurance	(QA)

tester.	Unlike	traditional	testers,	the	role	of	QA	team	members	is	to	provide
oversight	of	testing	and	guidance	on	testing	approaches	and	tasks.	For	example,
QA	may	be	involved	with	setting	up	“developer	on	test”	processes	(where	a
second	developer	verifies	test	code	and	performs	any	necessary	manual	testing)
and	reviewing	test	cases	for	completeness,	especially	in	the	context	of	software
developed	outside	of	the	team.	QA	also	assists	with	exploratory	testing	and
setting	up	testing	events	such	as	blitz	tests	for	verification	prior	to	deployment	of
major	functionality	changes	and	QA	“demo”	sessions,	where	entire	solutions	are
demonstrated	and	“tested”	end-to-end	with	a	larger	group	of	people.
One	major	challenge	for	Atlassian,	and	especially	for	microservice

development	teams,	is	maintaining	a	manageable	level	of	interaction	between
teams.	Microservices	have	a	significant	impact	on	how	the	core	applications	are
developed,	deployed,	and	supported.	There	are	also	deployment	dependencies
between	teams,	such	as	between	the	PaaS	and	BlobStore	teams	where	certain
PaaS	features	may	be	blocking	deployment	of	new	BlobStore	versions.
Traditionally,	ongoing	identification	of	these	interactions	has	been	somewhat
informal	through	knowledge	built	up	by	architects	and	experienced	personnel,
and	through	knowledge	sharing	across	the	organization	via	blog	posts	and	pages
on	internal	Confluence	instances	and	at	all-hands	demo	presentations.	This
collaborative	approach	has	worked	well	for	sharing	and	developing	solutions,
but	in	more	recent	times	more	formality	through	“project	managers”	has	been
introduced	to	ensure	dependencies	between	teams	are	identified	more
consistently	and	are	tracked.	Some	examples	of	BlobStore	team	interactions
include:

	Early	engagement	of	architects	from	product	teams	ensures	that	relevant
requirements	are	captured.	These	have	been	formally	captured	as	JIRA
issues	and	have	been	regularly	reviewed.	There	is,	in	general,	controlled
interaction	between	product	and	microservice	teams	to	minimize	noise;
architects	and	team	leads	represent	the	main	conduit	of	information	flow.
	Product	and	infrastructure	teams	have	also	raised	new	requirements	on
BlobStore	as	product	backlogs	have	evolved.	These	have	started	as
informal	discussions	before	being	tracked	as	features	in	JIRA.
	Close	interaction	between	PaaS	and	BlobStore	teams	as	new	requirements

and	issues	are	identified	and	fixed	as	both	are	rolled	out	in	parallel.	The
teams	use	a	combination	of	informal	chat	room	interactions	and	formal
issue	tracking	in	JIRA.	Team	coordination	is	also	more	formally	managed
by	a	project	manager.
	Relevant	product	code	changes	are	reviewed	by	both	product	and
microservice	teams.
	Microservice	code	changes	are	freely	viewable	by	other	teams—this	has
served	as	a	great	way	of	sharing	knowledge	and	techniques	between	teams
and	identifying	possible	issues	such	as	potential	performance	and	security
issues.

Developers	and	Support
Development	teams	in	Atlassian	are	becoming	more	responsible	for	the
deployment	of	their	software	to	production.	In	the	case	of	BlobStore,	the
development	team	is	responsible	for	the	rollout	of	the	BlobStore	server	to
production	and	the	staged	rollout	of	relevant	functionality	to	customer
application	instances,	including	identifying	suitable	instances	at	each	stage,
developing	necessary	scripts	and	rollback	procedures,	“flipping	the	switch”	on
customer	instances,	and	being	alerted	via	PagerDuty	upon	error	conditions.	This
greater	level	of	responsibility	encourages	production	code	to	be	thoroughly
tested	and	reviewed,	and	relevant	tools	exist	for	both	in-band	and	out-of-band
access	to	underlying	data.
While	Atlassian	does	embrace	some	DevOps	concepts,	it	has	in	fact	moved

away	from	a	full	DevOps	process	model	over	the	past	couple	of	years	to	having
a	dedicated	service	operations	group	responsible	for	the	availability	of
application	instances	and	underlying	platforms.	This	change	was	in	response	to
the	problem	that	shared	responsibility	for	uptime	between	multiple	groups	was
ineffective	for	fast	incident	resolution.	An	application	or	microservice	is	not
deemed	fully	in	production	until	it	is	handed	over	to	service	operations,	and
there	are	distinct	definitions	of	responsibilities	between	development,
infrastructure,	and	operations	teams.	Operations	teams	are	the	first	point	of	call
for	incidents,	providing	24/7	support	for	the	underlying	platform	for	applications
and	services.	They	follow	runbooks	provided	by	development	teams	for	initial
incident	resolution	and	can	escalate	to	service	owners—typically	including	a
member	of	the	development	team—for	further	investigation.	They	are	also
responsible	for	service	metric	reporting	(e.g.,	service	uptime,	incident	statistics,
whether	service	level	agreements	(SLAs)	have	been	met),	and	supporting
infrastructure	such	as	service	catalogue,	alert	integration	with	JIRA,	and

infrastructure	such	as	service	catalogue,	alert	integration	with	JIRA,	and
reporting	systems.	There	is	collaboration	between	service	operations	and
development	teams	before,	during,	and	after	handover.	Prior	to	handover,
development	teams	must	provide	necessary	documentation	and	tooling	for
operations	use	cases;	for	example,	with	BlobStore,	backup/restore	procedures	for
attachment	data	have	changed	to	involve	AWS	assets,	and	the	necessary
documentation	and	scripts	need	to	be	developed.	During	handover,	service
operations	begin	measuring	service	metrics	and	act	as	the	first	point	of	call.
After	handover,	in	addition	to	working	together	when	necessary	to	resolve
incidents,	development	teams	are	involved	with	any	post-incident	reviews.
Service	operations	can	provide	developers	with	metrics	that	can	assist	with	new
user	story	identification	and	backlog	prioritization	(e.g.,	new	features	that	can
ease	operations	load,	or	prioritization	of	bug	fixes).
There	are	also	dedicated	support	teams	(customer	advocates)	responsible	for

customer-facing	requests.	While	many	microservices	may	be	“under	the	covers,”
inevitably	there	will	be	impact	on	end	users,	and	as	a	result	there	needs	to	be
interaction	between	microservice	developers	and	support	teams.	For	example,	in
specific	cases,	data	imports	or	exports	for	end	users	may	need	to	be	out-of-band
(e.g.,	if	their	application	instance	is	unavailable	for	some	reason).	Transitioning
from	local	file-based	attachment	storage	to	the	BlobStore	microservice	means
there	is	no	longer	easy	access	to	application	attachment	data	through	standard
“file	system”	mechanisms;	instead	the	data	model	has	been	designed	to	support
out-of-band	access	to	attachments,	and	accompanying	tools	have	been
developed.
Also,	many	teams	integrate	a	“Developer	on	Support”	(called	a	reliability

engineer	in	Chapter	1)	in	their	development	life	cycle	where	team	members	are
also	rotated	into	a	support	role	(e.g.,	for	two	weeks	at	a	time).	During	their
rotation,	developers	work	closely	with	the	support	team	to	investigate	issues
related	to	the	particular	software.	A	Developer	on	Support	does	reduce	the
resources	available	for	feature	development	in	the	short	term,	but	the	intent	is
that	in	the	longer	term	there	will	be	less	need	for	the	rostered	Developer	on
Support	to	be	involved	in	troubleshooting	and	for	developed	software	to	be	more
easily	supported	by	the	operations	team	through	better	design	and	tooling.

Build	and	Deployment	Pipeline
BlobStore	code	and	configuration	are	kept	in	a	Git	repository	(Atlassian	Stash).
The	team	uses	a	feature	branching	strategy;	a	feature	branch	is	created	for	each
new	task	or	story	and	is	short-lived,	typically	two	or	three	days.	One	or	two
developers	typically	work	on	a	branch	at	any	one	time.	To	merge	into	master,	a
pull-request	for	the	feature	branch	is	raised	and	must	be	approved	by	two

pull-request	for	the	feature	branch	is	raised	and	must	be	approved	by	two
developers	who	have	not	worked	on	the	branch;	a	successful	branch	build	is
required	as	well.
A	series	of	Bamboo	build	and	deployment	plans	have	been	created	to

automatically	build,	test,	and	deploy	changes	on	the	master	branch	to	the
environments	for	both	the	server	and	client	code.	Figure	13.3	shows	the	key
steps	in	the	continuous	delivery	pipeline.	Notice	that	the	path	for	deployment	of
the	client	plug-in	is	different	from	the	deployment	of	the	BlobStore	server.

FIGURE	13.3	BlobStore	deployment	pipeline	[Notation:	BPMN]

Some	key	features	of	the	deployment	pipeline	are:
	The	pipeline	has	been	streamlined	so	that	code	can	be	deployed	to
production	within	about	one	hour	from	the	time	of	merging	to	master.
During	early	stages	of	deployment,	it	was	common	for	server	code	to	be
deployed	to	production	two	or	three	times	a	day.	The	BlobStore	client
pipeline	is	available	to	Atlassian	developers	after	approximately	three
hours	because	of	more	extensive	tests	with	applications.	Rollouts	to
production	can	happen	as	a	portion	of	weekly	deployments	if	necessary.
	Code	is	“released”	(i.e.,	built,	tagged,	and	deployed	into	a	central	Nexus

artifact	repository)	early	in	the	pipeline.	This	is	done	to	negate	the
possibility	of	changes	in	the	build	infrastructure	at	different	points	in	the
pipeline	(e.g.,	a	different	Java	SDK	version).	The	downside	of	this	is	that	it
does	not	fit	well	into	the	way	Bamboo	operates.	Bamboo	works	best	with
branches	and	releases	being	performed	as	part	of	deployment	plans.
	BlobStore	follows	standard	semantic	versioning.	This	is	required	primarily
to	support	the	BlobStore	client	and	possible	changes	to	the	server	API;
nonbreaking	changes	result	in	an	increment	of	the	minor	version,	and
breaking	API	changes	result	in	a	major	version	increment.	Changes	to	the
server	itself	only	result	in	a	patch	version	increment.
	Our	intent	is	to	maintain	one	mainline,	which	is	the	master	branch.	The
current	build	pipeline	means	that	issues	on	the	master	branch	prevent
releases.	This	is	mitigated	by	thorough	testing	prior	to	merging	to	master,
and	discipline	to	ensure	the	build	pipeline	for	master	is	always	green.	One
other	option	would	be	to	have	a	separate	“stable”	branch	where	code	is
released,	and	only	when	the	master	builds	have	successfully	passed	would
the	master	be	merged	onto	stable.	The	BlobStore	team	decided	this
involved	too	much	of	an	overhead	considering	the	small	size	of	the	team.
	Automated	unit	testing,	client-server	integration	testing,	and	integration
testing	with	AWS	resources	must	all	pass	before	BlobStore	client	and
server	components	are	deployed	to	the	“development”	environment	for
others	outside	of	the	immediate	team	to	use.	Deployment	of	the	server	to
subsequent	environments	automatically	occurs	after	successful	“smoke”
tests,	including	end-to-end	acceptance	tests	that	test	the	full	path	from
consumer	applications	through	to	the	BlobStore	server	deployed	in	the
appropriate	environment.	Performance	tests	are	also	regularly	scheduled.

No-downtime	Path	to	Production	for	Consumer
Applications
In	addition	to	production	deployments	of	BlobStore	server,	the	BlobStore	team
was	also	responsible	for	rolling	out	necessary	changes	in	consumer	applications
to	production	with	no	additional	downtime.	This	proceeded	as	two	independent
steps	that	were	run	in	parallel:	data	migration	and	consumer	application	code
migration/deployment.	This	meant	that	data	migration	could	occur	even	while
application	code	changes	could	still	be	made,	and	hence	shortened	the	time
required	to	reach	production	state.
Data	migration	was	done	as	an	out-of-band	operation	triggered	through	a	new

data	migration	plug-in	deployed	to	application	instances;	this	plug-in	was

data	migration	plug-in	deployed	to	application	instances;	this	plug-in	was
independent	of	application	code	changes	required	for	BlobStore.	Data	migration
was	an	idempotent	operation,	meaning	it	could	be	rerun	at	any	time	without
overwriting	any	previously	migrated	data.	Since	the	content	hash	for	a	blob	was
stored	as	part	of	the	key	mapping,	determining	whether	a	blob	had	already	been
migrated	was	trivial	and	did	not	require	comparing	binary	data.	Migrations	were
continually	run	over	a	period	of	several	weeks	while	application	code	changes
were	being	rolled	out,	providing	controlled	and	incremental	migration	of	data
without	excessive	network	and	other	resource	consumption.
Application	code	changes	included	three	modes	of	operation—local	only	(i.e.,

no	BlobStore),	local	primary	(i.e.,	asynchronous	operations	to	BlobStore),	and
remote	primary	(i.e.,	synchronous	operations	to	BlobStore,	fallback	to	local	for
read	caching).	These	modes	were	enabled	using	feature	flags	that	could	be
changed	at	runtime	without	restart.	The	interim	“local	primary”	mode	was	used
to	ensure	that	the	full	code	and	network	path	to	the	BlobStore	server	was	tested
for	reliability	and	also	to	gather	performance	metrics	to	determine	real-world
latency	of	operations	and	potential	impacts	on	end-user	experience.	This	staged
approach	gave	us	confidence	in	the	overall	solution	prior	to	reaching	full
production	state.
Both	stages	of	rollout,	namely,	data	migration	and	switching	feature	flags	to

enable	code	changes,	started	gradually	with	canary	instances	(approximately	10
with	random	distribution	of	attachment	size	and	count).	When	successful,	the
rollout	moved	to	a	group	of	100	instances,	followed	by	a	rack	(~1,000
customers),	then	to	racks	in	the	two	datacenters,	before	finally	switching	on	all
customers.	This	process	took	several	weeks	to	ensure	that	the	BlobStore
development	team	could	respond	to	issues	without	significant	customer	impact.

13.5	Evolving	BlobStore
During	the	course	of	the	project,	the	BlobStore	microservice	has	evolved,
including	significant	changes	in	the	back-end	implementation	and	the	addition	of
new	functionality	such	as	per-customer	encryption	keys,	copy/move	blobs,	and
byte-range	requests.	So	far,	the	changes	have	been	smooth,	with	minimal,	if	any,
impact	on	the	consumer	application	code.
One	good	example	was	the	addition	of	per-customer	encryption	keys.	Initially,

encryption	was	implemented	using	AWS	server-side	encryption	on	S3	buckets.
During	development,	a	requirement	was	generated	to	support	per-customer
encryption	keys,	which	led	to	a	change	to	perform	the	encryption	within	the
BlobStore	server	itself.	In	the	end,	this	required	significant	server-side	changes,
changes	to	the	S3	key	structure,	and	a	relatively	minor	change	to	the	HTTP	API,

changes	to	the	S3	key	structure,	and	a	relatively	minor	change	to	the	HTTP	API,
but	no	noticeable	change	from	the	consumer	application’s	point	of	view	was
needed.	These	changes	were	achieved	as	follows:

	Customer	encryption	keys	were	managed	on	an	instance	by	the	BlobStore
in	the	interim,	with	the	intent	to	delegate	it	to	a	separate	microservice	in
the	near	future.	This	meant	that	consumer	applications	were	not	aware	of
the	encryption	process.
	In	order	to	maintain	data	immutability,	blobs	in	S3	became	keyed	on	both
plain-text	content	hash	and	a	secure	hash	of	the	encryption	key.	This	made
it	easy	to	ensure	that	data	could	only	be	decrypted	with	the	correct	key;	if
an	incorrect	key	was	provided,	the	blob	in	S3	simply	would	not	exist.	This
also	makes	it	possible	to	support	multiple	encryption	keys	for	the	same
content	concurrently,	which	is	important	when	customer	encryption	keys
are	changed	over	time	as	it	allows	clients	with	the	“old”	key	access	to	data
during	the	re-encryption	process,	so	this	process	can	be	run	online	without
downtime.

Atlassian	PaaS	and	BlobStore	servers	are	currently	serving	customers	in
production.	BlobStore	functionality	in	one	major	application	(JIRA)	is	enabled
for	all	Atlassian	Cloud	instances.	To	date,	there	have	been	no	significant	defects
or	production	incidents.	The	BlobStore	team	believes	that	this	can	be	attributed
to	the	“safety-first”	approach	taken	for	BlobStore,	specifically:

1.	Use	of	functional	architecture	and	functional	programming	to	ensure	high
code	quality,	and	to	prevent	inadvertent	destruction	of	data.

2.	Care	taken	in	developing	rollout	plans	for	both	data	and	code	migrations.
3.	Focus	on	supportability	of	the	solution,	including	developing	necessary
tools	and	metrics.

4.	Automation	of	most	testing	and	deployment,	including	performance	tests
to	ensure	that	the	system	can	handle	predicted	loads.

In	general,	even	at	this	early	stage	of	microservice	transition,	we	have	already
observed	a	number	of	benefits:

	Significantly	shorter	time	to	deployment	for	new	functionality	or	bug	fixes
compared	to	making	changes	in	existing	monolithic	applications.	This	can
be	attributed	to:
	A	smaller,	more	focused	code	base	that	can	be	modified	quickly.	For
example,	server-side	changes	in	BlobStore	to	add	or	delete	functionality
were	implemented	and	deployed	to	production	within	a	couple	of	days,
with	most	of	the	time	spent	waiting	for	reviews.	The	small	code	base

meant	the	architecture	could	be	kept	clean,	and	the	code	has	thorough
test	coverage.
	With	well-defined	interfaces	for	microservices,	the	build	pipeline
includes	only	a	small	number	of	integration	tests	focused	on	specific
functionality	being	provided	by	the	microservice.	This	significantly
reduces	the	cycle	time	of	the	build	pipeline.
	Changes	to	microservices	can	be	made	and	deployed	independently
from	the	consumer	applications.	This	means	microservices	are
decoupled	from	application	deployment	cycles,	which	are	longer	due	to
running	comprehensive	integration	tests	across	the	entire	monolithic
application.

	Significant	consolidation	of	resources.	For	example,	we	are	able	to	service
all	existing	customers	with	a	handful	of	BlobStore	server	instances,	instead
of	occupying	resources	(CPU,	RAM,	disk)	in	each	customer’s	container,
which	is	difficult	to	share	between	customer	instances.	A	similar	scenario
has	occurred	with	Atlassian	ID	single	sign-on.
	Ability	to	utilize	non-JVM	packages	that	are	better	suited	to	tasks.	By
bundling	up	applications	into	a	Docker	image	and	deploying	to	the	PaaS,
we	are	no	longer	tied	to	what	can	be	done	within	one	JVM	(e.g.,	we	can
integrate	with	native	tools	for	better	performance	where	necessary).
	Ability	to	use	more	appropriate	languages	for	specific	microservices.	We
are	no	longer	tied	to	Java	or	even	using	a	Java	virtual	machine	(JVM)	for
implementation,	which	has	led	to	new	microservices	to	be	developed
quickly	using	a	variety	of	languages	(e.g.,	Node.js,	Python,	and	Clojure).

