
© Scaled Agile, Inc. 1

DevOps
	
	
Imagine a world where product owners, Development, QA, IT Operations, and
Infosec work together, not only to help each other, but also to ensure that the
overall organization succeeds. By working toward a common goal, they enable
the fast flow of planned work into production, while achieving world-class
stability, reliability, availability, and security.
—The DevOps Handbook [1]

DevOps is a mindset, a culture, and a set of technical practices. It provides communication,
integration, automation, and close cooperation among all the people needed to plan, develop,
test, deploy, release, and maintain a Solution.

SAFe enterprises implement DevOps to break down silos and empower each Agile Release
Train (ART) and Solution Train to continuously deliver new features to their end users. Over
time, the separation between development and operations is significantly reduced and trains
operate with an automated, continuous delivery pipeline. This mechanism seamlessly defines,
implements and delivers solution elements to the end user, without handoffs or excessive
external production or operations support.

The goal is simple: Deliver value more frequently. This is indeed achievable, as “high-performing
IT organizations deploy 30x more frequently with 200x shorter lead times. … 60x fewer failures
and recover 168x faster.” [1]

Details
DevOps is a combination of two words, ‘development’ and ‘operations.’ Without a DevOps
approach, there’s often significant tension between those who create new features and those
maintaining the stability of the production environment. The ‘development team’ is measured on
the business value they deliver to end-users, while ‘IT service management’ is measured on the
health and stability of the production environment. When each group has seemingly opposing
business objectives, delivery inefficiency and organizational friction may rule the day.

But DevOps ends the silo approach, providing an enterprise with the ability to develop and
release small batches of functionality to the business or customer in a flow process called the
Continuous Delivery Pipeline. DevOps is integral to every Value Stream, and, by definition, is
integral to SAFe.

Many SAFe concepts and principles—systems thinking, small batch sizes, short iterations, fast
feedback, and more—directly support DevOps principles. In addition, the SAFe practices of
Continuous Exploration, Continuous Integration, Continuous Deployment, and Release on
Demand directly support this business need.

	

© Scaled Agile, Inc. 2

The Goal of DevOps
From planning through delivery, the goal of DevOps is to improve collaboration between
Development and IT Operations by developing and automating a continuous delivery pipeline. In
doing so, DevOps:

• Increases the frequency and quality of deployments

• Improves innovation and risk taking by making it safer to experiment

• Realizes faster time to market

• Improves solution quality and shortens the lead time for fixes

• Reduces the severity and frequency of release failures

• Improves the Mean Time to Recovery (MTTR)

SAFe’s ‘CALMeR’ approach to DevOps covers the five main aspects, as illustrated in Figure 1.

Figure 1. SAFe’s CALMeR approach to DevOps

Each aspect is described in the sections below.

Culture of Shared Responsibility
In SAFe, DevOps leverages the culture created by adopting the Lean-Agile values, principles
and practices of the entire framework. Just about every principle of SAFe, from “#1 Take an
Economic View” to “#9 Decentralize Decision Making,” applies to DevOps. It enables shifting
some operating responsibilities upstream, while following development work downstream into
deployment, and operating and monitoring the solution in production. Such a culture includes:

Collaboration and organization – DevOps relies on the ability of Agile Teams and IT
Operations teams to collaborate effectively in an ongoing manner, ensuring that solutions
are developed and delivered faster and more reliably. This is implemented, in part, by
including operations personnel and capabilities on every ART.

Risk tolerance – DevOps requires a tolerance for failure and rapid recovery, and
rewards risk taking.

© Scaled Agile, Inc. 3

Self-service infrastructures – Infrastructure empowers development and operations to
act independently without blocking each other.

Knowledge sharing – Sharing discoveries, practices, tools, and learning across silos is
encouraged.

“Automate everything” mindset – DevOps relies heavily on automation to provide
speed, consistency, and repeatable processes and environment creation, as we describe
below.

Automate Everything
DevOps simply recognizes that manual processes are the enemy of fast value delivery, high
productivity and safety. But automation is not just about saving time. It also enables the creation
of repeatable environments and processes, which are self-documenting and, therefore, easier to
understand, improve, secure, and audit. The entire continuous delivery pipeline is automated to
achieve a fast, Lean flow.

Automation facilitates faster learning and response to market demand and customer feedback.
Builds, testing, deployments, and packaging that are automated improve the reliability of
processes that can be made routine.

This is accomplished, in part, by building and applying an integrated and automated ‘tool chain,’
shown in Figure 2, which typically contains the following categories of tools:

Figure 2. DevOps tool chain within the CD Pipeline

Application Lifecycle Management – Application and Agile Lifecycle Management tools
(ALM) create a standardized environment for communication and collaboration between
software development teams and related groups. (CA Agile Central, Version One, Agile
Craft, tools for Model-Based Systems Engineering)

Artifact Management Repository – These tools provide a software repository for storing
and versioning binary files and their associated metadata (Artifactory, Archiva and
JFrog).

© Scaled Agile, Inc. 4

Build – Build automation is used to script or automate the process of compiling computer
source code into binary code (ANT, Maven, Bamboo, Jenkins).