As	with	all	new	technologies,	though,	many	challenges	have	appeared	and
been	addressed,	but	more	challenges	are	on	the	horizon	as	we	start	building
many	more	microservices	that	interact	with	each	other.	Some	of	these	challenges
include:

	Microservice	deployment	is	more	“complex”	than	monolithic	applications
with	more	moving	parts.	While	microservice	code	bases	are	smaller,	there
are	additional	considerations	and	infrastructure	required,	such	as	new
deployment	pipelines,	networks,	logging,	metrics	collection,	and	so	forth.
This	has	added	a	lot	of	time	to	the	development	and	deployment	of	early
microservices.	Atlassian	PaaS	simplifies	these	issues	considerably,	and
much	of	the	work	on	early	microservices	is	being	reused,	which	has
greatly	reduced	development	time	for	subsequent	services.
	New	architectural	concerns	come	into	play	that	are	quite	different	from

traditional	monolithic	applications.	Many	of	these	concerns	are	not
difficult	to	implement;	the	challenge	is	ensuring	that	all	engineers,
including	those	working	on	consumer	applications,	are	aware	of	them.
These	concerns	include:
	Need	for	stateless	business	logic	to	support	horizontal	scalability.
Services	need	to	be	designed	with	no	session	state	between	requests	and
careful,	if	any,	caching	of	data.
	Need	for	services	to	be	designed	to	support	multiple	tenants.	For
example,	services	need	to	be	able	to	look	up	a	specific	tenant’s	data	for
a	request,	compartmentalize	data	between	tenants,	and	ensure	that	a
tenant	can	only	access	their	own	data.
	Increased	network	latency	due	to	extra	hops	to	microservices.	In	the
short	term	with	early	microservices,	caching	is	relatively	easy	to
implement	with	immutable	HTTP	APIs.	However,	as	we	develop
networks	of	services	where	requests	traverse	multiple	network	hops,	this
may	become	problematic.	Greater	care	needs	to	be	taken	to	ensure	that
data	remains	cacheable	as	much	as	possible.
	Low-latency	authentication	and	authorization	between	microservices.
Microservices	need	to	authenticate	and	authorize	requests	between	each
other	and	may	also	need	to	impersonate	end	users	as	part	of	those
requests.	Handling	this	in	a	performant	way,	especially	when	a	request
traverses	multiple	microservices	(each	of	which	may	need	to	perform
authentication	and	authorization	checks)	is	a	challenge	that	is	currently
being	worked	through.	However,	existing	mechanisms	such	as	Kerberos
have	shown	that	it	is	possible.
	Deploying	and	rolling	back	microservices	in	new	environments
independently	without	an	excessively	long-running	suite	of	integration
tests.	Microservices	should	be	deployed	independently	of	each	other,	yet
changes	need	to	be	compatible	with	other	services	in	the	same
environment.	Integration	tests	are	currently	being	used	to	verify	this,	but
as	the	number	of	microservices	grows	this	could	become	a	bottleneck.
Investigation	into	concepts	such	as	consumer-driven	contracts,
maintenance	of	metadata	around	test	runs,	and	reliability	of	specific
microservice	version	combinations	is	being	done,	but	this	is	still	an
outstanding	problem.
	Ensuring	that	microservices	stay	“small”	and	focused	with	well-defined
APIs.	In	a	monolithic	application,	it	becomes	a	habit	to	add	functionality

to	the	same	deployment	unit,	and	this	behavior	can	be	easily	transferred
to	microservice	development.	To	address	this,	Atlassian	SaaS	and
application	architects	have	developed	a	roadmap	to	define	boundaries	of
microservices.	Also,	this	may	be	less	of	an	issue	within	Atlassian,	as	our
monolithic	applications	are	already	architected	to	be	highly	modular
through	OSGi	(and	now	HTTP)	based	plug-in	systems.	Finally,
microservices	may	need	to	be	refactored	over	time	to	further	split	out
functionality	as	new	services	come	online;	the	small	code	base	with
well-defined	interfaces	makes	this	relatively	easy.
	Dependencies	on	to-be-built	microservices.	Being	small	in	scope,
microservices	typically	need	to	work	with	other	microservices	to
become	fully	featured.	However,	in	the	early	stages,	not	all	dependent
microservices	are	available	for	use,	which	leads	to	interim	solutions	and
workarounds.	For	example,	customer	data	encryption	and	key
management	is	strictly	not	within	the	scope	of	BlobStore	microservice,
but	an	interim	solution	needed	to	be	developed	before	such	a	service
was	available.	Going	forward,	BlobStore	will	need	to	be	refactored
when	a	suitable	microservice	is	developed.	This	requires	a	refactoring
mindset	and	time	scoped	for	refactoring	of	microservices.	Having	said
that,	it	should	be	relatively	easy	to	refactor	the	services	because	they	are
small.

	Dependencies	on	other	projects	(applications	or	services).	This	challenge
exists	with	any	architecture,	but	becomes	more	pronounced	because
microservices	are	“cross-application”	and	hence	have	more	touch-points.
Well-defined	APIs	and	project	scope	are	helping	to	clearly	identify	these
dependencies	so	that	they	can	be	managed.	Also,	the	experiences	from
early	microservice	work	such	as	Atlassian	PaaS	and	BlobStore	have	led	to
process	improvements	especially	around	inter-team	communications	and
dependency	tracking,	and	better	utilization	of	the	outputs	of	agile
methodologies	to	identify	delays	and	adapt	accordingly.
	Supporting	microservices	is	different	from	supporting	monolithic
applications.	As	discussed	previously,	tooling	and	process	for	dealing	with
microservices	is	quite	different	from	supporting	monolithic	applications.
Development	of	these	needs	to	be	factored	into	microservice	work.	The
close	interaction	between	microservice	development	teams,	service
operations,	and	support	is	extremely	important	to	ensure	smooth	transition
to	support.	Operations	team	onboarding	processes	are	being	developed	to
standardize	and	streamline	the	process.	In	addition	to	general	support,

debugging	a	distributed	network	of	microservices	is	significantly	different
and	more	difficult	than	a	monolithic	application	stack.	Further
investigation	is	required	into	distributed	tracing	solutions	such	as	Twitter
Zipkin	that	track	requests	at	relevant	points	via	a	unique	ID	generated	upon
ingress	of	requests.

So	far,	the	benefits	of	microservices	far	outweigh	the	negatives,	and	Atlassian
expects	the	challenges	to	become	fewer	as	they	gain	experience,	build	templates
and	infrastructure	to	speed	up	development,	and	reduce	the	size	of	the
monolithic	applications.	There	are	several	factors	that	should	allow	Atlassian	to
build	on	the	momentum	of	early	microservices	to	complete	a	successful
transition	to	fully	tenantless	architecture:

	There	are	pressing	business	problems	of	how	to	reduce	cost	per	customer
and	increase	scalability	of	applications	to	serve	new	customers	while	being
able	to	rapidly	deliver	new	functionality	and	applications.	As	can	be	seen
from	large	web-based	businesses	such	as	Amazon,	Netflix,	and	Google,
shared	microservices	represent	a	good	solution	to	these	challenges	if	done
correctly	(i.e.,	ensuring	issues	are	addressed	with	minimal	technical	debt
accumulated	along	the	way).
	Microservice	development,	agile	methodologies,	and	DevOps	concepts
promote	a	similar	outcome	of	rapid	delivery	of	small	high-quality	pieces	of
functionality	at	a	time.	As	discussed	in	this	case	study,	agile	and	DevOps
are	well	embedded	within	teams	in	Atlassian,	so	microservices,	which	by
nature	are	small	pieces	of	functionality	that	can	be	delivered	quickly,	are	a
natural	evolution	to	support	faster	team	velocities.
	Development	of	the	PaaS	was	a	turning	point	in	the	adoption	of
microservices	within	Atlassian.	The	PaaS	introduced	a	convenient
platform	for	developers	to	investigate	and	innovate	on,	similar	to	public
PaaS	offerings	such	as	Heroku	or	Elastic	Beanstalk,	while	also	providing
standardized	common	infrastructure	to	help	with	production	support.	As	a
result,	within	weeks	of	wider	internal	release,	a	plethora	of	microservices
with	different	technology	stacks	were	in	development.

As	this	case	study	was	being	written,	several	more	microservices	were	being
deployed	to	Atlassian	PaaS,	and	BlobStore	functionality	was	being	integrated
with	other	Atlassian	Cloud	applications	and	microservices	(e.g.,	a	new	document
conversion	microservice).	Going	forward,	Atlassian	PaaS	will	be	incorporating
additional	useful	infrastructure	components,	including	better	centralized	metrics
collection,	secrets	store,	and	AWS	asset	management.	There	are	also	a	number
of	other	core	microservices	in	the	pipeline,	such	as	tenant	management,

of	other	core	microservices	in	the	pipeline,	such	as	tenant	management,
authentication/authorization,	and	external	task	scheduling.	In	true	agile	style,
Atlassian	is	picking	the	low-hanging	fruit	first,	ramping	up	velocity,	and
adapting	the	plan	as	new	challenges	emerge.

13.6	Summary
Migrating	to	a	microservice	architecture	can	be	done	incrementally.	It	requires
identifying	commonality	among	services	to	migrate	initially	and	adapting	the
application	architecture	to	take	advantage	of	these	common	services.	For
Atlassian,	it	also	required	developing	a	PaaS	on	which	the	microservices	would
rely.	These	two	different	development	streams	introduced	a	necessity	for
coordination,	but	the	PaaS	became	relatively	stable	once	several	microservices
had	been	deployed.
BlobStore	is	a	microservice	that	affects	persistent	data,	and,	consequently,	its

implementation	is	perhaps	more	sensitive	than	other	types	of	services.	It	was
implemented	in	a	fashion	that	made	the	blobs	that	it	stored	immutable.	This
immutability	supported	rollback	as	well	as	error	tracking	since	all	copies	of	the
blobs	remained	until	garbage-collected.

13.7	For	Further	Reading
Further	details	on	the	technologies	mentioned	in	this	chapter	can	be	found	at	the
following	links:

	Amazon	Direct	Connect	http://aws.amazon.com/directconnect/
	CloudWatch:	http://aws.amazon.com/cloudwatch/
	DynamoDB:	http://aws.amazon.com/dynamodb/
	ELB:	http://aws.amazon.com/elasticloadbalancing/
	Elasticsearch:	http://www.elasticsearch.org/
	Finagle	RPC:	https://twitter.github.io/finagle/
	Fluentd:	http://www.fluentd.org/
	Kibana:	http://www.elasticsearch.org/overview/kibana/
	OpenVZ:	http://openvz.org/Main_Page
	Route	53:	http://aws.amazon.com/route53/
	RDS:	http://aws.amazon.com/rds/
	S3:	http://aws.amazon.com/s3/
	Simple	Queue	System:	http://aws.amazon.com/sqs/

http://aws.amazon.com/directconnect/
http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/elasticloadbalancing/
http://www.elasticsearch.org/
https://twitter.github.io/finagle/
http://www.fluentd.org/
http://www.elasticsearch.org/overview/kibana/
http://openvz.org/Main_Page
http://aws.amazon.com/route53/
http://aws.amazon.com/rds/
http://aws.amazon.com/s3/
http://aws.amazon.com/sqs/

	Squid:	http://www.squid-cache.org/
	SNS:	http://aws.amazon.com/sns/
	Stackdriver:	http://www.stackdriver.com/

http://www.squid-cache.org/
http://aws.amazon.com/sns/
http://www.stackdriver.com/

Part	Five:	Moving	into	the	Future
In	this	part,	we	discuss	how	DevOps	might	evolve	over	the	next	few	years.	First,
we	have	been	doing	research	into	DevOps	for	several	years,	and	we	describe	our
research	results	and	directions.	Second,	we	speculate	more	broadly	about	how
DevOps	will	evolve.
In	Chapter	1,	we	defined	DevOps	as	a	collection	of	processes	specific	to	the

goal	of	reducing	the	time	between	a	commit	and	the	code	being	in	normal
production.	The	business	process	management	community	had	been	working	on
process	mining	and	modelling	for	many	years.	Our	research	has	revolved	around
creating	a	process	model	for	individual	DevOps	processes	from	logs	and	using
that	model	to	drive	error	detection,	diagnosis,	and	recovery	for	the	processes.
We	describe	this	in	Chapter	14.
DevOps	has	been	evolving	quickly	and	will	continue	to	evolve.	Its	evolution

will	touch	the	three	areas	of	DevOps	activities:	organizational	structure,	process
definition,	and	technology.	In	Chapter	15,	we	provide	our	guesses	as	to	how
these	activities	will	change	in	the	next	three	to	five	years.

14.	Operations	as	a	Process

With	Xiwei	Xu	and	Min	Fu

If	you	can’t	describe	what	you	are	doing	as	a	process,	you	don’t	know	what
you’re	doing.

—W.	Edwards	Deming

14.1	Introduction
As	we	discussed	in	Chapter	9,	the	continuous	deployment	pipeline	is	not	just
another	software	product	with	system-of-systems	characteristics,	it	also	has
strong	characteristics	of	a	process.	This	is	also	true	for	many	other	operations
such	as	diagnosis,	backup	and	recovery,	upgrade,	and	maintenance.	Even	your
favorite	Cron	jobs	and	scripts	may	be	pipelining	a	set	of	small	tools—a	familiar
concept	in	the	administrator’s	world.	We	can	view	the	operations	world	as	a
large	number	of	such	process-oriented	systems	operating	on	your	applications
and	your	systems.	These	processes	are	not	just	sequential,	but	have	a	lot	of
simultaneity	and	parallelism	both	at	the	process	and	task	levels.
The	purpose	of	this	chapter	is	to	discuss	the	implications	of	treating	operations

as	processes.	By	treating,	we	mean	you	can	discover	a	process	model	from
existing	operations	software/scripts	and	their	logs.	You	can:

	Analyze	the	discovered	process	models	for	improvement	opportunities.
	Use	the	process	models	to	monitor	the	progression	of	various	operations,
to	detect	errors	and	to	recover	from	them	as	early	as	possible.
	Set	monitoring	thresholds	at	a	level	that	reflects	the	active	operations
processes.	You	want	to	achieve	this	at	the	step	level	rather	than	the	whole
process	level,	since	that	leads	to	earlier	error	detection	and	recovery.
	Use	the	process	models	to	help	other	activities	such	as	root	cause
diagnosis.

Performing	these	activities	is	difficult	as	they	often	lack	context	information
on	what	is	happening.	The	process	model	and	the	monitoring	of	progression
provide	that	context.	The	process	models	can	also	be	a	central	place	to	correlate
different	events	and	monitoring	metrics	to	improve	your	understanding	of	the
runtime	system.	The	opportunities	are	ample.	The	discovered	process	model	can

be	used	to	orchestrate	variations	in	the	original	process	and	could	become	a
mechanism	for	executing	future	applications	of	the	process.
Process-oriented	systems	can	be	seen	as	workflow	systems	or	business

process	management	systems.	Relevant	results	from	these	areas	include	mining
process	models	from	logs	and	event	traces,	process	analysis,	runtime	monitoring
and	prediction,	process	quality	improvement,	and	human-intensive	processes.
You	can	see	an	example	of	this	perspective	in	our	discussion	about	rolling
upgrade	in	Chapter	6.	In	this	chapter,	we	focus	on	the	workflow	or	(business)
process	perspective	on	operations	processes.
One	final	introductory	issue	that	you	should	consider	is	the	level	of

abstraction	of	your	process	models.	A	process	model	is	a	specification	of	a	set	of
activities	which,	when	carried	out,	result	in	the	completion	of	a	desired	result.
This	set	of	activities	can	be	modeled	at	a	fine-grained	level	(every	step	in
carrying	out	the	process)	or	at	a	coarse-grained	level	(the	major	activities
performed	during	the	process).	The	modeling	level	depends	on	the	richness	of
the	source	of	discovering	the	process	model	and	the	results	you	wish	to	obtain
from	the	model.	As	with	a	software	system,	a	process	model	can	be	understood
from	its	runtime	properties	(performance,	reliability,	and	security	being	three
important	qualities)	as	well	as	its	development	time	properties	(interoperability
and	modifiability	being	two).	In	this	chapter,	we	focus	on	research	that	we	have
performed	into	the	reliability	of	operations	processes	whose	process	model
specification	is	correct.	Other	perspectives	involve	ensuring	the	correctness	of
the	process	(and	its	model),	improving	the	performance	of	the	execution	of	the
process,	or	constructing	the	model	efficiently	at	a	desired	level	of	granularity.

14.2	Motivation	and	Overview
As	we	discussed	in	Chapter	9,	reliability	refers	to	the	capability	of	the	overall
deployment	pipeline	and	its	individual	pieces	to	maintain	service	provision	for
defined	periods	of	time.	A	typical	pipeline	has	to	deal	with	different	types	of
error	responses	from	different	types	of	systems—ranging	from	the	error	code	of
a	cloud	application	programming	interface	(API)	call	to	the	potentially	silent
failure	of	a	configuration	change.	The	uncertainty	inherent	within	clouds	that	we
discussed	in	Chapter	2	also	introduces	some	random	failures	so	that	a	script	that
was	previously	successful	may	produce	an	invalid	outcome.	What	this	means	is
that	defensive	programming	strategies,	while	important,	are	not	going	to	be
sufficient.	Instead,	we	advocate	deriving	an	understanding	of	what	should	be	the
desired	state	of	a	process	and	comparing	that	with	the	actual	state.	In	essence,
that	is	the	basis	of	the	approach	we	discuss	in	this	chapter.	Operations	processes

have	several	characteristics	that	make	this	approach	more	tractable	than	for
general	business	processes.	In	particular:

	Operations	processes	manipulate	only	a	few	types	of	entities.	In	the	rolling
upgrade	example	we	use	in	this	chapter,	these	are	Elastic	Load	Balancers
(ELBs),	autoscaling	groups	(ASGs),	launch	configurations	(LCs),	and
virtual	machines	(VMs).	In	general	business	processes,	there	can	be	a	large
number	of	different	types	of	entities	that	are	being	manipulated.
	Operations	processes	have	a	time	frame	measured	in	tens	of	minutes	if	not
in	hours.	This	means	that	gathering	logs,	detecting	errors,	and	recovering
from	errors	in	a	few	minutes	is	useful.	In	general	business	processes,	the
time	frames	can	be	much	shorter.
	Operations	tools	typically	generate	high-quality	logs	that	can	be	used	to
create	the	process	model	without	a	lot	of	noise.

In	order	to	know	what	the	desired	state	of	a	process	should	be,	we	first	need	to
discover	a	suitable	process	model.	Once	we	have	done	this,	we	can	prepare	for
error	detection,	diagnosis,	and	recovery.	We	discover	the	process	model	by
analyzing	logs	from	successful	executions	of	the	process.	This	discovery	is	done
offline	after	we	have	achieved	successful	execution	and	generated	associated
logs.
During	an	execution	of	the	process,	we	compare	the	desired	state	of	the

process	with	the	current	state	of	the	process.	Any	difference	indicates	a
reliability	problem	and	provides	the	seeds	of	a	recovery	strategy.	These	activities
happen	online	(concurrently)	with	the	process.
We	use	the	process	of	rolling	upgrade	as	our	running	example	throughout	the

chapter.	A	rolling	upgrade	places	a	new	version	of	an	application	into	service,
one	or	more	servers	at	a	time.	It	removes	a	server	from	service	(possibly	deleting
the	server),	loads	the	new	version	of	the	application	onto	that	server	or	a
replacement	server,	and	starts	the	newly	loaded	server.	We	discussed	rolling
upgrade	in	more	detail	in	Chapter	6.	Figure	14.1,	repeated	from	that	chapter,
shows	the	rolling	upgrade	process	used	by	Asgard	on	AWS.

14.3	Offline	Activities
As	we	said,	the	process	model	is	created	offline.	It	can	be	created	manually
based	on	your	understanding	of	the	operation	and	the	code/scripts.	Alternatively,
process	mining	techniques	can	be	used	to	discover	the	process,	especially	from
logs.	In	this	section	we	describe	the	process	mining	activities	that	are	carried	out
offline	based	on	successful	executions	of	the	process.	These	activities	provide
the	basis	for	the	online	error	detection	and	recovery.

the	basis	for	the	online	error	detection	and	recovery.

FIGURE	14.1	Rolling	upgrade	process	from	Asgard	on	AWS	(Repeated	from
Figure	6.2)	[Notation:	BPMN]

There	are	a	number	of	reasons	for	preferring	process	mining	techniques	over
manual	process	model	creation.	First,	automation	is	critical	for	technology
adoption.	It	reduces	the	skill	level	required	to	create	the	process	model.	You	will

have	a	large	number	of	constantly	evolving	operations.	Manual	model	creation
and	later	maintenance	incur	a	high	cost.	Second,	frequently	we	do	not	have
access	to	the	source	code/scripts	of	the	operation	software,	so	understanding	of	it
has	to	be	derived	from	externally	observable	traces	such	as	logs.	Third,	runtime
logs	can	be	used	to	trigger	tests	and	diagnosis	as	the	operations	process
progresses	without	modifying	the	original	operation	software.
Recall	that	in	a	rolling	upgrade,	a	small	number	of	k	instances	at	a	time

currently	running	the	old	version	are	taken	out	of	service	and	replaced	with	k
instances	running	the	new	version.	The	time	taken	by	each	wave	of	replacement
is	usually	in	the	order	of	minutes.	Performing	a	rolling	upgrade	for	hundreds	or
thousands	of	instances	using	a	small	k	will	take	a	long	time.
The	Asgard	tool	performs	a	rolling	upgrade	and	produces	logs	such	as	the

ones	shown	in	Listing	14.1.

LISTING	14.1	Logs	produced	by	Asgard	rolling	upgrade	(shortened	version)

Click	here	to	view	code	image

"2014-05-26_13:17:36	Started	on	thread	Task:Pushing

ami-4583197f	into	group	testworkload-r01	for	app

testworkload."

"2014-05-26_13:17:38	The	group	testworkload-r01	has	8

instances.	8	will	be	replaced,	2	at	a	time."

"2014-05-26_13:17:38	Remove	instances	[i-226fa51c]	from

Load	Balancer	ELB-01"

"2014-05-26_13:17:39	Deregistered	instances	[i-226fa51c]

from	load	balancer	ELB-01"

"2014-05-26_13:17:42	Terminating	instance	i-226fa51c"

...

"2014-05-26_13:17:43	Waiting	up	to	1h	10m	for	new

instance	of	testworkload-r01	to	become	Pending."

If	you	look	at	the	log	lines,	you	get	a	sense	of	what	the	operation	is	doing	as	a
process	without	looking	at	the	source	code.	For	example,	the	software	is	pushing
an	Amazon	virtual	Machine	Image	(AMI)	to	an	instance	group	that	has	eight
instances.	This	AMI	contains	the	new	version	of	the	software.	The	plan	is	to
upgrade	two	instances	at	a	time	until	all	instances	are	upgraded.	The	old
instances	are	removed/deregistered	from	the	ELB	and	terminated	while	the
system	waits	for	an	instance	containing	the	new	versions	to	be	launched.	Later
this	new	instance	will	be	added/registered	to	the	ELB	(not	shown	in	the	listing).

this	new	instance	will	be	added/registered	to	the	ELB	(not	shown	in	the	listing).
And	you	would	expect	a	loop	for	the	replacement	step	until	all	instances	are
upgraded	to	the	new	version.
Process	mining	techniques	allow	the	discovery	of	a	process	model	as	shown	in

Figure	14.1	from	these	logs	without	having	access	to	the	source	code.	There	are
two	basic	steps	in	creating	a	process	model	from	logs:	1)	group	the	logs	based	on
the	activity	they	represent	and	tag	them	with	an	activity	name,	and	2)	use	the
tagged	logs	to	create	the	process	model	using	a	tool	such	as	ProM.	Figure	14.2
shows	the	logs	from	Asgard	being	stored	in	Logstash—a	log	management	tool—
and	then	being	used	for	generating	the	process	model.

FIGURE	14.2	Using	Asgard	logs	to	produce	a	process	model	[Notation:
Architecture]

Asgard	logs	are	not	the	only	source	of	log	information	for	this	operation.	In
Amazon	Web	Services	(AWS),	a	feature	called	CloudTrail	logs	all	the	Cloud
API	calls.	The	Asgard	rolling	upgrade	operation	calls	the	Cloud	APIs	to
complete	certain	steps,	such	as	deregister/terminate/start	instances.	These	Asgard
operation	steps	leave	a	trace	in	the	CloudTrail	logs	but	at	a	lower	level	of
abstraction—the	API	call	level.	Some	other	steps	such	as	“Status	info”	do	not
involve	any	Cloud	API	call,	thus	they	do	not	leave	any	traces	in	CloudTrail.	It	is
possible	to	combine	or	correlate	multiple	sources	of	information	for	the	same
operations	process.	This	correlation	might	not	only	provide	a	more	useful
process	model,	the	correlation	itself	can	be	used	to	associate	causes	with	effects
and	use	that	information	for	assertions,	diagnosis,	or	even	recovery.	Listing	14.2
shows	a	sample	log	entry	from	CloudTrail.	Notice	that	this	log	entry	identifies
the	AWS	resource	being	manipulated—VM	instance—as	well	as	identification
information	and	parameters	associated	with	the	request.

LISTING	14.2	Sample	CloudTrail	log

Click	here	to	view	code	image

{	"awsRegion":	"us-west-2",

		"eventName":	"TerminateInstances",

		"eventSource":	"ec2.amazonaws.com<http://ec2.amazonaws.

com>",

		"eventTime":	"2014-01-24T01:59:58Z",

		"eventVersion":	"1.0",

		"requestParameters":	{"instancesSet":	{"items":

[{"instanceId":	"i-5424a45c"}]}},

				"responseElements":	{"instancesSet":	{"items":

[{"currentState":	{"code":	32,"name":	"shutting-

down"},"instanceId":	"i-5424a45c","previousState":

{"code":	32,"name":	"shutting-down"}}]}},

"sourceIPAddress":"autoscaling.amazonaws.com<http://

autoscaling.amazonaws.com>",

				"userAgent":	"autoscaling.amazonaws.com<http://	

autoscaling.amazonaws.com>",

				"userIdentity":	{"accountId":	"066611989206","arn":

"arn:aws:iam::066611989206:root","invokedBy":

"autoscaling.amazonaws.com<http://autoscaling.amazonaws.

com>","principalId":	"066611989206","type":	"Root"}}

Figure	14.3	shows	how	the	process	activities	can	be	correlated	with	the
CloudTrail	logs	based	on	time	stamps.	This	correlation	allows	you	to	determine
which	AWS	resources	are	being	manipulated	during	which	activities	of	the
process	model.	Furthermore,	knowing	the	state	of	these	resources	at	the
beginning	of	an	activity	and	knowing	the	type	of	manipulations	that	should
occur	allows	you	to	determine	the	expected	state	of	the	AWS	resources	at	the
end	of	each	activity.	We	elaborate	on	this	idea	in	Section	14.4.
There	are	two	steps	in	the	development	of	the	process	model	that	require

human	intervention.
1.	A	human	must	examine	the	groups	of	activities	to	determine	whether	they
are	at	a	desired	level	of	granularity	and	to	assign	names	to	the	groups.	At
the	two	ends	of	the	spectrum,	every	log	line	could	be	a	separate	group,	or
there	could	be	only	one	group	including	all	of	the	log	lines.	Choosing	the
correct	level	of	granularity	takes	some	judgment.

2.	A	human	must	also	examine	the	generated	process	model.	It	is	possible
that	there	are	spurious	activities	or	transitions	within	the	process	model.	A
human	must	determine	that	the	model,	in	fact,	represents	the	process	being
modeled.

Creating	the	process	model	is	an	activity	that	should	take	less	than	a	day	for	a
skilled	analyst.

FIGURE	14.3	Correlating	CloudTrail	logs	with	the	process	model	to
determine	the	AWS	resources	manipulated	by	each	activity	of	the	process
model	[Notation	(left):	BPMN];	[Notation	(right):	UML	Sequence	Diagram]

14.4	Online	Activities
Recall	that	our	current	focus	is	on	the	reliability	of	the	rolling	upgrade	process.
This	means	we	want	to	detect,	diagnose,	and	recover	from	errors	that	occur
during	the	execution	of	a	rolling	upgrade.	Error	detection	and	recovery	can	be
done	online	during	the	execution	of	the	rolling	upgrade.	Diagnosis	is	an	activity
that	occurs	subsequent	to	the	detection	of	an	error,	which	can	be	online	or
offline;	fast	online	diagnosis	can	lead	to	more	informed	recovery,	but	detailed
analysis	of	underlying	issues	are	better	done	offline,	after	recovery	brought	the
system	back	to	a	stable	state.
Some	timing	information	is	useful	at	this	point.	Asgard	logs	are	created	and

can	be	processed	quickly.	CloudTrail	logs,	on	the	other	hand,	are	not	available,
currently,	for	up	to15	minutes	after	the	API	calls	have	been	made.	This	means
that	the	error	detection	and	recovery	proceed	using	just	Asgard	logs.	The
CloudTrail	logs	are	useful	for	understanding	the	desired	state	of	AWS	resources
at	the	end	of	each	activity	but	they	cannot	be	used	directly	in	either	error
detection	or	recovery	because	of	the	time	delay.

Error	Detection
From	the	log	lines	being	produced	by	Asgard,	we	can	detect	the	start	and	end	of

From	the	log	lines	being	produced	by	Asgard,	we	can	detect	the	start	and	end	of
each	activity	step.	From	the	process	model,	we	know	the	desired	sequence	of
steps.	One	error	detection	mode	is	to	look	for	steps	out	of	the	desired	sequence.
Such	an	occurrence	is	called	a	“conformance	error.”
Conformance	checking	can	detect	the	following	types	of	errors:
	Unknown:	a	log	line	that	is	completely	unknown.
	Error:	a	log	line	that	corresponds	to	a	known	error.
	Unfit:	a	log	line	that	corresponds	to	a	known	activity,	but	that	should	not
happen	given	the	current	execution	state	of	the	process	instance.	This	can
be	due	to	skipped	activities	(going	forward	in	the	process)	or	undone
activities	(going	backward).

For	example,	after	seeing	the	log	line	"2014-05-26_13:17:38	Remove
instances	[i-226fa51c]	from	Load	Balancer	ELB-01",	we
should	expect	a	log	line	about	terminating	that	instance	[i-226fa51c]	soon
according	to	the	discovered	process	model.	If	we	do	not	see	that	log	line	within	a
time	period	or	see	a	different	known	or	unknown	log	line,	it	indicates	some	type
of	error.
A	conformance	error	triggers	a	message	to	the	operator	and	also	triggers	the

error	recovery	mechanism.	The	message	to	the	operator	is	produced	within
seconds	of	the	production	of	the	log	line	out	of	sequence.	This	enables	the
operator	to	know	where	in	the	thousands	or	millions	of	log	lines	being	produced
to	start	from	when	manually	diagnosing	and	recovering	from	the	error.
The	second	type	of	error	detection	relies	on	the	AWS	resources	manipulated

by	activities.	Recall	that	through	correlating	CloudTrail	logs	with	the	process
model,	we	can	determine	the	AWS	resources	manipulated	by	each	activity.	For
example,	the	activity	“Remove	and	deregister	old	instance	from	ELB”	should
result	in	one	fewer	instance	being	registered	with	the	ELB	at	the	completion	of
this	activity	than	there	was	at	the	beginning	of	the	activity.
The	concrete	instance	that	will	be	removed	during	the	runtime	execution	of

the	process	will	be	different	from	the	instance	that	was	removed	during	offline
analysis,	but	we	know	that	one	instance	fewer	should	exist.	By	recording	the
state	of	the	ELB	at	the	beginning	of	the	activity	and	comparing	that	to	the	state
of	the	ELB	at	the	end	of	the	activity,	we	can	determine	1)	in	fact,	a	particular
instance	has	been	removed	from	the	ELB,	and	2)	the	instance	ID	is	known	so
that	in	the	next	activity	“Terminate	old	instance,”	we	know	exactly	which
instance	should	have	been	terminated.
The	rolling	upgrade	process	manipulates	only	four	AWS	resources:	ELB,

ASG,	launch	configuration,	and	VM	instances.	This	means	that	saving	the	state

ASG,	launch	configuration,	and	VM	instances.	This	means	that	saving	the	state
of	these	resources	at	the	beginning	of	an	activity	can	be	done	quickly.
Furthermore,	at	the	end	of	an	activity,	we	can	determine	the	current	state	of	these
resources	by	querying	AWS.	The	response	time	of	these	queries	depends	on
AWS,	but	our	experience	is	that	the	response	time	is	on	the	order	of	several
seconds.	These	two	times	mean	that	comparing	the	state	of	these	resources	at	the
end	of	the	activity	to	the	desired	state	can	be	done	on	the	order	of	seconds.
Furthermore,	the	saving	and	comparing	is	done	by	a	process	operating
independently	from	Asgard,	so	there	is	no	degradation	to	the	normal	rolling
upgrade	process	unless	an	error	is	detected.
The	kinds	of	errors	that	can	be	detected	by	these	means	include	errors	caused

by	failures	in	the	cloud	such	as	the	long	tail	and	also	errors	caused	by
interference	between	two	teams	simultaneously	deploying	different	instances.
Examples	of	the	kinds	of	errors	we	have	detected	are

1.	AMI	changed	during	upgrade
2.	Key	pair	management	fault
3.	Security	group	configuration	fault
4.	Instance	type	changed	during	upgrade
5.	AMI	unavailable	during	upgrade
6.	Key	pair	unavailable	during	upgrade
7.	Security	group	unavailable	during	upgrade
8.	ELB	unavailable	during	upgrade

Error	Recovery
Now	suppose	an	error	has	been	detected.	We	have	three	sets	of	states	of	the
AWS	resources	that	are	relevant.

1.	The	state	at	the	beginning	of	the	last	activity
2.	The	current	erroneous	state
3.	The	desired	state
We	know	that	the	current	state	is	erroneous	for	some	reason.	There	are	at	least

two	options	to	automatically	recover	from	the	error:	roll	back	to	the	state	at	the
beginning	of	the	last	activity	or	roll	forward	to	the	desired	state.
The	difficulty	of	performing	either	of	these	activities	varies	with

circumstances.	Suppose,	for	example,	that	an	old	instance	was	not	deregistered
from	the	ELB.	Then	recovery	would	involve	retrying	the	deregistration
operation.	On	the	other	hand,	with	more	complicated	processes,	it	may	not	be

operation.	On	the	other	hand,	with	more	complicated	processes,	it	may	not	be
possible	to	return	to	the	state	at	the	beginning	of	the	last	activity.	When	a	VM	is
paused	or	deleted,	its	IP	address	is	lost.	Recovering	the	VM	with	its	original	IP
address	is	not	possible.

14.5	Error	Diagnosis
Repairing	an	error	may	not	repair	the	root	cause	of	an	error.	For	example,	some
of	the	errors	we	mentioned	in	the	previous	section	on	error	detection	are	caused
by	race	conditions	and	release	conflicts	because	of	two	different	teams
simultaneously	deploying	different	versions	of	a	system.	If	the	conflict	is	not
resolved,	the	system	may	be	subject	to	the	same	error	again.	Consequently,	we
now	turn	our	attention	to	diagnosing	errors.
We	are	looking	for	error	diagnoses	due	to	typical	causes	in	cloud	operation

rather	than	bugs	in	software.	Diagnosing	bugs	in	software	is	certainly	important
and	useful	but	outside	of	the	current	scope	of	our	research.	For	diagnosing
operations	errors,	we	use	fault	trees	as	a	reference	model.	In	such	a	fault	tree,
each	node	represents	a	failure	or	an	error,	which	in	turn	could	be	caused	by	the
errors	in	the	child	nodes.	The	children	of	these	child	nodes,	in	turn,	could	have
caused	that	error.	Figure	14.4	shows	a	part	of	the	fault	tree	we	use	for	detecting
rolling	upgrade	errors.	Although	it	involves	some	effort	to	build	this	tree,	this	is
a	once-off	effort	and	the	tree	can	be	reused	for	many	different	cloud	operations.
Our	knowledge	of	the	process	progression	helps	us	in	diagnosis.	Knowing

during	which	step	an	error	occurred	restricts	the	possible	causes	to	those
involving	the	AWS	resources	involved	in	that	step.	We	can	then	prune	the	trees
to	retain	those	elements	that	affect	those	resources	but	exclude	the	others.
Furthermore,	historical	data	for	the	types	of	errors	that	have	occurred	allows	us
to	associate	probabilities	with	each	branch	of	the	fault	tree	and	use	those
probabilities	to	guide	the	diagnosis	process.

14.6	Monitoring
As	we	mentioned	in	Chapter	7,	one	of	the	problems	with	using	thresholds	for
alerts	or	alarms	is	the	number	of	false	positives	if	the	thresholds	are	set	low.
Relaxing	the	thresholds	raises	the	possibilities	of	false	negatives—namely,
missing	actual	errors.	Normal	practice	is	to	adjust	the	thresholds	to	achieve	a
tolerable	number	of	false	positives.

FIGURE	14.4	Part	of	a	fault	tree	for	automated	error	diagnosis	[Notation:
Fault	Tree]

The	number	of	alerts	or	alarms	is	increased	during	the	execution	of	an
operations	process	because	VMs	are	being	taken	out	of	or	added	to	service
during	these	processes.	Some	organizations	turn	off	alerts	and	alarms	while	such
operations	are	ongoing,	so	that	they	are	not	flooded	with	alerts	or	alarms.
Knowing	the	fact	that	a	process	is	under	way	and	knowing	the	current	activity

of	the	process	allows	for	dynamic	adjustment	to	monitoring	thresholds.	For
example,	if	you	are	performing	a	rolling	upgrade,	you	know	when	an	instance	is
going	to	be	taken	out	of	service.	This	has	the	effect	of	temporarily	increasing	the
load	on	the	other	servers,	assuming	a	relatively	stable	workload	during	this
period.	The	CPU	threshold,	for	example,	can	be	increased	temporarily	when	a
server	is	taken	out	of	service	and	lowered	again	when	a	new	server	becomes
active	and	is	sharing	the	load.

14.7	Summary
In	this	chapter	we	have	summarized	some	of	the	research	we	have	been
performing	over	the	past	two	years.	Viewing	operations	as	a	process	allows	us	to
create	a	process	model	from	log	lines	and	to	use	that	process	model	to	detect	and

create	a	process	model	from	log	lines	and	to	use	that	process	model	to	detect	and
sometimes	repair	errors	caused	by	operational	reasons.	The	crucial	element	in
our	research	is	the	use	of	the	process	context	to	provide	information	enabling	the
determination	of	the	desired	state	of	the	AWS	resources	manipulated	by	the
process	being	modelled.	Knowing	the	desired	state	allows,	in	turn,	the	detection
of	errors	and,	potentially,	recovery	from	these	errors.	Furthermore,	knowing	the
process	context	can	allow	for	dynamic	adjustment	of	monitoring	thresholds	to
reduce	the	false	positives	generated	when	an	operations	process	is	ongoing.

14.8	For	Further	Reading
You	can	find	more	about	process	mining	in	van	der	Aalst’s	book	[van	der	Aalst
11].
To	learn	more	about	our	line	of	research	in	error	detection,	diagnosis,	and

recovery,	see	the	papers	by	Xu	et	al.	[Xu	14]	and	Weber	et	al.	[Weber	15].	You
can	go	to	our	website	for	updates:	http://ssrg.nicta.com.au/projects/cloud/
You	can	find	more	information	about	the	technologies	we	mentioned	at	the

following	links:
	AWS:	“Error	Codes—Amazon	Elastic	Compute	Cloud,”
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/api-error-
codes.html
	Logstash:	http://logstash.net
	Asgard:	https://github.com/Netflix/asgard

http://ssrg.nicta.com.au/projects/cloud/
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/api-error-codes.html
http://logstash.net
http://github.com/Netflix/asgard

15.	The	Future	of	DevOps

The	best	thing	about	the	future	is	that	it	comes	one	day	at	a	time.
—Abraham	Lincoln

15.1	Introduction
In	this	chapter,	we	speculate	about	the	future—always	a	dangerous	proposition.
We	begin	with	the	assumption	that	DevOps	is	in	the	process	of	“crossing	the
chasm.”	This	phrase	is	a	creation	of	Geoffrey	Moore,	and	it	describes	the
process	of	the	diffusion	of	technology.	In	this	model,	a	technology	is	initially
adopted	by	innovators.	It	is	next	adopted	by	the	mainstream	beginning	with	early
adopters.	In	order	to	have	mainstream	adoption,	a	large	amount	of	material
describing	how	to	use	the	technology,	success	stories,	and	business
considerations	are	needed	to	convince	the	mainstream	that	the	technology	is
worth	the	investment.	The	requirement	for	the	material	necessary	for	mainstream
adoption	is	called	the	“chasm.”	Technologies	that	do	not	provide	this	material
tend	not	to	survive.	From	the	early	adopters,	the	technology	enters	the
mainstream	and	is	adopted	by	the	majority,	and	finally	by	the	late	adopters	and
the	laggards.
For	DevOps,	the	innovators	are	the	Googles,	the	Amazons,	or	the	Netflixes.

The	material	being	created	includes	talks,	meetups,	books	(including	this	one),
new	tools,	LinkedIn	groups,	and	blogs.
Now	a	variety	of	other	organizations	are	investigating	and	adopting,	in	one

way	or	another,	DevOps	practices.	These	include
	Internet	companies	that	are	well	established	but	have	not	needed	the
agility	of	the	innovators.	Atlassian	(see	the	case	study	in	Chapter	13)	fits
into	that	category.
	Enterprises.	Organizations	large	and	small	are	investigating	or	adopting
continuous	delivery	and	deployment	and	better	integration	of	Dev	and
Ops.	See	the	case	study	in	Chapter	12	for	the	kind	of	organizations	that
Sourced	Group	works	with.

FIGURE	15.1	Crossing	the	chasm

	Startups.	A	startup’s	first	goal	is	to	gain	a	customer	base.	They	are	not
particularly	concerned	with	the	processes	they	use.	Their	architecture	is
often	monolithic	to	begin	with	and	their	operations	processes	are	typically
carried	out	by	the	developers.	Once	a	startup	grows,	they	find	a	need	for	a
more	flexible	architecture	and	more	organizational	structure.	This	is	the
stage	where	they	begin	to	adopt	DevOps.

As	we	have	discussed	throughout	this	book,	DevOps	touches	organizational,
process,	and	technology	issues.	The	speculation	about	the	future	in	this	chapter
is	structured	according	to	these	categories.

15.2	Organizational	Issues
We	discuss	three	different	organizational	issues:	other	groups	that	may	be
involved	in	DevOps-style	activities,	ownership	and	reorganizations,	and
empowerment	versus	control.

Other	Groups	That	Might	Be	Involved	in	DevOps-Style
Activities
DevOps	began	as	a	movement	to	break	down	barriers	between	Dev	and	Ops
with	the	goal	of	reducing	organizational	inertia	in	putting	systems	into
production.	There	are	other	groups	that	cause	potential	problems	with	both	Dev
and	Ops.

	Business	initiatives.	Business	initiatives	impact	most	areas	of	an
organization.	New	products,	discounts,	test	marketing,	and	changes	in	the
supply	chain	all	have	impacts	on	both	Dev	and	Ops.	Most	established
organizations	have	processes	in	place	to	plan	for	and	manage	these	types

of	events.	If	the	time	between	development	and	production	is	reduced,	the
coordination	between	the	units	responsible	for	the	business	initiatives	and
DevOps	becomes	a	larger	percentage	of	the	total	time.	This	will	create
pressure	to	smooth	out	coordination	between	those	business	units	and	both
Dev	and	Ops.	This	“BizOps”	is	being	accomplished	by	moving	relevant
information	into	a	content	management	system	and	using	the	content
management	system	to	coordinate.
	Data	scientists.	Big	data	is	used	to	get	business	insights	that	drive	both
strategic	thinking	and	real-time	customer	acquisition.	Operating
complicated	big	data	analytics	clusters,	maintaining	data	ingestion
pipelines,	and	integrating	data	analytics	(machine	learning	models	and
predictive	results)	into	products	introduces	additional	requirements	for
prompt	response	for	DevOps,	and	a	new	type	of	business	analyst—the	data
scientist.
	Security.	The	case	study	in	Chapter	12	includes	a	discussion	about	the	role
of	a	security	group	while	establishing	a	continuous	delivery	pipeline.	We
also	discussed	security	audits	in	Chapter	8.	Making	the	security	process
and	security	audits	more	agile	is	not	only	an	organizational	matter	but	also
a	matter	for	the	regulators.	There	is	work	ongoing	on	automating
compliance	and	compliance	testing.	This	work	can	be	applied	not	only	to
security	matters	but	also	to	compliance	with	accounting	regulations	such	as
Sarbanes-Oxley.
	Strategic	planning.	Having	a	continuous	deployment	pipeline	may	open	up
other	business	opportunities.	Netflix,	for	example,	had	an	opportunity	to
develop	a	suite	of	operations	tools	but	chose	not	to	because	it	was	not	their
core	business.	Other	organizations	may	develop	other	business
opportunities	as	a	result	of	their	DevOps	activities.