Testing – Automated testing tools include unit and acceptance testing, performance
testing, load testing, and many more (JUnit, NUnit, Maven, Cucumber, FitNesse).

Continuous Integration (CI) – CI tools automate the process of compiling code into a
build after developers have checked their code into a central repository. After the CI
server builds the system, it runs unit and integration tests, reports results, and typically
releases a labeled version of deployable artifacts (Cruisecontrol, Jenkins, Continuum).

Continuous Deployment – Deployment tools automate application deployments through
to the various environments. They facilitate rapid feedback and Continuous Delivery
while providing the required audit trails, versioning, and approval tracking (Capistrano,
UrbanCode, Ansible, Puppet).

Additional tools – There are numerous other important DevOps support tools:
configuration, logging, management and monitoring, provisioning, source code control,
security, code review, and collaboration.

Lean Flow
SAFe teams strive to achieve a state of continuous flow, enabling new features to move quickly
from concept to cash. The three primary keys to implementing flow make up Principle #6
Visualize and limit WIP, reduce batch sizes, and manage queue lengths. All three are integral to
systems thinking (Principle #2), and long-term optimization. Each is described below in the
DevOps context.

1. Visualize and limit Work in Process (WIP). Figure 3 illustrates an example of a Program
Kanban board, which makes WIP visible to all stakeholders. This helps teams identify
bottlenecks and balance the amount of WIP against the available development and operations
capacity, as work is completed when the new feature or functionality is running successfully in
production.

Figure 3. The Program Kanban helps visualize and limit WIP

	

© Scaled Agile, Inc. 5

2. Reduce the batch sizes of work items. The second way to improve flow is to decrease the
batch sizes of the work. Small batches go through the system faster, and with less variability,
which fosters faster learning and deployment. This typically involves focusing more attention on,
and increasing investment in, infrastructure and automation. This also reduces the transaction
cost of each batch.

3. Manage queue lengths. The third way to achieve faster flow is by managing, and generally
reducing, queue lengths. For solution development, this means that the longer the queue of work
awaiting implementation or deployment, the longer the wait time, no matter how efficiently the
team is processing the work. The shorter the queue, the faster the deployment.

Measure the Flow of Value
In a DevOps environment, problem resolution is less complex because changes are made more
frequently, and in smaller batches. Telemetry, or automated collection of real-time data regarding
the performance of solutions, helps to quickly assess the impact of frequent application changes.
Resolution happens faster because teams don’t need to wait for a different group to troubleshoot
and fix the problem.

It’s important to implement application telemetry to automatically collect data on the business
and technical performance of the solution. Indeed, basing decisions on data, where “the facts are
always friendly” rather than intuition, leads to an objective, blameless path toward improvement.
Data should be transparent. It should be accessible to everyone, be meaningful, and easily
visualized to spot problems and trends.

The goal is to build applications that:

• Collect data on business, application, infrastructure and client layers.

• Store logs in ways that enable analysis.

• Use different telemetry for different stakeholders.

• Broadcast measurements and be hyper transparent.

• Overlay measurements with events (deploys, releases).

• Continuously improve telemetry during and after problem solving.
It’s also important to measure the flow of value through the continuous delivery pipeline.

Please see the metrics article for specific recommendations on DevOps measures.

Recover – Enable Low-Risk Releases
To support the continuous delivery pipeline and the concept of Release on Demand, the system
must be designed for low-risk component or service-based deploy-ability, release-ability, and fast
recovery from operational failure.

	

© Scaled Agile, Inc. 6

Techniques to achieve a more flexible release process are described in the Release on Demand
article. In addition, the following techniques support fast recovery:

Stop-the-line mentality – With a stop-the-production mentality, everyone swarms to fix
any problem until it’s resolved. When there’s a problem with the continuous delivery
pipeline, or a deployed system, the same thinking must apply. Findings are integrated
immediately into the process or product as they’re discovered.

Plan for and rehearse failures – When it comes to large-scale IT applications, failure is
not only an option, it’s guaranteed at some point. A proactive approach to experiencing
failures will increase the team’s response practices, and also foster built-in resilience into
the systems. (See the ‘Chaos Monkey’ in [2]).

Build the environment and capability to fix forward or roll back – Since mistakes will
be made, and servers will fail, teams need to develop the capability to quickly ‘fix forward’
and, where necessary, roll back to a prior known good state. In the latter case, planning
and investment must be made to revert any data changes back to the prior state, and not
lose any user transactions that occurred during the process.

To achieve these recovery capabilities, the organization will typically need to undertake certain
enterprise-level initiatives to enhance architecture, infrastructure, and other nonfunctional
considerations to support deployment readiness, release, and production.

Learn More
[1] Gene Kim. Jez Humble, Patrick Debois, John Willis. The DevOps Handbook: How to Create World-Class
Agility, Reliability, and Security in Technology Organizations. IT Revolution Press.

[2] 2015 State of DevOps Report https://puppet.com/resources/whitepaper/2015-state-devops-report?link=blog