Ownership	and	Reorganizations
Microservices	are	owned	by	small	teams	but	also	consumed	by	many	other
teams.	Whenever	a	microservice	is	updated,	not	only	does	the	team	have	to	be
sure	that	it	works	with	all	downstream	services,	but,	more	importantly,	that	it
does	not	have	negative	impacts	on	upstream	services.	This	is	the	traditional
dependency	problem,	but	the	complexity,	scale,	and	real-time	performance
requirements	of	microservices	are	exacerbating	the	problem.	One	emerging
solution	is	to	let	the	upstream	consumers’	development	team	have	co-ownership
of	the	testing	suite	of	a	downstream	service	and	allow	the	change	negotiation	to
happen	through	the	testing	suite.	On	the	other	hand,	end-to-end	testing	in	the

happen	through	the	testing	suite.	On	the	other	hand,	end-to-end	testing	in	the
microservice	environment	is	expensive.	The	collective	ownership	of	end-to-end
tests	by	a	large	number	of	teams	is	impractical	because	people	liberally	add	new
tests	to	this	test	suite,	causing	each	run	of	them	to	be	expensive	(due	to	time
needed	and	flaky	tests).
Organizations	reorganize	their	structures	frequently.	When	an	organization

has	been	developing	microservices	over	a	period	they	will	own	a	variety	of
microservices,	some	undergoing	development	and	some	just	in	a	maintenance
phase.	When	a	reorganization	occurs,	it	is	possible	that	a	team	may	end	up
owning	a	microservice	that	is	unfamiliar	to	them.	This	raises	standard,	long-
lasting	software	engineering	issues	about	documentation	and	knowledge
transfer.
Furthermore,	a	microservice	may	be	sufficiently	old	that	it	does	not	take

advantage	of	newer	tooling.	Monitoring,	for	example,	depends	partially	on	the
application	providing	appropriate	information.	An	old	microservice,	inherited	by
a	new	team,	may	not	conform	to	the	team’s	standards	for	generating	monitoring
data	and	may	not	have	an	appropriate	quality	of	automated	tests.

Empowerment	Versus	Control
Empowerment	versus	control	is	another	organizational	issue	that	arises.	On	the
one	hand,	some	key	decisions	(such	as	releases	and	A/B	testing)	are	delegated	to
small	teams	and	individuals	rather	than	enforced	through	a	hierarchical,	human-
intensive	approval	process.	This	delegation	increases	the	velocity	but	also
introduces	significant	risks	to	your	production	system.	One	way	of	resolving	this
is	to	place	automated	quality	controls	in	the	pipeline	process	itself.	Locking
down	the	production	environment	unless	automated	tests	and	other	gates	have
been	passed	is	an	example.	Two	potential	problems	can	be	foreseen:

1.	Processes	have	a	tendency	to	be	all-encompassing.	One	reaction	to	a
problem	is	to	add	new	elements	(such	as	flows,	gates,	and	structures)	to	the
process.	Over	time,	processes	lose	their	original	motivation	and	no	one
recalls	exactly	why	certain	elements	are	in	the	process.	Alternatively,	the
reason	for	a	feature	in	the	element	may	have	changed	and	may	no	longer
be	relevant	but	the	element	remains.

2.	Ownership	of	the	process.	Development	teams	can	own	the	process	to
deployment,	or	the	organization	can	own	the	process.	In	the	case	study	in
Chapter	12,	there	is	an	organization-wide	base	process	that	each
development	team	can	tailor.	Amazon	has	a	group	responsible	for	creating
build	tools,	and	these	tools	provide	the	basic	process,	where	parameters

allow	for	some	tailoring.	Again,	once	reorganization	occurs,	the	ownership
of	the	process	may	pass	to	a	team	unfamiliar	with	the	process	or	its
rationale.

15.3	Process	Issues
Some	of	the	process	issues	that	will	arise	in	the	future	are	old	ones	such	as
concern	about	vendor	lock-in,	some	are	due	to	the	use	of	the	cloud	as	a	platform
such	as	charging	models,	and	some	are	due	to	the	increased	velocity	of	changes
that	are	being	deployed.

Vendor	Lock-in	and	Standards
A	continuous	deployment	pipeline	utilizes	many	different	tools	and	deploys	onto
a	platform.	All	of	the	tools	as	well	as	the	platform	raise	the	possibility	of	vendor
lock-in.	This	is	not	a	new	problem,	but	one	that	has	existed	in	the	computer
industry	for	at	least	50	years.	That	does	not	make	it	less	of	a	concern.
One	solution	to	the	problem	of	vendor	lock-in	is	the	use	of	standards.

Although	the	use	of	standard	languages	and	interfaces	does	not	guarantee
portability,	it	does	simplify	the	problem.	As	yet,	there	are	no	widely	adopted
standards	for	the	tools	in	a	continuous	deployment	pipeline,	although	one	of	our
predictions	is	that	as	DevOps	crosses	the	chasm,	the	pressure	for	standards	will
grow.
Lacking	standards,	the	solutions	for	resisting	vendor	lock-in	include	the

following:
	Defensive	programming.	In	Chapter	9,	we	discussed	techniques	that	can	be
used	to	support	modifiability.	Changing	from	one	tool	to	another	in	a
deployment	pipeline	is	a	modifiability	scenario.
	Migration	programs.	It	is	possible	to	move	programs	from	one	tool	to
another	through	the	construction	of	a	specialized	migration	program.	Such
programs	work	best	when	the	target	concepts	are	a	superset	of	the	source
concepts.	Emulation	of	source	concepts	in	the	target	environment	is	a
technique	that	is	used	when	there	is	no	straightforward	mapping.	Such
emulations	typically	involve	making	assumptions	about	particular	choices
of	parameters	on	the	target	and	are	not	an	ideal	solution,	although	such
emulations	are	frequently	cost-effective	in	terms	of	human	effort	versus
machine	efficiency.

Another	technique	to	avoid	vendor	lock-in	is	to	provide	open	application
programming	interfaces	(APIs)	and	promote	an	active	plug-in	ecosystem	for
interoperation	among	tools.	For	example,	Jenkins	is	a	popular	continuous

interoperation	among	tools.	For	example,	Jenkins	is	a	popular	continuous
integration	product	that	interoperates	with	a	large	number	of	other	tools	through
externally	developed	plug-ins.	This	enables	people	to	choose	their	favorite
version	control,	testing,	and	dependency	management	systems.

Charging	Models
The	models	used	to	charge	for	resources	in	a	cloud	platform	fall	into	four
categories:

1.	Consumption-based.	Pay	for	the	resources	that	you	use	based	on	a
preannounced	schedule.

2.	Subscription-based.	Pay	for	unlimited	or	capped	usage	during	a	particular
time	such	as	a	month.

3.	Advertising-based.	Allow	advertising	to	appear	on	your	web	pages	or
displays	for	price	reductions.

4.	Market-based.	Pay	based	on	supply	and	demand	at	a	particular	time.
Auctions	are	used	to	allocate	resources	to	consumers.

Combinations	of	these	charging	models	also	exist.	Amazon	Web	Services
(AWS),	for	example,	will	charge	per	hour	(subscription)	based	on	the
characteristics	of	the	virtual	machine	(VM)	that	has	been	allocated
(consumption).
One	strategy	when	facing	a	combination	of	subscription	and	consumption

models	is	to	use	a	pool	of	VMs	and	change	the	contents	of	the	VMs	through	the
use	of	containers.	If	this	strategy	is	used	then	autoscaling	rules,	for	example,
have	two	levels.	One	level	allocates	and	deallocates	containers	within	VMs,	and
the	other	level	allocates	and	deallocates	VMs.	The	container	model	also	aligns
well	with	the	microservice	architecture	where	a	single	microservice	is	best
deployed	into	containers.

Velocity	of	Changes
A	successful	continuous	deployment	pipeline	should	increase	the	frequency	of
deployments,	and	this	will	have	a	number	of	consequences.

	The	qualities	of	concern	with	a	deployment	will	change.	When	you	deploy
once	a	month,	it	is	important	to	ensure	that	the	new	version	is	correct	and
that	the	deployment	proceeds	smoothly.	The	actual	time	of	the	deployment
is	not	that	great	a	concern	as	long	as	it	happens	within	some,	fairly	lengthy,
window.	When	you	deploy	10	times	a	day,	these	considerations	change.

The	major	quality	concern	with	deployments	is	avoiding	outages.	A	failed
deployment,	for	example,	caught	in	time	to	avoid	impact	on	the	service	to
the	user	is	not	a	major	concern	since	another	deployment	will	occur	within
a	short	time.	The	concern	is	with	repeated	failed	deployments,	not	a
sporadic	failure	of	a	particular	deployment.	Rolling	back	in	the	event	of	a
failure	is	a	reasonable	strategy	for	stateless	services,	since	changes	will	be
picked	up	with	the	next	deployment.
	Automatic	error	detection/recovery	is	important.	When	you	deploy	once	a
month,	there	is	time	to	carefully	examine	each	deployment	for	correctness
and	to	manually	troubleshoot	errors.	When	you	deploy	10	times	a	day,
manually	repairing	an	error	is	infeasible	since	the	error	may	affect	other
deployments	as	well.	Hence,	tools	to	monitor	and	detect	errors	and	to	roll
back	automatically	become	important.	Diagnostic	tools	also	are	important.
Ideally,	a	diagnostic	tool	would	be	able	to	pinpoint	the	source	of	an	error
to	the	application	system	or	to	the	deployment	pipeline.
	Workload	and	application	behavior	changes.	Through	continuous
delivery,	an	organization	can	rapidly	introduce	new	services	and	features
into	their	product.	These	will	change	user	behavior	and	subsequently
workload	and	traffic	patterns.	Even	when	such	a	change	is	not	significant,
a	more	performing	or	reliable	version	of	your	software	also	consumes
internal	services	differently.	Existing	monitoring	systems	rely	on	carefully
derived	thresholds	using	historical	data	and	benchmarking	of	a	particular
version	of	the	system.	This	may	work	if	a	version	of	your	software	usually
runs	for	weeks	or	even	months.	If	you	deploy	new	versions	10	times	a	day,
adjusting	the	threshold	for	new	versions	is	a	major	challenge.	Without
proper	adjustment,	this	may	create	many	alarms	that	are	false	positives.
	Environment	changes.	Current	monitoring	tools	also	assume	the
environment	in	which	the	application	is	executing	remains,	essentially,
unchanged.	Frequent	deployments	can	violate	that	assumption	and
introduce	a	different	type	of	false	alarms.	Given	a	higher	frequency	of
deployment,	this	would	mean	turning	off	the	monitoring	tools	during	the
deployment,	which	is	happening	quite	frequently.	Monitoring	tools	need	to
become	deployment-aware	and	aware	of	other	process	interferences.

In	other	words,	high	velocity	of	changes	eventually	becomes	continuous
change,	which	can	fundamentally	alter	the	way	testing	and	monitoring	is	done.
Organizations	may	rely	more	on	production	environment	canary	testing	and
intelligent	monitoring	rather	than	time-consuming	end-to-end	testing.	All	of
these	are	blurring	the	boundary	between	end-to-end	testing	and	monitoring	and
will	require	whole	new	solutions.	On	the	other	hand,	intelligent	monitoring	can

will	require	whole	new	solutions.	On	the	other	hand,	intelligent	monitoring	can
enable	predictive	analytics	to	pre-scale	infrastructure	and	application,	while
adaptive	monitoring	can	dynamically	change	the	entities	to	be	monitored	and	the
thresholds	using	various	context	information.

15.4	Technology	Issues
Our	prediction	with	respect	to	technology	is	that	the	continuous	delivery	pipeline
will	begin	to	be	viewed	as	a	single	entity	rather	than	as	a	collection	of	individual
tools.	Currently,	a	continuous	delivery	pipeline	is	almost	always	a	chain	of
individual	tools,	each	with	their	own	scripts	and	tied	together	with	several
integration	scripts.	The	integration	scripts	will	evolve,	and	the	environment	of
the	continuous	deployment	pipeline	will	also	evolve,	together	forming	a
collection	that	can	be	viewed	as	a	single	entity	with	parts,	rather	than	a
collection	of	parts	loosely	tied	together.	Some	major	problems	exist	when	you
just	integrate	existing	tools	through	scripts:

	There	is	little	traceability	throughout	the	full	pipeline.	For	example,	it	is
difficult	to	know	which	particular	builds	are	deployed	to	what
environment.	Some	major	outages	were	caused	by	connecting	a	testing
build	to	production	environment	components.
	The	lack	of	traceability	makes	error	diagnosis	very	difficult.	A	production
environment	error	log	usually	contains	no	information	relating	to	upstream
build,	test,	or	commit	activities	and	artifacts.	Establishing	the	trace	not
only	takes	significant	time	and	manual	effort	but	also	makes	more
intelligent	automated	recovery	actions	less	practical.
	Security	credentials	often	need	to	be	passed	from	one	tool	to	another,
which	causes	security	risks.	The	security	features	provided	by	the	cloud
introduce	extra	complexity.
	Many	existing	popular	tools	were	created	before	the	era	of	continuous
delivery	and	deployment.	It	is	difficult	to	express	the	new	concepts	and
practices	naturally	using	these	tools.

Some	of	the	things	we	foresee	in	this	evolution	are:	the	introduction	of
continuous	deployment	pipeline	concepts	and	the	achievement	of	various
qualities	in	the	pipeline.

Continuous	Deployment	Pipeline	Concepts
Throughout	this	book	we	have	discussed	a	variety	of	concepts	that	are	specific	to
the	operation	of	a	continuous	deployment	pipeline.	These	concepts	should	be
given	first-class	status	in	the	specification	of	a	continuous	deployment	pipeline.

given	first-class	status	in	the	specification	of	a	continuous	deployment	pipeline.
That	is,	the	integration	scripts	should	have	mechanisms	to	allow	the	specification
and	execution	of	these	concepts.	In	the	following,	we	list	the	most	relevant	of
these	concepts.

	Environment.	Moving	committed	code	through	the	pipeline	is	largely	a
matter	of	deploying	the	code	to	different	environments.	As	we	defined	in
Chapter	2,	an	environment	typically	contains	a	load	balancer,	the	system
operating	in	that	environment,	and	necessary	support	entities	such	as	a
database	and	configuration	parameters.	In	addition,	the	environment	may
also	contain	other	services	or	mock	versions	thereof.	A	pipeline	tool
should	have	the	ability	to	specify	an	environment,	to	create	an
environment,	to	move	code	or	a	deployable	artifact	built	from	the	code	into
or	out	of	environments,	and	to	tear	down	an	environment	while
maintaining	mappings,	traces,	and	correlations	of	activities.	For	the
production	environment,	concepts	such	as	traffic	matching	and	warmup
should	also	either	be	built	in	or	their	specification	be	allowed.
	Deployment.	A	variety	of	different	considerations	involved	in	deployment
should	be	specifiable	in	the	pipeline	tool	while	the	specific	implementation
details	are	hidden	and	provided	by	different	platform/systems-specific
“providers.”	These	are:
	Blue/green	(or	red/black)	deployment.	Specifying	a	blue/green
deployment	should	just	be	a	matter	of	specifying	the	image	to	be
deployed	and	the	target	of	the	deployment	(number	of	VMs,	autoscaling
rules,	location	of	the	VMs).	The	support	infrastructure	should	take	care
of	a)	ensuring	the	new	version	is	properly	installed	and	b)	shifting	traffic
to	the	new	version	when	appropriate.	The	deletion	of	the	old	versions
could	be	included	in	this	concept,	or	it	could	be	a	separate	concept
included	in	teardown.
	Rolling	upgrade.	Specifying	a	rolling	upgrade	should	be	a	matter	of
specifying	the	image	to	be	deployed,	the	instances	to	be	replaced,	and
the	granularity	of	the	rolling	upgrade.
	Rollback.	A	rollback	should	be	able	to	be	specified	just	by	giving	the	ID
of	the	deployment.	All	other	parameters	should	be	retrievable	by
knowing	the	prior	deployment	and	how	it	was	specified.
	Canary	deployment.	Both	of	the	deployment	styles	should	have	the
ability	to	be	done	with	canaries.	Specifying	the	number	of	canaries	and
the	criteria	for	their	placement	(random,	customer-based,	geographically
based).

	A/B	testing.	While	canary	deployments	run	two	versions	in	parallel	to
ensure	the	new	version	is	working	correctly,	A/B	deployments	are	used
to	test	if	the	new	version,	say,	“B,”	is	performing	better	in	terms	of	some
metrics,	for	example	user	acceptance	of	a	special	offer.
	Feature	toggles.	Specification	of	the	activation	or	deactivation	of	a
feature	toggle	should	include	the	feature	ID,	whether	it	is	to	be	activated
or	deactivated,	and	the	scope	of	the	change	to	specify	if	all	or	only
specified	servers	should	be	toggled.
	Teardown.	An	environment	is	torn	down	by	deleting	its	VMs	and	other
resources	and	removing	it	from	any	Domain	Name	System	(DNS)
entries	in	which	it	occurs.	This	could	be	specified	as	an	activity	distinct
from	deployment,	or	it	could	be	included	in	the	blue/green	deployment.

	Monitoring.	Monitoring	during	deployment	includes	both	monitoring	the
performance	of	the	pipeline	as	well	as	monitoring	the	behavior	of	the
application	being	deployed	in	the	staging	and	production	environments.
The	pipeline	should	explicitly	inform	the	various	monitors	of	the	changes
of	the	application	and	the	environment.	This	information	is	vital	for
monitoring	tools	to	adjust	thresholds	and	suppress	false	alarms	about
legitimate	changes.
	Replicating	data	or	versions.	Although	the	number	of	organizations	that
maintain	multiple	datacenters	will	likely	decrease	with	re-architecting	to
take	advantage	of	cloud	provider	replication	services,	there	will	be	some
organizations	that	will	maintain	their	own	datacenters	or	hybrid
private/public	clouds.	Synchronizing	across	datacenters	should	be
specifiable	in	the	pipeline	tool.	Furthermore,	specifying	the	type	of	data
replication	and	the	frequency	of	that	replication	should	also	be	possible.
	Service	level	agreements	(SLAs)	for	the	pipeline.	Organizations	need	to	be
able	to	predict	the	time	it	takes	to	complete	each	stage	of	a	deployment.	A
canary	deployment,	for	example,	might	impact	5%	of	the	users.	How	long
will	it	take	to	roll	out	the	canary,	and	then	how	long	to	roll	out	the
remainder?	A	rolling	upgrade	might	save	$40,	but	take	30	minutes	longer
than	a	blue/green	deployment.	A	declarative	approach	for	deployment
(often	used	by	configuration	management	tools	such	as	Chef/Puppet)	hides
the	procedural	complexity	of	deployment	but	also	introduces	some
uncertainty	in	achieving	what	you	want	both	in	terms	of	time
(unpredictable	convergence	time)	and	in	terms	of	error	recovery	(using
dumb	retry	as	the	only	mechanism).	Communicating	application	SLAs	and

pipeline	SLAs	to	the	underlying	systems	can	help	achieve	better
predictability	in	the	declarative	approach.	Another	way	is	to	introduce	the
process	view	at	a	higher	level	of	abstraction,	as	we	suggested	in	Chapter
14.	All	these	will	help	both	Ops	and	Dev	to	plan	and	schedule
deployments.
	SLAs	for	the	applications.	While	a	new	version	of	an	application	is	being
deployed,	the	SLAs	for	the	current	version	may	be	maintained	or	modified.
There	should	be	the	ability	to	specify	these	adjustments	to	the	application
SLAs.
	Configuration	management	database	(CMDB).	A	CMDB	is	an	essential
portion	of	an	integrated	continuous	deployment	pipeline.	As	such,	it	will
have	special	requirements	in	terms	of	replication,	access	control,	and
usage.	At	the	moment,	the	data	models	in	typical	configuration
management	tools	have	a	limited	scope	and	do	not	satisfy	cross-pipeline
configuration	requirements	needs.	Making	the	CMDB	a	first-class	concept
with	a	broader	scope	allows	for	these	special	requirements.

Achieving	Quality	in	a	Continuous	Deployment	Pipeline
There	are	three	different	aspects	to	achieving	quality	that	can	be	performed	with
an	integrated	continuous	development	pipeline.

1.	Don’t	do	anything	stupid.	You	should	be	able	to	specify	a	series	of
constraints	that	prevent	certain	configurations	from	happening.	For
example,	do	not	allow	any	environment	except	the	production	environment
to	access	the	production	database.	For	another	example,	ensure	that
deployments	to	a	particular	region	have	specific	configuration	settings.	For
a	third	example,	ensure	that	any	change	in	an	environment	has	passed
through	particular	quality	gates.

2.	Automatically	detect,	diagnose,	and	recover	from	errors.	In	Chapter	14,
we	discussed	techniques	that	can	be	used	to	detect,	diagnose,	and	recover
from	errors	that	occur	during	an	operations	process.	These	techniques	can
be	automated	and	should	be	a	routine	portion	of	an	integrated	continuous
deployment	pipeline.	Many	of	these	techniques	should	also	be	integrated
with	a	more	intelligent	monitoring	system.	The	operational	process	context
plays	important	roles	in	suppressing	false	alarms,	detecting	subtle
problems,	and	diagnosing	root	causes.

3.	Predict	completion	time	of	operations.	Associated	with	the	SLAs	that	we
identified	as	an	important	concept	is	the	monitoring	and	prediction	of	the

performance	of	an	operation.	This	will	allow	planning	of	deployments,
where	necessary.	It	will	also	provide	visibility	into	the	progress	of	an
operation	beyond	just	knowing	that	a	given	step	is	currently	being
processed	or	has	been	completed.

Implementation
A	variety	of	possibilities	exist	for	implementing	such	an	integrated	continuous
deployment	pipeline.	These	possibilities	range	from	defining	a	new	tool-
independent	domain-specific	language	to	creating	a	Ruby	Gem	that	integrates
the	deployment	possibilities	already	existing	in	Ruby	Gems	or	creating	a
superstructure	over	other	sets	of	tools.
Regardless	of	the	implementation	strategy,	the	concepts	we	identified	should

be	first-class	entities	in	the	implementation	and	achieving	quality	of	the	pipeline
should	be	built	into	the	infrastructure	for	the	pipeline.

15.5	What	About	Error	Reporting	and	Repair?
We	began	this	book	by	defining	DevOps	as	a	collection	of	processes	intended	to
reduce	the	time	between	committing	code	and	placing	that	code	into	normal
production.
The	best	and	most	effective	method	to	achieve	normal	production	is	to	reduce

the	number	of	errors	that	escape	the	deployment	process.	So	the	line	between
ensuring	high	quality	of	the	deployed	code	and	detecting	errors	after	deployment
is	not	a	clear	one.
Live	testing	such	as	that	done	by	the	Simian	Army,	which	we	discussed	in

Chapter	5,	is	one	technique	for	detecting	and	repairing	errors	without	exposing
those	errors	to	the	end	users.	When	an	error	is	detected	by	a	member	of	the
Simian	Army,	the	cause	of	that	error	is	known	because	essentially	it	was	a	test
case	run	during	production.
Formal	methods	may	finally	have	achieved	sufficient	maturity	to	be	used	in

conjunction	with	microservices.	The	state	of	the	art	of	formal	methods	is	the
ability	to	prove	correctness	of	code	that	is	less	than	10,000	lines.	Microservices,
as	described	in	Chapter	13,	are	often	less	than	5,000	lines	of	code.	Thus,
formally	verifying	a	microservice	seems	within	the	realm	of	possibility.
Furthermore,	a	microservice	communicates	only	through	message	passing.	This
simplification	seems	as	if	it	would	also	serve	to	support	the	formal	verification
of	microservices.	Formal	verification	may	not	be	possible	for	the	whole	stack
because	of	the	inherent	complexity	of	some	lower-level	services	or	protocols.
Even	if	a	microservice	has	not	been	formally	verified,	a	combination	of	static

Even	if	a	microservice	has	not	been	formally	verified,	a	combination	of	static
analysis	together	with	hooks	usable	during	execution,	such	as	with	debuggers,
seems	likely	to	enable	faster	repair	of	application	errors.

15.6	Final	Words
DevOps	is	in	the	middle	of	the	chasm	of	adoption,	but	its	momentum	and
growing	number	of	materials	will	carry	it	into	the	mainstream	and	into	normal
practice.	The	gained	effectiveness	and	effectivity	will	then	allow	Dev	and	Ops	to
deliver	software	innovation	at	a	higher	pace	to	the	world.	For	the	moment,	we
are	pleased	to	be	able	to	contribute	toward	moving	DevOps	over	the	chasm.

15.7	For	Further	Reading
Crossing	the	chasm	is	described	in	a	Wikipedia	entry:
http://en.wikipedia.org/wiki/Crossing_the_Chasm
Ethann	Castell	has	written	about	cloud	pricing	models	in	an	IBM	blog	[Castell

13].

http://en.wikipedia.org/wiki/Crossing_the_Chasm

References

[3Scale	12]	J.	M.	Pujol.	“Having	Fun	with	Redis	Replication	Between	Amazon
and	Rackspace,”	July	25,	2012,	http://tech.3scale.net/2012/07/25/fun-with-
redis-replication/

[Agrasala	11]	V.	Agrasala.	“What	is	IT	Service?”	December	6,	2011,
http://vagrasala.wordpress.com/2011/12/06/what-is-it-service/

[Allen	70]	T.	J.	Allen.	“Communication	Networks	in	R&D	Laboratories,”	R&D
Management,	1(1),	1970.

[Ambler	12]	S.	W.	Ambler	and	M.	Lines.	Disciplined	Agile	Delivery:	A
Practitioner’s	Guide	to	Agile	Software	Delivery	in	the	Enterprise.	IBM
Press,	2012.

[Ambler	15]	S.	Ambler.	“Large	Agile	Teams,”	January	9,	2015,
https://www.ibm.com/developerworks/community/blogs/ambler/?lang=en

[Barros	12]	A.	Barros	and	D.	Oberle	(Eds.).	Handbook	of	Service	Description:
USDL	and	Its	Methods.	Springer,	2012.

[Bass	13]	L.	Bass,	P.	Clements,	and	R.	Kazman.	Software	Architecture	in
Practice,	3rd	Edition.	Addison-Wesley,	2013.

[BostInno	11]	J.	Evanish.	“Continuous	Deployment:	Possibility	or	Pipe	Dream?”
November	21,	2011,	http://bostinno.streetwise.co/2011/11/21/continuous-
deployment-possibility-or-pipe-dream/

[Brutlag	09]	J.	Brutlag.	“Speed	Matters,”	Google	Research,	June	23,	2009,
http://googleresearch.blogspot.com.au/2009/06/speed-matters.html

[Cannon	11]	D.	Cannon.	ITIL	Service	Strategy.	The	Stationery	Office,	2011.
[Castell	13]	E.	Castell.	“The	Present	and	Future	of	Cloud	Pricing	Models,”	IBM

Cloud	Products	and	Services,	June	12,	2013,
http://thoughtsoncloud.com/2013/06/present-future-cloud-pricing-models/

[Clements	10]	P.	Clements,	F.	Bachmann,	L.	Bass,	et	al.	Documenting	Software
Architectures,	2nd	Edition.	Addison-Wesley	Professional,	2010.

[Confluence	12]	M.	Serafini.	“Zab	vs.	Paxos,”	March	28,	2012,
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Zab+vs.+Paxos

[Dean]	J.	Dean.	“Designs,	Lessons	and	Advice	from	Building	Large	Distributed
Systems,”	http://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-
ladis2009.pdf

http://tech.3scale.net/2012/07/25/fun-with-redis-replication/
http://vagrasala.wordpress.com/2011/12/06/what-is-it-service/
https://www.ibm.com/developerworks/community/blogs/ambler/?lang=en
http://bostinno.streetwise.co/2011/11/21/continuous-deployment-possibility-or-pipe-dream/
http://googleresearch.blogspot.com.au/2009/06/speed-matters.html
http://thoughtsoncloud.com/2013/06/present-future-cloud-pricing-models/
http://cwiki.apache.org/confluence/display/ZOOKEEPER/Zab+vs.+Paxos
http://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf

[Dean	13]	J.	Dean	and	L.	André	Barroso.	“The	Tail	at	Scale,”	Communications
of	the	ACM,	56(2),	pp.	74–80,	2013.

[Dumitras	09]	T.	Dumitraş	and	P.	Narasimhan.	“Why	Do	Upgrades	Fail	and
What	Can	We	Do	About	It?”	Middleware	'09	Proceedings	of	the	10th
ACM/IFIP/USENIX	International	Conference	on	Middleware,	Springer,
2009,	http://dl.acm.org/citation.cfm?id=1657005

[DZone	13]	P.	Hammant.	“Google’s	Scaled	Trunk	Based	Development,”	May	9,
2013,	http://architects.dzone.com/articles/googles-scaled-trunk-based

[Edwards	14]	D.	Edwards.	“DevOps	is	an	Enterprise	Concern,”	InfoQ	QCon
interview	with	Damon	Edwards	by	Manuel	Pais,	May	31,	2014,
http://www.infoq.com/interviews/interview-damon-edwards-qcon-2014

[Erl	07]	T.	Erl.	Service-Oriented	Architecture:	Principles	of	Service	Design.
Prentice	Hall,	2007.

[FireScope	13]	“What	is	an	IT	Service?”	November	12,	2013,
http://www.firescope.com/blog/index.php/service/

[Fitz	09]	T.	Fitz.	“Continuous	Deployment	at	IMVU:	Doing	the	Impossible	Fifty
Times	a	Day,”	February	10,	2009,
http://timothyfitz.com/2009/02/10/continuous-deployment-at-imvu-doing-
the-impossible-fifty-times-a-day/

[Fowler	06]	I.	Robinson.	“Consumer-Driven	Contracts:	A	Service	Evolution
Pattern,”	June	12,	2006,
http://martinfowler.com/articles/consumerDrivenContracts.html

[Gilbert	02]	S.	Gilbert	and	N.	Lynch.	“Brewer’s	Conjecture	and	the	Feasibility
of	Consistent,	Available,	Partition-tolerant	Web	Services,”	ACM	SIGACT
News,	33(2),	pp.	51–59,	2002.

[Gillard-Moss	13]	P.	Gillard-Moss.	“Machine	Images	as	Build	Artefacts,”
December	20,	2013,
http://peter.gillardmoss.me.uk/blog/2013/12/20/machine-images-as-build-
artefacts/

[Hamilton	12]	J.	Hamilton.	“Failures	at	Scale	&	How	to	Ride	Through	Them,”
November	30,	2012,	Amazon	Web	Services.

[Humble	10]	J.	Humble	and	D.	Farley.	Continuous	Delivery:	Reliable	Software
Releases	through	Build,	Test,	and	Deployment	Automation,	Addison-Wesley
Professional,	2010.

[Hunnebeck	11]	L.	Hunnebeck.	ITIL	Service	Design.	The	Stationery	Office,
2011.

http://dl.acm.org/citation.cfm?id=1657005
http://architects.dzone.com/articles/googles-scaled-trunk-based
http://www.infoq.com/interviews/interview-damon-edwards-qcon-2014
http://www.firescope.com/blog/index.php/service/
http://timothyfitz.com/2009/02/10/continuous-deployment-at-imvu-doing-the-impossible-fifty-times-a-day/
http://martinfowler.com/articles/consumerDrivenContracts.html
http://peter.gillardmoss.me.uk/blog/2013/12/20/machine-images-as-build-artefacts/

[InfoQ	13]	A.	Rehn,	T.	Palmborg,	and	P.	Boström.	“The	Continuous	Delivery
Maturity	Model,”	February	6,	2013,
http://www.infoq.com/articles/Continuous-Delivery-Maturity-Model

[InfoQ	13]	E.	Minick.	“A	Continuous	Delivery	Maturity	Model,”	July	17,	2013,
http://www.infoq.com/presentations/continuous-delivery-model

[InfoQ	14]	D.	Edwards.	“Introducing	DevOps	to	the	Traditional	Enterprise,”
June	18,	2014	http://www.infoq.com/minibooks/emag-devops

[InformationWeek	13]	J.	Masters	Emison.	“Cloud	Deployment	Debate:	Bake	Or
Bootstrap?”	October	30,	2013,
http://www.informationweek.com/cloud/infrastructure-as-a-service/cloud-
deployment-debate-bake-or-bootstrap/d/d-id/1112121

[ITSecurity	14]	D.	Raywood.	“Shellshock	hit	our	old	unpatched	server,	admit
BrowserStack,”	November	13,	2014,	http://itsecurityguru.org/shellshock-hit-
old-unpatched-server-admit-browserstack/#.VGVvZskhMuI

[Kandula]	S.	Kandula,	G.	Ananthanarayanan,	A.	Greenberg,	I.	Stoica,	Y.	Lu,	B.
Saha,	E.	Harris.	“Combating	Outliers	in	Map-Reduce,”	Microsoft	Research,
http://research.microsoft.com/en-
us/um/people/srikanth/data/combating%20outliers%20in%20map-
reduce.web.pptx

[Kreps	13]	J.	Kreps.	“The	Log:	What	Every	Software	Engineer	Should	Know
About	Real-time	Data’s	Unifying	Abstraction,”	December	16,	2013,
http://engineering.linkedin.com/distributed-systems/log-what-every-
software-engineer-should-know-about-real-time-datas-unifying

[Lamport	14]	L.	Lamport.	“Paxos	Made	Simple,”	ACM	SIGACT	News	32,	4,
December	2001,	http://research.microsoft.com/en-
us/um/people/lamport/pubs/pubs.html#paxos-simple

[Ligus	13]	S.	Ligus.	Effective	Monitoring	and	Alerting.	O’Reilly	Media,	2013.
[Lloyd	11]	V.	Lloyd.	ITIL	Continual	Service	Improvement.	The	Stationery

Office,	2011.
[Lu	15]	Q.	Lu,	L.	Zhu,	X.	Xu,	L.	Bass,	S.	Li,	W.	Zhang,	and	N.	Wang.

“Mechanisms	and	Architectures	for	Tail-Tolerant	System	Operations	in
Cloud,”	IEEE	Software,	Jan-Feb	2015,	pp.	76–82.

[Massie	12]	M.	Massie,	B.	Li	et	al.	Monitoring	with	Ganglia,	O’Reilly	Media,
2012,	http://ganglia.sourceforge.net/

[Mozilla]	C.	AtLee,	L.	Blakk,	J.	O’Duinn,	and	A.	Zambrano	Gasparian.	“Firefox
Release	Engineering,”	http://www.aosabook.org/en/ffreleng.html

http://www.infoq.com/articles/Continuous-Delivery-Maturity-Model
http://www.infoq.com/presentations/continuous-delivery-model
http://www.infoq.com/minibooks/emag-devops
http://www.informationweek.com/cloud/infrastructure-as-a-service/cloud-deployment-debate-bake-or-bootstrap/d/d-id/1112121
http://itsecurityguru.org/shellshock-hit-old-unpatched-server-admit-browserstack/#.VGVvZskhMuI
http://research.microsoft.com/en-us/um/people/srikanth/data/combating%20outliers%20in%20map-reduce.web.pptx
http://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html#paxos-simple
http://ganglia.sourceforge.net/
http://www.aosabook.org/en/ffreleng.html

[Nelson-Smith	13]	S.	Nelson-Smith.	Test-Driven	Infrastructure	with	Chef,	2nd
Edition.	O’Reilly	Media,	2013.

[Netflix	13]	“Preparing	the	Netflix	API	for	Deployment,”	November	18,	2013,
http://techblog.netflix.com/2013/11/preparing-netflix-api-for-
deployment.html

[Netflix	15]	J.	Kojo,	V.	Asokan,	G.	Campbell,	and	A.	Tull.	“Nicobar:	Dynamic
Scripting	Library	for	Java,”	February	10,	2015,	http://techblog.netflix.com

[Newman	15]	S.	Newman.	Building	Microservices:	Designing	Fine-Grained
Systems,	O’Reilly	Media,	2015.

[NIST	11]	P.	Mell	and	T.	Grance.	“The	NIST	Definition	of	Cloud	Computing,”
National	Institute	of	Standards	and	Technology,	NIST	Special	Publication
800-145,	http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

[NIST	13]	“Security	and	Privacy	Controls	for	Federal	Information	Systems	and
Organizations,”	NIST	800-53,	Rev.	4,	April,	2013
http://csrc.nist.gov/publications/PubsDrafts.html

[OMG	11]	“Business	Process	Model	and	Notation,”	Version	2.0,	OMG,	January
2011,	http://www.bpmn.org]

[Puppet	Labs	13]	C.	Caum.	“Continuous	Delivery	Vs.	Continuous	Deployment:
What’s	the	Diff?”	August	30,	2013,	http://puppetlabs.com/blog/continuous-
delivery-vs-continuous-deployment-whats-diff

[Rance	11]	S.	Rance.	ITIL	Service	Transition.	The	Stationery	Office,	2011
[Schad	10]	J.	Schad,	J.	Dittrich,	and	J.-A.	Quiané-Ruiz.	“Runtime	Measurements

in	the	Cloud:	Observing,	Analyzing,	and	Reducing	Variance,”	Proceedings
of	the	VLDB	Endowment,	3(1),	2010.

[SEI	12]	G.	Silowash,	D.	Cappelli,	A.	P.	Moore,	R.	F.	Trzeciak,	T.	J.	Shimeall,
and	L.	Flynn.	“Common	Sense	Guide	to	Mitigating	Insider	Threats,	4th
Edition,”	December,	2012,	http://resources.sei.cmu.edu/library/asset-
view.cfm?assetid=34017

[Seo	14]	H.	Seo,	C.	Sadowski,	S.	Elbaum,	E.	Aftandilian,	and	R.	Bowdidge.
“Programmers’	Build	Errors:	A	Case	Study	(at	Google),”	Proceedings	of	the
36th	International	Conference	on	Software	Engineering	(ICSE	2014).

[Sockut	09]	G.	H.	Sockut	and	B.	R.	Iyer.	“Online	Reorganization	of	Databases,”
ACM	Computing	Surveys,	41(3),	Article	14,	July	2009.

[Spencer	14]	R.	Spencer.	“DevOps	and	ITIL:	Continuous	Delivery	Doesn’t	Stop
at	Software,”	Change	&	Release	Management	blog,	April	5,	2014,
http://changeandrelease.com/2014/04/05/devops-and-itil-continuous-

http://techblog.netflix.com/2013/11/preparing-netflix-api-for-deployment.html
http://techblog.netflix.com
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/PubsDrafts.html
http://www.bpmn.org
http://puppetlabs.com/blog/continuous-delivery-vs-continuous-deployment-whats-diff
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=34017
http://changeandrelease.com/2014/04/05/devops-and-itil-continuous-delivery-doesnt-stop-at-software/

delivery-doesnt-stop-at-software/
[Steinberg	11]	R.	A.	Steinberg.	ITIL	Service	Operation.	The	Stationery	Office,

2011.
[Tonse	14]	S.	Tonse.	“MicroServices	at	Netflix,”	August	8,	2014,

http://www.slideshare.net/stonse/microservices-at-netflix
[van	der	Aalst	11]	W.	van	der	Aalst.	Process	Mining:	Discovery,	Conformance

and	Enhancement	of	Business	Processes.	Springer,	2011.
[Weber	15]	I.	Weber,	C.	Li,	L.	Bass,	S.	Xu	and	L.	Zhu.	“Discovering	and

visualizing	operations	processes	with	POD-Discovery	and	POD-Viz,”
International	Conference	on	Dependable	Systems	and	Networks	(DSN),	Rio
de	Janeiro,	Brazil,	June,	2015.

[Xu	14]	S.	Xu,	L.	Zhu,	I.	Weber,	L.	Bass,	and	D.	Sun.	“POD-Diagnosis:	Error
diagnosis	of	sporadic	operations	on	cloud	applications,”	International
Conference	on	Dependable	Systems	and	Networks	(DSN),	Atlanta,	GA,
USA,	June,	2014.	http://ssrg.nicta.com.au/projects/cloud/

http://www.slideshare.net/stonse/microservices-at-netflix
http://ssrg.nicta.com.au/projects/cloud/

About	the	Authors

Len	Bass	is	a	senior	principal	researcher	at	National	ICT	Australia	Ltd.
(NICTA).	He	joined	NICTA	in	2011	after	25	years	at	the	Software	Engineering
Institute	(SEI)	at	Carnegie	Mellon	University.	He	is	the	coauthor	of	two	award-
winning	books	in	software	architecture—Software	Architecture	in	Practice,
Third	Edition	(Addison-Wesley	2013)	and	Documenting	Software	Architectures:
Views	and	Beyond,	Second	Edition	(Addison-Wesley	2011)—as	well	as	several
other	books	and	numerous	papers	in	computer	science	and	software	engineering
on	a	wide	range	of	topics.	Len	has	more	than	50	years’	experience	in	software
development	and	research,	which	has	resulted	in	papers	on	operating	systems,
database	management	systems,	user	interface	software,	software	architecture,
product	line	systems,	and	computer	operations.	He	has	worked	or	consulted	in
multiple	domains,	including	scientific	analysis,	embedded	systems,	and
information	and	financial	systems.

Ingo	Weber	is	a	senior	researcher	in	the	Software	Systems	Research	Group	at
NICTA	in	Sydney,	Australia,	as	well	as	an	adjunct	senior	lecturer	at	CSE	at	the
University	of	New	South	Wales	(UNSW).	Prior	to	NICTA,	Ingo	held	positions
at	UNSW	and	at	SAP	Research	Karlsruhe,	Germany.	His	research	interests
include	cloud	computing,	DevOps,	business	process	management,	and	artificial
intelligence	(AI).	He	has	published	over	60	peer-reviewed	papers,	and	served	as
a	reviewer	or	program	committee	member	for	many	prestigious	scientific
journals	and	conferences.	Ingo	holds	a	Ph.D.	and	a	Diploma	from	the	University
of	Karlsruhe,	and	an	MSc	from	the	University	of	Massachusetts	at	Amherst.

Liming	Zhu	is	a	research	group	leader	and	principal	researcher	at	NICTA.	He
holds	conjoint	positions	at	the	University	of	New	South	Wales	(UNSW)	and	the
University	of	Sydney.	Liming	has	published	over	80	peer-reviewed	papers.	He
formerly	worked	in	several	technology	lead	positions	in	the	software	industry
before	obtaining	a	Ph.D.	in	software	engineering	from	UNSW.	He	is	a
committee	member	of	the	Standards	Australia	IT-015	(system	and	software
engineering),	contributing	to	ISO/SC7.	Liming’s	research	interests	include
software	architecture	and	dependable	systems.

Index

A/B	testing
in	deployment,	118
future	of	DevOps	and,	307
introduction	to,	96
user	interactions	and,	132–133

Access	control
authentication	for.	See	Authentication
boundary	definition	for,	170
encryption	for,	171
introduction	to,	169–170
isolation	for,	170–171
outdated	data	in,	171
ownership/responsibility	for,	172
prevention	of	access	in,	170–172
in	Sourced	Group	case	study,	258
version	updating	in,	171–172
vulnerability	patches	in,	171–172

Access	control	lists	(ACLs),	168
Address	Resolution	Protocol	(ARP),	227
Adoption	of	DevOps

barriers	to,	generally,	20
department	type	and,	22
existing	systems	and,	76–77
organizational	culture/type	and,	20–22
personnel	issues	in,	23
silo	mentality	vs.,	22–23
tool	support	and,	23

Advertising-based	charging	models,	303
Agent-based/agentless	monitoring,	136–137
Agile,	12–13
Akamai	CDN,	228,	230
Alarms

automating	configuration	of,	144
in	CloudWatch,	250
false,	128
in	intrusion	detection,	134–135
in	monitoring,	generally,	135,	141–142

Alerts
automating	configuration	of,	144
in	monitoring	configurations,	139
in	monitoring,	generally,	141–142

ALIASes,	250–252
All-encompassing	processes,	302
Allocation

in	capacity	planning,	132
CDC	definition	for,	73
Janitor	Monkey	and,	43
in	microservice	architecture,	72,	183
of	responsibilities,	19
of	shards,	224
of	virtual	machines,	104

Amazon
AMIs	of.	See	Amazon	Machine	Images	(AMIs)
CloudFormation	by.	See	CloudFormation	(CF)
cross-team	coordination	by,	69
on	datacenter	failures,	35
DynamoDB	by.	See	DynamoDB
EC2	by.	See	Elastic	Compute	Cloud	(EC2)
future	of	DevOps	and,	299
Glacier	by,	139
long	tails	in,	37
RDS	replicas	and,	116
repeatability	at,	184
shared	microservices	and,	283
Simple	Queue	Service	by,	258
team	rules	of,	14,	75–76
version	control	and,	186

web	services	by.	See	Amazon	Web	Services	(AWS)
Amazon	Machine	Images	(AMIs).	See	also	Virtual	machines	(VMs)

defined,	30
in	deployment	pipelines,	92
operations	process	and,	291
in	Sourced	Group	case	study,	245,	248–249

Amazon	Web	Services	(AWS)
Asgard	on,	289–295
in	Atlassian	case	study,	264–265
autoscaling	in.	See	Autoscaling	groups	(ASGs)
BlobStore	and,	268–271
CDP	tooling	and,	241
charging	models	and,	304
Cloud,	175
CloudFormation.	See	CloudFormation	(CF)
CloudTrail,	292–295
CodeDeploy,	261
Direct	Connect,	260,	264
introduction	to,	237
load	balancing	in.	See	Elastic	Load	Balancing	(ELB)
native	services	in,	261

Ambler,	Scott,	14
AMIs.	See	Amazon	Machine	Images	(AMIs)
Apache	Maven,	82
Apdex	(Application	Performance	Index),	148
Application	Performance	Index	(Apdex),	148
Application	programming	interfaces	(APIs)

IaaS	and,	30
immutable,	269
in	microservice	architecture,	76

Application	Response	Measurement	(ARM),	137
Applications

adding,	217–218
code	migration	in,	278–279
degradation	of,	84

design	of,	175–176
Gartner	Hype	Cycle	for,	3
logic	of,	217
management	of	complex,	255–256

APRA	(Australian	Prudential	Regulatory	Authority),	239
Architecture

allocation	in,	72
Amazon	teams	and,	75–76
in	BlobStore	example,	269–272
coordination	model	of,	68–69
demand	management	in,	70–71
further	reading	on,	78
mapping	in,	20,	71–72
microservice.	See	Microservice	architecture
of	Platformer.com,	149
requiring	changes	in,	65–66
resource	management	in,	69–71
structure	of,	66–72
summary	of,	77–78
VM	provisioning/deprovisioning	in,	70
work	assignments	in,	71–72

ARM	(Application	Response	Measurement),	137
ARP	(Address	Resolution	Protocol),	227
Asgard,	289–295
ASGs.	See	Autoscaling	groups	(ASGs)
Asynchronous	coordination,	18
Atlassian

Bamboo	by.	See	Bamboo
case	study	of.	See	Atlassian	case	study
Cloud	by,	263
JIRA	by,	241–242
Stash	by,	241,	249

Atlassian	case	study
architecture	in,	269–272
BlobStore	example	in,	268–273,	279–283

build	and	deployment	pipeline	in,	276–278
consumer	applications	in,	278–279
development	process	in,	273–279
further	reading	on,	284
“ilities”	solutions	in,	272–273
introduction	to,	263–264
microservice	deployment	in,	265–268
path	to	production	in,	278–279
safety/performance	in,	269–272
summary	of,	284
support	in,	274–276

Audits	for	security.	See	Security	audits
Australia

DNS	servers	in,	31
intrusion	detection	in,	133
Platformer.com	in.	See	Platformer.com	example
Sourced	Group	in.	See	Sourced	Group	case	study

Australian	Prudential	Regulatory	Authority	(APRA),	239
Authentication

hardware	for,	166
introduction	to,	165–166
password	controls	in,	167–168
role-based,	166–167
software	for,	166–167

Authorization,	155–156,	168–169
Automation

of	acceptance	tests,	95
of	datacenter	switches,	230–232
of	error	detection/recovery,	304,	308
introduction	to,	11–12

Autoscaled	VPCs	(virtual	private	clouds).	See	also	Virtual	private	clouds
(VPCs),	260
Autoscaling

in	capacity	planning,	51
groups.	See	Autoscaling	groups	(ASGs)

of	microservice	instances,	266–267
monitoring	and,	57

Autoscaling	groups	(ASGs)
CloudFormation	and,	257
CloudTrail	and,	292–293
CloudWatch	and,	70,	250
in	deployment,	245
in	operations	process,	289
rolling	upgrades	and,	294

Availability
in	Atlassian	case	study,	273
in	CAP,	39
in	CIA,	156–161

Availability	zones	(AZs),	265
AWS.	See	Amazon	Web	Services	(AWS)

Background	of	DevOps
benefits	of,	7–11
the	cloud	and.	See	Cloud	platform
introduction	to,	1
operations	in.	See	Operations	(Ops)
overview	of.	See	DevOps	overview

Backups,	52–53
Backward/forward	compatibility,	107–111
Baking	VM	images

AMIs	and,	245,	248–249
defined,	30–31
lightly	vs.	heavily,	92–93,	112–113

Bamboo
by	Atlassian,	263
build	and	deployment	pipeline	in,	276
as	continuous	deployment	system,	241–246
rollbacks	in,	254
“Tasks	for	AWS”	plug-in	in,	249
teardown	in,	255

“update	stack	if	already	exists”	flag	in,	251
Barriers	to	adoption.	See	Adoption	of	DevOps
Benefits	of	DevOps

in	coordination,	7–10
generally,	7
operations	staff	and,	10–11
in	release	process,	7–9

Beta	releases,	96
BGP	(Border	Gateway	Protocol),	257
Big	flip	deployment,	103
Binding	time	decisions,	20
BizOps,	301
BlobStore	example

architecture	in,	269–272
build	and	deployment	pipeline	in,	276–278
consumer	applications	in,	278–279
development	process	in,	generally,	273–274
evolving	BlobStore	in,	279–283
“ilities”	solutions	in,	272–273
path	to	production	in,	278–279
safety/performance	in,	269–272
support	in,	274–276

Blue/green	deployment,	102–104,	306
BookRenter.	See	Rafter	case	study
Border	Gateway	Protocol	(BGP),	257
Bottom-up	vs.	top-down	monitoring,	145–146
Boundary	definition,	170
Branching,	86–88,	276–278
“Breaking	the	build,”	94
Broad	network	access,	27
BrowserStack,	161
Build	process

in	Atlassian	case	study,	265–268
in	BlobStore	example,	276–278
for	deployment	pipelines.	See	Deployment	pipelines

integration	testing	environments	and,	83
packaging	in,	92–93
scripts	for,	91–92
in	Sourced	Group	case	study,	245,	248–249
status	in,	93–94

Business	cases.	See	also	Business	considerations
costs	in,	199
external	stakeholders	in,	201
internal	stakeholders	in,	200–201
introduction	to,	197–198
organizational	risks	in,	201–202
problem	solving	issues	in,	198–199
risk	mitigation	in,	201–203
rollout	plans	in,	203–205
stakeholder	impact	in,	200–201
success	criteria	in,	205
technical	risks	in,	202–203

Business	considerations
business	cases	in.	See	Business	cases
compliance,	207–208
continuity.	See	Business	continuity
costs,	199
Dev/Ops	interactions,	209–210
external	stakeholders	in,	201
further	reading	on,	211
in	future	of	DevOps,	301
incident	handling,	210
internal	stakeholders,	200–201
introduction	to,	197
licenses,	209–210
logic	in.	See	Business	logic
measuring	success,	206–207
organizational	risks,	201–202
problem	solving	issues,	198–199
risk	mitigation,	201–203

rollout	plans,	203–205
stakeholder	impact,	200–201
stakeholder	satisfaction,	208
success	criteria,	205
summary	of,	211
technical	risks,	202–203

Business	continuity
in	deployment,	115–117
in	DevOps,	generally,	59–60
in	operations	services,	51–53,	59–60

Business	logic
adding	applications	and,	217–218
application	logic	in,	217
infrastructure	discovery	in,	219–220
infrastructure	in,	generally,	217
in	Rafter	case	study,	generally,	216

CA	Technologies	example,	9
Canaries,	defined,	15
Canary	deployment,	307
Canary	testing

in	deployment,	117–118
introduction	to,	96
monitoring	configurations	and,	139,	144
in	production	environments,	193

CAP	(Consistency,	Availability,	Partition	Tolerance),	39
Capabilities,	168
Capability	maturity	models	(CMMs),	184
Capacity	planning

in	DevOps,	generally,	59
in	monitoring,	131–132
in	operations	services,	51,	59

Case	studies
of	continuous	deployment	pipelines.	See	Sourced	Group	case	study
of	migration	to	microservices.	See	Atlassian	case	study

overview	of,	213
of	support	for	multiple	datacenters.	See	Rafter	case	study

Cases,	business.	See	Business	cases
CD.	See	Continuous	deployment	(CD)
CDC	(Consumer	Driven	Contract),	72–73
CDN	(content	delivery	network),	228,	230
CDPs.	See	Continuous	deployment	pipelines	(CDPs)
CF.	See	CloudFormation	(CF)
cfn-init,	249
Change	management,	171–172
Chaos	Monkey,	97
Charging	models,	303–304
Chef

console	applications	and,	232
declarative	nature	of,	194
in	deployment,	121
infrastructure	testing	and,	233
monitoring	resources	with,	137
at	Rafter,	217–220,	226,	228
testability	and,	192–193
tool	specification	in,	12
traceability	in,	85
uncontrolled	switches	and,	229–230

CI.	See	Continuous	integration	(CI)
CIA	(confidentiality,	integrity,	and	availability),	156–161
Clients,	defined,	67
Closed-loop	controls,	57
Cloud	platform

consistency	in,	39
data	considerations	in,	43–44
DevOps	and,	generally,	41–44
distributed	environments	in,	34–40
Domain	Name	System	in,	31–33
elasticity	in,	40
environments	in,	41–43

failure	in,	34–38
features	of,	generally,	29
further	reading	on,	45–46
HDFS	in,	43–44
introduction	to,	27–29
IP	addresses	in,	generally,	31
long	tails	in,	37–38
monitoring	in,	145–146
NoSQL	databases	in,	39–40
operational	considerations	in,	44
Platform	as	a	Service	in,	33–34
summary	of,	44–45
time	in,	34–35
virtualization	in,	generally,	29–30
VM	creation	in,	30,	43
VM	failures	in,	36–37
VM	loading	in,	30–31
waste	reduction	and,	188

CloudFormation	(CF)
in	Atlassian	case	study,	265
CFEngine	in,	184
in	deployment,	121
in	release	stage,	251
in	Sourced	Group	case	study,	generally,	243–245
in	teardown	stage,	254–255
templates	for,	249,	257–258
tool	specification	in,	12

CloudWatch
in	Atlassian	case	study,	265
autoscaling	groups	and,	70
for	monitoring,	148
in	Sourced	Group	case	study,	250

Clustrix
datacenter	switches	and,	227–228
switch	prerequisites	in,	231

transactional	data	in,	220–221
uncontrolled	switches	and,	229

CMDBs	(configuration	management	databases).	See	Configuration	management
databases	(CMDBs)
CMMs	(capability	maturity	models),	184
CNAMEs,	251–252
Collation,	138
Collection,	137–139
Commit	IDs,	85
Compatibility,	111
Compilation	of	source	code,	91
Compliance	issues,	207–208
Components,	defined,	66
Computational	resource	protection.	See	also	Security,	160–161
Concurrent	Versions	System	(CVS).	See	also	Version	control,	86–88
Confidentiality,	integrity,	and	availability	(CIA),	156–161
Configuration	management	databases	(CMDBs),	186,	195,	308
Configurations

of	alarms,	144
of	alerts,	144
of	deployment	pipelines,	89–90
launch.	See	Launch	configurations	(LCs)
of	monitoring	systems,	139

Conformance	checking,	294
Conformity	Monkey,	161
Consistency,	Availability,	Partition	Tolerance	(CAP),	39
Consistency,	in	the	cloud,	39
Construction	phase,	13
Consumer	applications,	278–279
Consumer	Driven	Contract	(CDC),	72–73
Consumption-based	charging	models,	303
Containers

Atlassian	and,	266
lightweight,	92
virtual	machines	vs.,	188

Content	delivery	network	(CDN),	228,	230
Context	for	collation,	138
Continual	improvement,	58–59
Continuity.	See	Business	continuity
Continuous	change,	143–145
Continuous	delivery,	defined,	80
Continuous	deployment	(CD)

Bamboo	for,	254–255
data	models	and,	192
definition	of,	7,	80
engineering	teams,	238
feature	toggling	in,	202
onboarding	groups,	238
Rafter	case	study	of.	See	Rafter	case	study

Continuous	deployment	pipelines	(CDPs).	See	also	Deployment	pipelines
business	considerations	and,	200
in	future	of	DevOps,	306–309
in	Sourced	Group	case	study,	240–243
stakeholders	and,	200
testing	of,	233

Continuous	integration	(CI)
data	models	and,	192
defined,	80
in	deployment	pipelines,	93–94
servers,	91–94

Controlled	switch	steps,	225–229
Controls,	open-loop	vs.	closed-loop,	57
Cookbooks.	See	also	Chef,	194
Coordination

in	architecture,	68–69
as	benefit	of	DevOps,	7–10,	17
of	code	pieces,	19
cross-team,	19–20
definition	of,	17–18
forms	of,	18

in	microservice	architecture,	72–73
model	of,	19,	68–69
of	teams,	18–19

Costs,	199
Couchbase,	222–223
CPU	utilization,	150–152
Crises,	208
Cronjobs,	218–219,	225–226
Crosscutting	issues

in	deployment	pipelines,	84–86,	125
in	environment	teardowns,	85
in	interoperability,	191–192
in	modifiability,	194–195
in	monitoring.	See	Monitoring
in	negative	tests,	84–85
in	other	“ilities”	in,	generally,	181–182
in	performance,	186–188
in	recoverability,	190–191
in	regression	testing,	84
in	reliability,	188–190
in	repeatability,	183–186
in	small	components,	85
in	test	harnesses,	84
in	testability,	192–193
in	traceability,	85

Cross-team	coordination,	19–20
“Crossing	the	chasm,”	299–300
Culture	of	organizations,	20–22
Current	state,	216
CVS	(Concurrent	Versions	System).	See	also	Version	control,	86–88

Daemons,	218,	225–226
Data

decommissioning	of,	171–172
distributed,	146–147

immutable,	269
interpretation	of,	139–143
migration	of,	278–279
outdated,	171
tagging	of,	186
transactional,	220–221
volume	of,	138

Data	models,	19,	192
Data	schemas,	111
Data	scientists,	301
Databases

in	the	cloud,	generally,	43
compatibility	of,	111
configuration	management.	See	Configuration	management	databases
(CMDBs)
DynamoDB.	See	DynamoDB
infrastructure	support	in,	221–222
NoSQL,	39–40,	111
relational,	52,	111
Round-Robin,	138
session	data	in,	222–223
tiers	in,	220–223
transactional	data	in,	220–221

Datacenters
access	to	private,	149
automating	switches	in,	230–232
controlled	switching,	225–229
supporting	multiple.	See	Rafter	case	study
switching,	225–233
testing	switches	in,	232–233
uncontrolled	switches	in,	229–230

Datamation	2012	IT	salary	guide,	23
DataNodes,	44
Dean,	Jeff,	35
Debian,	92

Decommissioning	data,	171–172
Deep-hierarchy	systems,	146
Defense	in	depth,	156–157
Defensive	programming,	303
Degraded	applications,	84
Demand	management,	70–71
Demilitarized	Zone,	170
Deming,	W.	Edwards,	287
Denial-of-service	(DoS)	attacks,	161,	172–173
Dependability,	72–74
Deployment

A/B	testing	in,	118
backward/forward	compatibility	in,	108–111
blue/green,	103–104
business	continuity	in,	115–117
canary	testing	in,	117–118
compatibility	in,	111
discovery	in,	109–110
exploration	in,	110
feature	toggling	in,	107–108
further	reading	on,	122–123
future	of	DevOps	and,	306–307
introduction	to,	101–102
logical	consistency	in,	105–111
management	strategies	for,	102–105
monitoring	configurations	and,	139
to	multiple	environments,	114–117
multiple	service	versions	active	in,	105–111
of	operations	services,	55–56
packaging	in,	111–114
partial,	117–118
pipelines.	See	Deployment	pipelines
portability	layers	in,	110–111
private	clouds	in,	116–117
public	clouds	in,	115–116

rollbacks	in,	118–120
rolling	upgrades	in,	104–105
stage	of,	245,	249–250
summary	of,	121–122
times	in,	267
tools	for	management	of,	121
version	control	and,	186

Deployment	pipelines
architecture	and.	See	Architecture
of	BlobStore,	276–277
branching	in,	86–88
build	process	and,	91–93
build	scripts	in,	91–92
build	status	in,	93–94
building/testing,	generally,	79–81
configuration	parameters	in,	89–90
continuous.	See	Continuous	deployment	pipelines	(CDPs)
continuous	integration	in,	93–94
crosscutting	in.	See	Crosscutting	issues
defined,	80–81
deployment	via.	See	Deployment
design	of,	176–177
development	of,	generally,	86–91
early	release	testing	and,	97
environment	teardown	in,	86
environments	in,	82–84
error	detection	in,	97
feature	toggles	in,	88–89
further	reading	on,	99
incidents	in,	98
integration	testing	in,	91,	94–95
live	testing	and,	97
moving	systems	through,	81–84
negative	tests	in,	84
overview	of,	63

packaging	in,	92–93
performance	testing	of,	95–96
pre-commit	testing	in,	86–91
production	and,	96–97
regression	testing	in,	84–85
security	in,	generally,	155–156
small	components	in,	85
staging	in,	95–96
summary	of,	98–99
test	harnesses	in,	84
testing	of,	generally,	91
traceability	in,	81–82,	85
UATs	in,	95–96
version	control	in,	86–88

Design
of	deployment	pipelines,	176–177
of	IT	services,	54–55
of	operations	services,	54–55
of	security	applications,	175–176

Detection.	See	also	Security
of	errors.	See	Error	detection
of	failures,	130
of	intrusions,	133–134
of	performance	degradation,	130–131
security	audits	for.	See	Security	audits

“Developer	on	Support,”	275–276
Development	(Dev)

in	BlobStore	example,	273–279
build	and	deployment	pipelines	in,	276–278
consumer	applications	in,	278–279
deployment	pipelines	and,	86–90
path	to	production	in,	278–279
of	security,	173–174
support	in,	274–276
teams	for.	See	Development	teams

Development	teams
coordination	of,	18–19
cross-team	coordination	and,	19–20
gatekeepers	in,	16–17
inter-team	coordination	of,	72–73
introduction	to,	12
reliability	engineers	in,	15–16
roles	in,	14–17
service	owners	in,	15
size	of,	13–14
structure	of,	13–16

DevOps	overview
Agile	in,	12–13
architecture	change	in,	65–66
automation	in,	11–12
background	of,	1
barriers	to	adoption	in,	20–23
benefits,	7–11
cloud	platform	in.	See	Cloud	platform
compliance	in,	207–208
continuous	deployment	in,	7
coordination	in,	7–10,	17–20
cross-team	coordination	in,	19–20
culture/type	of	organizations	in,	20–22
definition	of,	3–5
department	types	in,	22
development	teams	in.	See	Development	teams
further	reading	on,	24–25
future	and.	See	Future	of	DevOps
gatekeepers	in,	16–17
IMVU,	Inc.	and,	7
introduction	to,	3–7
monitoring	in,	143
operations	in.	See	Operations	(Ops)
operations	services	in.	See	Operations	services

personnel	issues	and,	23
perspective	of,	11–12
practices	in,	generally,	5–6,	206–208
release	process	in,	7–9
reliability	engineers	in,	15–16
roles	in,	14–17
service	owners	in,	15
silo	mentality	in,	22–23
size	of	teams	in,	13–14
stakeholder	satisfaction	in,	208
success	in,	206–207
summary	of,	23–24
team	coordination	in,	18–19
team	structure	in,	13–16
tool	support	and,	23
tradeoffs	in,	24

DevOps-style	activities,	other	groups	with,	300–301
Diagnosis

of	anomalies,	148–152
of	errors	in	operations,	296
of	monitoring	results,	142–143

Dilbert	cartoons,	22
Direct	coordination,	defined,	18
Disaster	recovery.	See	also	Error	recovery,	200,	268
Disciplined	Agile	Delivery,	12–13
Disciplined	Agile	Delivery:	A	Practitioner’s	Approach,	12
Discovery,	109–110
Displaying	results,	141
Distributed	environments.	See	also	Cloud	platform

of	the	cloud,	generally,	34–35
concerns	in,	generally,	45
consistency	in,	39
elasticity	in,	40
failures	in,	34–38
large	volumes	of	data	in,	146–147

long	tails	in,	37–38
NoSQL	databases	in,	39–40
time	in,	34–35
VM	failures	in,	36–37

DNS	(Domain	Name	System).	See	Domain	Name	System	(DNS)
Docker,	121
Dogfooding,	268
Domain	Name	System	(DNS)

in	the	cloud,	generally,	31–33
datacenter	switches	and,	227–228
at	Rafter,	generally,	224
release	stage	and,	250–252

Domain-specific	languages	(DSLs),	225,	231
DoS	(denial-of-service)	attacks,	161,	172–173
Drift	between	production/non-production,	259
DSLs	(Domain-specific	languages),	225,	231
Duplication	of	effort,	20
DynamoDB

baking	stage	and,	249
BlobStore	and,	271
complex	applications	and,	255–256
persistence	and,	256
provider	limitations	and,	260

Early	error	detection/repair,	189–190
Early	release	testing,	97
Edwards,	Damon,	143,	207
Elastic	Compute	Cloud	(EC2)

AMIs	and,	generally,	30
in	CDP	baking	process,	248–249
deploying	to	multiple	environments	and,	114–115
ELB	and,	265
IAM	roles	and,	258
key	pairs	in,	175

Elastic	Load	Balancing	(ELB)

in	deploy	stage,	249
microservice	deployment	and,	265–267
in	release	process,	251
in	rolling	upgrades,	104–105,	289–291,	295–296

Elasticity,	defined,	40
Elasticsearch,	223–224
Ellison,	Larry,	27
Empowerment	vs.	control,	302
Encryption,	171,	279
England,	Rob,	47
Enterprise	Resource	Planning	(ERP),	21
Environments

in	the	cloud,	generally,	41–43
crosscutting	in,	86
definition	of,	243–245
deploying	to	multiple,	114–117
in	deployment	pipelines,	generally,	82–84
distributed.	See	Distributed	environments
future	of	DevOps	and,	305–306
integrated	development,	163,	184
in	microservice	architecture,	73
pre-commit,	82–83
teardown	in,	86

Ephemeral	coordination,	18
Erl,	Thomas,	54
ERP	(Enterprise	Resource	Planning),	21
Error	detection

automation	of,	304,	308
in	deployment	pipelines,	97
early,	189–190
in	future	of	DevOps,	309
in	operations	process,	294–295

Error	diagnosis,	296
Error	recovery.	See	also	Disaster	recovery

automation	of,	304,	308

in	future	of	DevOps,	309
in	operations	process,	295–296

Eureka,	68–69
Eventual	consistency,	39
Exception	handling,	190
Existing	system	adoption,	76–77
Expiration	of	licenses,	209
Exploration,	110
Extensibility,	273
External	stakeholders,	201

Failures
in	the	cloud,	generally,	34–38
detection	of,	130
“failing	gracefully,”	84
instance,	73–74
of	virtual	machines,	36–38

Fanout	systems,	146
Fault	trees,	296–297
Feature	flags.	See	Flags
Feature	toggling

in	deployment,	generally,	107–108
in	deployment	pipelines,	88–89
future	of	DevOps	and,	307
for	mixed-version	race	conditions,	107
removing	from	source	code,	208
rollbacks	and,	119
supporting	continuous	deployment	with,	202

Finagle	RPC,	269
Financial	attacks,	159
First-class	stakeholders,	200,	204
Flags

feature	toggling	and,	108
for	features,	generally,	88
“update	stack	if	already	exists,”	251

Floating	licenses,	209
Flume,	148
Fu,	Min,	287
Future	of	DevOps

charging	models	in,	303–304
continuous	deployment	pipelines	in,	306–309
empowerment	vs.	control	in,	302
error	reporting/repair	in,	309
final	words	on,	310
further	reading	on,	310
implementation	in,	309
introduction	to,	299–300
operations	as	process	in.	See	Operations	process
organizational	issues	in,	300–302
other	groups	with	DevOps-style	activities,	300–301
overview	of,	285
ownership	and	reorganizations	in,	301–302
process	issues	in,	302–305
standards	in,	303
technology	issues	in,	305–309
velocity	of	changes	in,	304–305
vendor	lock-in	in,	303

Ganglia,	147
Gartner	Hype	Cycle	for	Application	Development,	3
Gatekeepers,	16–17
Gates,	204–205
Gem	repository	servers,	223–224
Gibbons,	Barry,	197
Git

AMIs	and,	248
Atlassian	Stash	and,	276
interoperability	and,	191
introduction	to,	86–88

GitHub

in	deployment	pipelines,	88
Enterprise	version	of,	241
in	Rafter	case	study,	218–219

Go	software,	192
Goldman	Sachs,	9
Google

Analytics	by,	150
on	build	errors,	187,	190
on	datacenter	failures,	35
future	of	DevOps	and,	299
shared	microservices	and,	283
on	site	reliability	engineers,	15
trunk-based	development,	87

Graphs,	141
Graylog	2,	147

Hackett,	Buddy,	181
Hadoop	Distributed	File	System	(HDFS)

in	the	cloud,	43–44
introduction	to,	37
retention	policies	and,	139
RPOs	in,	52

Hammant,	Paul,	87
Hamming,	Richard,	127
Hand,	Daniel,	213,	237
Hardware,	59,	166
Hardware	provisioning,	48–49,	59
Hawking,	Stephen,	3
HDFS.	See	Hadoop	Distributed	File	System	(HDFS)
Health	Insurance	Portability	and	Accountability	Act	(HIPAA),	164
Heavily	baked	deployment,	121
Heavily	baked	VM	images

in	build	process,	92–93
defined,	30–31
in	deployment,	112–113

HIPAA	(Health	Insurance	Portability	and	Accountability	Act),	164
HTTP	Status	Code	7XX:	Developer	Errors,	101
HTTPS,	172
Hypervisors,	30,	92

IaaS.	See	Infrastructure	as	a	Service	(IaaS)
IBM,	12
Idempotent,	defined,	74
Identity	and	Access	Management	(IAM),	175,	250,	257–258
Identity	management

authentication	for.	See	Authentication
authorization	for,	155–156,	168–169
generally,	165
hardware	for,	166
introduction	to,	165
password	controls	in,	167–168
roles	in,	166–167
software	for,	166–167
in	Sourced	Group	case	study,	258

IDEs	(integrated	development	environments),	163,	184
Ilities

appropriate	levels	in,	183–185
availability.	See	Availability
in	BlobStore	example,	272–273
data	models	in,	192
dependability,	72–74
early	error	detection/repair	in,	189–190
extensibility,	273
interfaces	in,	191
interoperability,	191–192
maintainability,	273
modifiability.	See	Modifiability
overview	of,	181–182
performance	in,	186–188
recoverability,	190–191

reliability.	See	Reliability
repeatability,	183–186
resource	utilization	and,	187–188
scalability,	272
service	characteristics	in,	189
summary	of,	194–195
testability,	192–193
tool	interactions	in,	195
traceability.	See	Traceability
version	control	in,	185–186

Images.	See	Amazon	Machine	Images	(AMIs);	Virtual	machines	(VMs)
Immutability,	93,	269
Implementation,	309
Improvement,	continual,	58–59
IMVU,	Inc.,	7
Incentives,	22
Inception	phase,	12–13
Incident	management

in	business	considerations,	210
in	deployment	pipelines,	98
in	operations	services,	56
stakeholders	in,	200,	204

Incinga,	147
Inconsistencies,	106–111
Indirect	coordination,	defined,	18
Individual	hardware,	48–49
Information

at	rest,	159
security	of,	51–53,	59–60,	159
technology	for.	See	IT	(information	technology)
in	transit,	160
in	use,	159–160

Information	technology.	See	IT	(information	technology)
Information	Technology	Infrastructure	Library	(ITIL)

change	models	and,	56

continual	service	improvement	and,	58–59
DevOps	and,	generally,	59
events	and,	56
incident	management	and,	56–57
introduction	to,	47–48
service	design	and,	54–55
service	strategies	and,	53–54
service	transitions	and,	55–56,	60–61

Infrastructure
Atlassian	and,	267
code	as.	See	Infrastructure-as-code
discovering,	219–220
ITIL	for.	See	Information	Technology	Infrastructure	Library	(ITIL)
in	Rafter	case	study,	217
as	services.	See	Infrastructure	as	a	Service	(IaaS)
supporting	in	database	tiers,	221–222
testing	of,	233
tools	for,	223–224

Infrastructure	as	a	Service	(IaaS)
defined,	29
IP	management	in,	30–33
PhotoPNP	and,	150
vendor	lock-in	and,	260–261
virtualization	in,	29–30

Infrastructure-as-code
in	microservice	architecture,	73,	81
security	and,	155–156
testability	and,	192–193

Instance,	defined,	30
Instance	failures,	73–74
Integrated	development	environments	(IDEs),	163,	184
Integration

continuous,	91–94,	192
environments	for	testing,	83
executing,	94–95

scripts,	305
testing,	generally,	91–94

Intellectual	property	attacks,	159
Inter-team	coordination,	72–73
Interactions	between	Dev/Ops,	209–210
Interfaces,	191
Internal	stakeholders,	200–201
International	Organization	for	Standardization/International	Electrotechnical
Commission	(ISO/IEC)	27001,	163
Interoperability,	191–192
Interpretation	of	data,	139–143
Intrusion	detection,	133–134
IP	address	management

in	the	cloud,	generally,	31
DNS	in.	See	Domain	Name	System	(DNS)
persistence	in,	33

IPsec/VPN,	257
ISO/IEC	(International	Organization	for	Standardization/International
Electrotechnical	Commission)	27001,	163
Isolation,	170–171
IT	(information	technology)

day-to-day	provisioning	of,	50
in	operations	services,	50,	59
professionals	in,	generally,	6
salaries	in,	23
security	and,	162

ITIL.	See	Information	Technology	Infrastructure	Library	(ITIL)

Janitor	Monkey,	43,	161
Java,	34
Java	archives,	92
Java	virtual	machine	(JVM),	280
JavaScript	Object	Notation	(JSON),	217–219
Jenkins	tools,	169,	303
JIRA,	274–275

Joomla,	150
JSON	(JavaScript	Object	Notation)	files,	217–219
JVM	(Java	virtual	machine),	280

Kafka,	148
Kerberos,	167,	281
Key	performance	indicators	(KPIs),	202
Keys,	160–161,	269–271
Kibana,	266–267
Knight	Capital,	9,	89
KPIs	(key	performance	indicators),	202

Lamport,	Leslie,	66
Latency

business	continuity	and,	116
monitoring	and,	130–131
of	user	requests,	132

Latency	Monkey,	97
Launch	configurations	(LCs),	249,	289,	292–295
Lead	times,	208
Levels,	183–185
Library	usage,	82
Licenses,	209–210
Life	cycles

of	applications,	245–248
introduction	to,	6
of	services,	48

Lightly	baked	VM	images
in	build	process,	92–93
defined,	30–31
in	deployment,	112,	121

Lightweight	containers,	92
Likely	changes,	75
Lincoln,	Abraham,	299
Live	testing,	97
Load	balancing

Load	balancing
distributed	environments	and,	40
DNS	and,	32–33
ELB	for.	See	Elastic	Load	Balancing	(ELB)

Local	mirrors,	189
Logic,	business.	See	Business	logic
Logical	consistency

backward/forward	compatibility	in,	108–111
compatibility	of	data	in,	111
in	deployment,	generally,	105–106
discovery	in,	109–110
exploration	in,	110
feature	toggling	in,	107–108
multiple	service	versions	in,	105–111
portability	layers	in,	110–111

Logs
in	microservice	deployment,	267
of	monitoring	results,	140
operations	process	and,	289–295

Logstash,	147,	291
Long	tails,	37–38
Long-term	capacity	planning,	132
LoudCloud,	184

Maintainability,	273
Man-in-the-middle	attacks,	166
Mapping,	71–72,	269–271
Market-based	charging	models,	303
Masters

in	controlled	switches,	226–227
in	database	replication,	221–222
in	uncontrolled	switches,	229

Maturity	model,	203
Maven,	82
Measured	service,	27–28
Memcached,	36–37,	222–223

Metrics,	133
Microservice	architecture.	See	also	Architecture

definition	of,	67–68
dependability	of,	72–74
environments	in,	73
existing	system	adoption	in,	76–77
instance	failures	in,	73–74
inter-team	coordination	in,	72–73
introduction	to,	67–68
likely	changes	in,	75
modifiability	of,	74–75
monitoring	of,	146
quality	of,	generally,	72
ripple	effect	reduction	in,	75
security	in,	generally,	155

Microservice	deployment,	101–102
Migration

of	code,	278–279
of	data,	278
future	of	DevOps	and,	303
to	microservices.	See	Atlassian	case	study

Mining	techniques,	291
Mixed-version	race	condition,	106–107
Modifiability

as	ility,	generally,	194
of	microservice	architecture,	74–75
single	tools	for,	194–195
tool	interactions	in,	195

Modules,	defined,	66
Monitoring

agent-based/agentless,	136–137
alarms	and.	See	Alarms
alerts	and,	139–144
bottom-up	vs.	top-down,	145–146
capacity	planning	in,	131–132

challenges	in,	143–147
in	the	cloud,	145–146
collection	and,	137–139
under	continuous	changes,	143–145
defined,	128
for	demand	management,	71
of	DevOps	processes,	143
diagnosis	from	results	of,	142–143
diagnosis	of	anomalies	from,	148–152
displaying	results	of,	141
elasticity	and,	40
failure	detection	in,	130
further	reading	on,	153
future	of	DevOps	and,	307
graphs	of	results	of,	141
interpretation	of	data	from,	139–143
introduction	to,	127–129
intrusion	detection	in,	133–134
latency	in,	130–131
logs	of	results	of,	140
of	microservice	architecture,	146
of	operations,	137,	296–298
of	performance	degradation,	130–131
Platformer.com	example	of.	See	Platformer.com	example
procedures	for,	134–139
reaction	to	results	of,	142–143
as	service	operation,	57–58
solutions	for	various	platforms,	151
storage	and,	137–139
subjects	of,	129–134
summary	of,	152
throughput	in,	131
times	to	change	configuration	of,	139
tools	for,	147–148
user	interactions	in,	132–133

utilization	in,	131
Moore,	Geoffrey,	299
Motivation,	288–289
Mozilla,	17
Multiple	environments,	114–117
Multiple	versions	of	services,	105–111

Nagios,	147
NameNodes,	44
National	Institute	of	Standards	and	Technology	(NIST)

“800-53”	by,	162–168,	171–173
“AC-3,	Access	Enforcement”	by,	168
on	charging	models,	132
on	the	cloud,	27–29
on	development,	173
on	elasticity,	40
on	encryption,	171
on	PaaS,	34
on	security,	162–165,	167

Negative	tests,	84–85
Netflix

Archaius	tool	of,	108
Asgard,	121
Conformity	and	Security	Monkeys,	176
Edda,	186
error	detection	at,	97
Eureka,	68–69
future	of	DevOps	and,	299,	301
gatekeepers	at,	16
shared	microservices	and,	283
Simian	Army,	97,	167,	309

Nexus,	276
NIST.	See	National	Institute	of	Standards	and	Technology	(NIST)
No-downtime	paths,	278–279
Nonfunctional	tests,	96
NoSQL	databases

NoSQL	databases
in	the	cloud,	39–40
data	schemas	in,	111
DynamoDB.	See	DynamoDB

Offline	activities,	289–293
On-demand	self-service,	27
Online	activities,	294–296
Open-loop	controls,	57
OpenVZ,	263
Operating	system	packages,	92
Operations	(Ops)

in	the	cloud,	generally,	44
monitoring	of,	137
personnel	for,	6,	10–11
as	process.	See	Operations	process
responsibilities	of	staff	for,	10–11
services	and.	See	Operations	services

Operations	process
error	detection	in,	294–295
error	diagnosis	in,	296
error	recovery	in,	295–296
further	reading	on,	298
introduction	to,	287–288
monitoring	in,	296–298
motivation	and,	288–289
offline	activities	in,	289–293
online	activities	in,	294–296
overview	of,	288–289
summary	of,	298

Operations	services
business	continuity	in,	51–53,	59–60
capacity	planning	in,	51,	59
continual	improvement	of,	58–59
deployment	of,	55–56
design	of,	54–55

DevOps	and,	generally,	59–61
hardware	provisioning,	48–49,	59
IT	functions	in,	50,	59
overview	of,	47–48
security	in,	51–53,	59–60
service	level	agreements	for,	50–51,	59
service	operations	in,	56–58
software	provisioning,	49–50,	59
strategy	planning	for,	53–54
transitions	to,	55–56

Operators,	defined,	6
Ops	(operations).	See	Operations	(Ops)
Opsware,	184
Organization-wide	hardware,	49
Organizational	issues

in	business	cases,	201–202
culture/type	of	organizations,	20–22
empowerment	vs.	control,	302
in	future	of	DevOps,	300–302
other	groups	with	DevOps-style	activities,	300–301
ownership,	301–302
regulations,	21
in	Sourced	Group	case	study,	238–240

OSGi,	282
Outages,	208
Outdated	data,	171
“Outside	of	channels”	controls,	164
Ownership,	172,	301–302
Oxford	English	Dictionary,	17

PaaS.	See	Platform	as	a	Service	(PaaS)
Packaging

in	deployment,	generally,	111–114
in	deployment	pipelines,	92–93
of	files,	91

PagerDuty,	274
Painter,	John,	213,	237
Parnas,	David,	71
Partial	deployment,	117–118
Passwords,	160–161,	167–168
Patching,	171–172
Paxos,	107
Payment	Card	Industry	(PCI),	164,	239
Performance

Apdex	on,	148
of	deployment	pipelines,	95–96
detecting	degradation	of,	130–131
DNS	and,	32
as	ility,	generally,	186
measurement	of,	187
resource	utilization	and,	187–188
of	security	audits,	174–175
testing,	83

Persistence
coordination,	18
of	IP	addresses,	33
in	Sourced	Group	case	study,	256–257
in	virtual	machines,	36–37

Personnel	issues,	23
Perspective	of	DevOps,	11–12
PhotoPNP,	150–152
Physical	distance,	201–202
Physical	hardware,	48–49
Pipeline	state,	255–256
Platform	as	a	Service	(PaaS)

Atlassian	and.	See	Atlassian	case	study
in	the	cloud,	generally,	33–34
defined,	29
Platformer.com	as.	See	Platformer.com	example
vendor	lock-in	and,	261

Platform	providers,	162,	172
Platform,	the	cloud	as.	See	Cloud	platform
Platformer.com	example

anomaly	detection	in,	150
conclusions	about,	150–152
context	of,	148–150
data	collection	in,	150
monitoring	in,	generally,	148

Portability	layers,	110–111
Pre-commit	environments,	82–83
Pre-commit	testing,	86–91
Private	clouds,	116–117,	149
Private	datacenters,	149
Problem-solving	issues,	198–199
Process	issues

charging	models,	303–304
in	future	of	DevOps,	generally,	302
standards,	303
velocity	of	changes,	304–305
vendor	lock-in,	303

Process	models.	See	Operations	process
Production

canary	testing	and,	193
deployment	pipelines	and,	96–97
environments,	41–43,	83
non-production	environments	and,	259
path	to,	278–279

Products	vs.	processes,	182
Programming	for	safety/performance,	269–272
Project	hardware,	49
ProM,	291
Provider	limitations,	260
Provisioning

of	hardware,	48–49,	59
of	IT,	50

of	software,	49–50,	59
of	virtual	machines,	70

Public	clouds,	115–116
Puppet,	121,	194
Push/pull	commands,	86–87

Quality	assurance	(QA),	169,	273
Quality	issues.	See	also	Ilities,	72
Questionnaires,	208

Race	conditions,	112
Rafter	case	study

adding	applications	in,	217–218
application	logic	in,	217
business	logic	in,	216–220
continuous	deployment	pipeline	in,	233
controlled	switch	steps	in,	225–229
current	state	of,	216
database	tiers	in,	220–223
datacenter	switches	in,	225–232
defining/automating	switch	steps	in,	230–232
DNS	in,	224
Elasticsearch	in,	224
further	reading	on,	234–235
gem	repository	servers	in,	223–224
infrastructure	discovery	in,	219–220
infrastructure	in,	generally,	217
infrastructure	support	in,	221–222
infrastructure	testing	in,	233
infrastructure	tools	in,	223–224
introduction	to,	215–216
session	data	in,	222–223
summary	of,	233–234
testing	in,	232–233
transactional	data	in,	220–221

uncontrolled	switches	in,	229–230
web	tiers	in,	216–220

Rapid	elasticity,	27–28
RBA	(role-based	authentication),	167
RBAC	(role-based	access	control),	168–169
RDBMSs	(relational	database	management	systems),	52,	111
Reaction	to	results,	142–143
Real	user	monitoring	(RUM),	133
Recoverability,	190–191
Recovery

from	disasters,	200,	268
from	errors,	304,	308

Recovery	point	objectives	(RPOs),	51–53
Recovery	time	objectives	(RTOs),	51–53
Red/black	deployment,	103,	306
Red	Hat,	92,	161
Redis

datacenter	switches	and,	226–227
supporting	database	tiers,	221–222
uncontrolled	switches	and,	229

Regression	testing,	84–85
Regulated	organizations,	21
Relational	database	management	systems	(RDBMSs),	52,	111
Release	packages,	60–61
Release	process

beta	releases,	96
early	release	testing,	97
overview	of,	7–9
planning	steps	for,	8
release	stage	in,	245–247,	250–254

Reliability
DNS	and,	32
early	error	detection/repair	in,	189–190
of	services,	189
user	interactions	and,	132

Reliability	engineers,	15–16,	275
Repeatability

at	appropriate	levels,	183–185
as	ility,	generally,	183
version	control	in,	185–186

Replication,	307
Repudiation,	173
Resource	management

access	control	in,	168
in	architecture,	69–71
in	Atlassian	case	study,	266–267
in	ilities,	187–188
introduction	to,	20
pooling	resources	in,	27–28
security	in,	159–161

Retention	policies,	138
Revision	control.	See	Version	control
Ripple	effect	reduction,	75
Risk	mitigation,	201–203
Role-based	access	control	(RBAC),	168–169
Role-based	authentication	(RBA),	167
Roles,	14–17,	162–164
Rollbacks

definition	of,	8
in	deployment,	118–120
future	of	DevOps	and,	307
in	Sourced	Group	case	study,	254

Rolling	upgrades
in	deployment,	102–107
future	of	DevOps	and,	307
monitoring	configurations	and,	139
operations	and,	289–295

Rollout	plans,	203–205
Root	passwords,	169
Round-Robin	Database	(RRD),	138

Route	53,	250–254,	265
RPOs	(recovery	point	objectives),	51–53
RRD	(Round-Robin	Database),	138
RSpec,	232–233
RTOs	(recovery	time	objectives),	51–53
Ruby

Gems,	217,	228,	309
on	Rails,	216–218
switch	steps	in,	230

RUM	(real	user	monitoring),	133
Runtime-specific	packages,	92
Rutan,	Burt,	79

S3.	See	Simple	Storage	Service	(S3)
S4	stream	processing	tool,	148
SaaS	(Software	as	a	Service),	29,	261
Sabotage,	159
Salary	guides,	23
SAP	Business	Suite,	90
Sarbanes-Oxley,	301
Scalability,	40,	272
Schemas,	111
Scout,	225,	229
Scripts

build,	91–92
defined,	81
integration,	305
version	control	and,	185

SDNs	(software-defined	networks),	162
SecOps	(security	operations),	239–240
Secure	Shell	(SSH),	136,	258
Security.	See	also	specific	attack	types

access	control	for.	See	Access	control
activities	in,	162–164
application	design	and,	175–176

architects,	162,	172
auditing	for.	See	Security	audits
authentication	for.	See	Authentication
authorization	for,	155–156,	168–169
BlobStore	and,	273
boundary	definition	for,	170
definition	of,	156–159
denial-of-service	attacks	and,	161,	172–173
deployment	pipeline	design	and,	176–177
detection	for,	172–173
development	of,	173–174
encryption	for,	171
further	reading	on,	178–179
future	of	DevOps	and,	301,	306
hardware	for,	166
identity	management	for,	165–169
introduction	to,	155–156
isolation	for,	170–171
in	operations	services,	51–53,	59–60
outdated	data	in,	171
ownership/responsibility	for,	172
passwords	for,	167–168
personnel	for,	162–164
resource	protection	in,	159–161,	168
role-based	access	control	in,	168–169
role-based	authentication	for,	167
software	for,	166–167
in	Sourced	Group	case	study,	257–258
summary	of,	177–178
threats	to.	See	Threats	to	security
version	updating	in,	171–172
vulnerability	patches	in,	171–172

Security	audits
audit	trails	vs.	logs,	173
introduction	to,	155–156,	164

overview	of,	172–173
performance	of,	174–175

Security	Monkey,	161,	167
Security	operations	(SecOps),	239–240
SEI	(Software	Engineering	Institute),	158–159
Sensu,	147
Serverspec,	193
Service	level	agreements	(SLAs)

Amazon	and,	76
for	demand	management,	71
future	of	DevOps	and,	307–308
for	operations	services,	47,	50–51,	59

Services
agreements	at	level	of.	See	Service	level	agreements	(SLAs)
AWS.	See	Amazon	Web	Services	(AWS)
characteristics	of,	189
defined,	67
deployment	of.	See	Deployment
desk	operations	of,	50
life	cycles	of,	48
operations	and.	See	Operations	services
owners	of,	15
S3.	See	Simple	Storage	Service	(S3)
SNS,	265
software	as,	29,	261

Session	data,	222–223
SHA-1	hash,	269–271
Shard	allocation,	183
Shek,	Sidney,	213,	261
Shellshock,	161
Short-term	capacity	planning,	132
Silo	mentality,	22–23
Simian	Army,	97,	167,	309
Simple	Queue	Service	(SQS),	258
Simple	Network	Management	Protocol	(SNMP),	136

Simple	Notification	Service	(SNS),	265
Simple	Storage	Service	(S3)

in	Atlassian	case	study,	279
in	Sourced	Group	case	study,	245,	250,	254–258

Single	sign-ons,	166–167
Site	Reliability	Engineers,	15
Size	of	teams,	13–14
SLAs.	See	Service	level	agreements	(SLAs)
Slaves

in	controlled	switches,	226–227
in	database	replication,	221–222
in	uncontrolled	switches,	229

Slow-moving	organizations,	21
Small	components,	85
Smoke	tests,	91,	95,	278
Snapshots,	259
SNMP	(Simple	Network	Management	Protocol),	136
SNS	(Simple	Notification	Service),	265
Software

audits,	210
for	authentication,	166–167
provisioning,	49–50,	59
third-party,	75

Software	as	a	Service	(SaaS),	29,	261
Software-defined	networks	(SDNs),	162
Software	Engineering	Institute	(SEI),	158–159
Solution	architects,	162,	172
Source	code	revision	systems,	241
Source	control.	See	Version	control
Sourced	Group	case	study

access	management	in,	258
advanced	concepts	in,	generally,	259
AWS	native	services	in,	261
build	and	test	stage	in,	248–249
CloudFormation	in,	243–245,	257–258

complex	applications	in,	255–256
continuous	deployment	pipeline	in,	240–243,	258–260
deploy	stage	in,	249–250
drift	between	production/non-production	in,	259
environment	definition	in,	243–245
further	reading	on,	262
identity	management	in,	258
introduction	to,	237–238
organizational	context	in,	238–240
persistence	in,	256–257
provider	limitations	in,	260
release	stage	in,	250–254
rollbacks	in,	254
security	in,	257–258
standardized	application	life	cycle	in,	245–248
summary	of,	261
teardown	stage	in,	254–255
traffic	matching	in,	253
vendor	lock-in	in,	260–261

Spacewalk,	161
Spencer,	Rob,	60
Splunk,	147
Spoofing,	tampering,	repudiation,	information	disclosure,	denial-of-service,
elevation	of	privilege	(STRIDE),	157–158,	173
Sprint	methodology,	247
SQS	(Simple	Queue	Service),	258
SSH	(Secure	Shell),	136,	258
Staging

environment	of,	83
introduction	to,	80–81
testing	in,	95–96

Stakeholders
external,	201
first-class,	200,	204
impact	on,	200–201

internal,	200–201
satisfaction	of,	208

Standardized	application	life	cycles,	245–248
Standards,	303
State	management,	115–116,	202
Storage,	137–139
Storm,	148
Strategic	planning,	53–54,	301
Stream	processing	tools,	148
STRIDE	(spoofing,	tampering,	repudiation,	information	disclosure,	denial-of-
service,	elevation	of	privilege),	157–158,	173
Structure	of	architecture.	See	also	Architecture,	66–72
Subnets,	170
Subscription-based	charging	models,	303
Subversion	(SVN).	See	also	Version	control,	86–88
Success	criteria,	205
Support

in	Atlassian	case	study,	274–276
of	continuous	deployment,	202
of	infrastructure,	221–222
of	tools,	23

SVN	(Subversion).	See	also	Version	control,	86–88
Switches

controlled,	225–229
defining/automating,	230–232
in	deployment	pipelines,	generally,	88
uncontrolled,	229–230

Synchronization,	18,	107
Synthetic	monitoring,	133
“System	and	Communications	Protection,”	167
System-managed	credentials,	166–167

Tagging	data	items,	186
Tampering,	169–170
TeamCity,	233

Teams.	See	Development	teams
Teardown	stage

future	of	DevOps	and,	307
in	Sourced	Group	case	study,	245–246,	254–255

Technical	controls,	164
Technical	risks,	202–203
Technology	experts,	50
Technology	issues

continuous	deployment	pipeline	concepts	in,	306–308
continuous	deployment	pipeline	quality	in,	308–309
error	reporting/repair	in,	309
in	future	of	DevOps,	generally,	305–306
implementation	in,	309

Test-driven	development,	91
Test	Kitchen,	121,	193
Testability,	192–193
Testing

of	continuous	deployment	pipelines,	233
of	datacenter	switch	applications,	232–233
deployment	pipelines	and.	See	Deployment	pipelines
DNS	and,	32
environments	for,	41–43
harnesses	in,	84
of	infrastructures,	233
integration,	91
in	Rafter	case	study,	generally,	232–233

Third	parties,	75,	149
Threats	to	security.	See	also	Security

denial-of-service	attacks,	161,	172–173
financial	attacks,	159
intellectual	property	attacks,	159
man-in-the-middle	attacks,	166
overview	of,	156–159

Throughput,	131
Ticketing	systems,	241–242
Time

Time
in	the	cloud,	34–35
collating	related	items	by,	138
between	commit/deployment,	206–207
between	error	discovery/repair,	207
in	operations	process,	289
prediction	of,	308–309

Time	to	live	(TTL),	31–32,	224
Toggling.	See	Feature	toggling
Tools.	See	also	specific	tools

for	continuous	deployment	pipelines,	241
for	deployment	management,	generally,	121
for	infrastructure,	223–224
interactions	of,	195
for	monitoring,	147–148
specifications	for,	12
for	stream	processing,	148
support	for,	23

Top-down	monitoring,	145–146
Traceability

crosscutting	and,	85
in	deployment	pipelines,	81–82
in	future	of	DevOps,	305

Traffic	matching,	253
Transactional	data,	220–221
Transitions,	13,	55–56
Trunk-based	development,	87–88
TTL	(time	to	live),	31–32,	224
Twain,	Mark,	127
Twitter,	269
Two-pizza	rule,	14,	75
Type	of	departments/organizations,	20–22

Uncontrolled	switches,	229–230
Unit	tests,	91

URLs,	31–33
User	acceptance	tests	(UATs)

in	deployment	pipelines,	80–81,	95–96
environment	of,	83
in	Sourced	Group	case	study,	246–248

User	interactions,	132–133
Utilization,	131

Vagrant,	121
Varnish,	271
Velocity	of	changes,	304–305
Vendor	lock-in,	260–261,	303
Verizon,	158–159
Version	control

in	deployment	pipelines,	86–88
in	ilities,	185–186
for	mixed-version	race	conditions,	107
in	security,	171–172

Virtual	hardware,	49
Virtual	machines	(VMs)

AMIs	and.	See	Amazon	Machine	Images	(AMIs)
application	state	in,	36
baking	images	in.	See	Baking	VM	images
charging	models	and,	304
client	state	in,	36
consistency	in,	39
creation	of,	30,	43
deployment	of.	See	Deployment	pipelines
DNS	in,	31–33
elasticity	in,	40
failure	of,	36–38
image	sprawl	in,	43
images	in,	30–31,	92–93,	161
introduction	to,	29–30
IP	address	management	and,	31–33

in	Java,	280
launching,	207
loading,	30–31
long	tails	and,	37–38
NoSQL	databases	in,	39–40
in	operations	process,	289
persistent	state	in,	33,	36–37
provisioning/deprovisioning,	70
sprawl	in,	161
stateless,	36

Virtual	private	clouds	(VPCs)
CloudFormation	and,	257
number	of	security	groups	per,	260
as	virtual	private	networks,	244

Virtual	private	networks	(VPNs),	244,	264
Virtualization,	defined.	See	also	Virtual	machines	(VMs),	29–30
VM	instance,	defined,	30
VMs.	See	Virtual	machines	(VMs)
VMware,	114,	184,	216
VPCs.	See	Virtual	private	clouds	(VPCs)
VPNs	(virtual	private	networks),	244,	264
Vulnerability	patches,	171–172

Web	tiers
adding	applications	in,	217–218
application	logic	in,	217
infrastructure	discovery	in,	219–220
infrastructure	in,	generally,	217
in	Rafter	case	study,	generally,	216

Wikipedia
on	DevOps,	4–5,	18
on	environments,	83–84
on	operations	staff	responsibilities,	10–11
on	regression	testing,	84
on	release	planning	steps,	8

Williams,	Chris,	213,	215
Windows	Management	Instrumentation	(WMI),	136
“Within	channels”	controls,	164
WMI	(Windows	Management	Instrumentation),	136
Work	assignments,	71–72
Workload/application	behavior	changes,	304–305
World	Wide	Web,	31
Wrappers,	189
www.atlassian.com/company,	263
www.rafter.com/about-rafter,	215
www.sourcedgroup.com.au,	237

XebiaLabs	example,	9
Xu,	Xiwei,	287

ZAB	algorithms,	107
ZooKeeper

distributed	environments	and,	36
feature	toggling	in,	107–108
state	management	and,	202
VM	provisioning/deprovisioning	in,	70

http://www.atlassian.com/company
http://www.rafter.com/about-rafter
http://www.sourcedgroup.com.au

Big	Data:	Architectures	and	Technologies

About	the	Course
Scalable	“big	data”	systems	are	significant	long-term	investments	that	must	scale
to	handle	ever-increasing	data	volumes,	and	therefore	represent	high-risk
applications	in	which	the	software	and	data	architecture	are	fundamental
components	of	ensuring	success.	This	course	is	designed	for	architects	and
technical	stakeholders	such	as	product	managers,	development	managers,	and
systems	engineers	who	are	involved	in	the	development	of	big-data	applications.
It	focuses	on	the	relationships	among	application	software,	data	models,	and
deployment	architectures,	and	how	specific	technology	selection	relates	to	all	of
these.	While	the	course	touches	briefly	on	data	analytics,	it	focuses	on
distributed	data	storage	and	access	infrastructure,	and	the	architecture	tradeoffs
needed	to	achieve	scalability,	consistency,	availability,	and	performance.	We
illustrate	these	architecture	principles	with	examples	from	selected	NoSQL
product	implementations.

Who	Should	Attend?
•	Architects
•	Technical	stakeholders	involved	in	the	development	of	big	data	applications
•	Product	managers,	development	managers,	and	systems	engineers

Topics
•	The	major	elements	of	big	data	software	architectures
•	The	different	types	and	major	features	of	NoSQL	databases
•	Patterns	for	designing	data	models	that	support	high	performance	and
scalability
•	Distributed	data	processing	frameworks

Three	Ways	to	Attend
•	Public	instructor-led	offering	at	an	SEI	office
•	Private,	instructor-led	training	at	customer	sites
•	eLearning

For	More	Information

For	More	Information
To	learn	more	and	to	register	for	the	course,	visit	www.sei.cmu.edu/go/big-data

http://www.sei.cmu.edu/go/big-data

Code	Snippets

	About This eBook
	Title Page
	Copyright Page
	Contents
	Preface
	Previewing the Book
	Acknowledgments
	Legend
	Part One: Background
	Chapter 1. What Is DevOps?
	1.1 Introduction
	1.2 Why DevOps?
	1.3 DevOps Perspective
	1.4 DevOps and Agile
	1.5 Team Structure
	1.6 Coordination
	1.7 Barriers
	1.8 Summary
	1.9 For Further Reading

	Chapter 2. The Cloud as a Platform
	2.1 Introduction
	2.2 Features of the Cloud
	2.3 DevOps Consequences of the Unique Cloud Features
	2.4 Summary
	2.5 For Further Reading

	Chapter 3. Operations
	3.1 Introduction
	3.2 Operations Services
	3.3 Service Operation Functions
	3.4 Continual Service Improvement
	3.5 Operations and DevOps
	3.6 Summary
	3.7 For Further Reading

	Part Two: The Deployment Pipeline
	Chapter 4. Overall Architecture
	4.1 Do DevOps Practices Require Architectural Change?
	4.2 Overall Architecture Structure
	4.3 Quality Discussion of Microservice Architecture
	4.4 Amazon’s Rules for Teams
	4.5 Microservice Adoption for Existing Systems
	4.6 Summary
	4.7 For Further Reading

	Chapter 5. Building and Testing
	5.1 Introduction
	5.2 Moving a System Through the Deployment Pipeline
	5.3 Crosscutting Aspects
	5.4 Development and Pre-commit Testing
	5.5 Build and Integration Testing
	5.6 UAT/Staging/Performance Testing
	5.7 Production
	5.8 Incidents
	5.9 Summary
	5.10 For Further Reading

	Chapter 6. Deployment
	6.1 Introduction
	6.2 Strategies for Managing a Deployment
	6.3 Logical Consistency
	6.4 Packaging
	6.5 Deploying to Multiple Environments
	6.6 Partial Deployment
	6.7 Rollback
	6.8 Tools
	6.9 Summary
	6.10 For Further Reading

	Part Three: Crosscutting Concerns
	Chapter 7. Monitoring
	7.1 Introduction
	7.2 What to Monitor
	7.3 How to Monitor
	7.4 When to Change the Monitoring Configuration
	7.5 Interpreting Monitoring Data
	7.6 Challenges
	7.7 Tools
	7.8 Diagnosing an Anomaly from Monitoring Data—the Case of Platformer.com
	7.9 Summary
	7.10 For Further Reading

	Chapter 8. Security and Security Audits
	8.1 What Is Security?
	8.2 Threats
	8.3 Resources to Be Protected
	8.4 Security Roles and Activities
	8.5 Identity Management
	8.6 Access Control
	8.7 Detection, Auditing, and Denial of Service
	8.8 Development
	8.9 Auditors
	8.10 Application Design Considerations
	8.11 Deployment Pipeline Design Considerations
	8.12 Summary
	8.13 For Further Reading

	Chapter 9. Other Ilities
	9.1 Introduction
	9.2 Repeatability
	9.3 Performance
	9.4 Reliability
	9.5 Recoverability
	9.6 Interoperability
	9.7 Testability
	9.8 Modifiability
	9.9 Summary
	9.10 For Further Reading

	Chapter 10. Business Considerations
	10.1 Introduction
	10.2 Business Case
	10.3 Measurements and Compliance to DevOps Practices
	10.4 Points of Interaction Between Dev and Ops
	10.5 Summary
	10.6 For Further Reading

	Part Four: Case Studies
	Chapter 11. Supporting Multiple Datacenters
	11.1 Introduction
	11.2 Current State
	11.3 Business Logic and Web Tiers
	11.4 Database Tier
	11.5 Other Infrastructure Tools
	11.6 Datacenter Switch
	11.7 Testing
	11.8 Summary
	11.9 For Further Reading

	Chapter 12. Implementing a Continuous Deployment Pipeline for Enterprises
	12.1 Introduction
	12.2 Organizational Context
	12.3 The Continuous Deployment Pipeline
	12.4 Baking Security into the Foundations of the CD Pipeline
	12.5 Advanced Concepts
	12.6 Summary
	12.7 For Further Reading

	Chapter 13. Migrating to Microservices
	13.1 Introduction to Atlassian
	13.2 Building a Platform for Deploying Microservices
	13.3 BlobStore: A Microservice Example
	13.4 Development Process
	13.5 Evolving BlobStore
	13.6 Summary
	13.7 For Further Reading

	Part Five: Moving Into the Future
	Chapter 14. Operations as a Process
	14.1 Introduction
	14.2 Motivation and Overview
	14.3 Offline Activities
	14.4 Online Activities
	14.5 Error Diagnosis
	14.6 Monitoring
	14.7 Summary
	14.8 For Further Reading

	Chapter 15. The Future of DevOps
	15.1 Introduction
	15.2 Organizational Issues
	15.3 Process Issues
	15.4 Technology Issues
	15.5 What About Error Reporting and Repair?
	15.6 Final Words
	15.7 For Further Reading

	References
	About the Authors
	Index

